Image distortion correction for MRI in low field permanent magnet systems with strong B0 inhomogeneity and gradient field nonlinearities

Objective To correct for image distortions produced by standard Fourier reconstruction techniques on low field permanent magnet MRI systems with strong B 0 inhomogeneity and gradient field nonlinearities. Materials and methods Conventional image distortion correction algorithms require accurate Δ B...

Full description

Saved in:
Bibliographic Details
Published in:Magma (New York, N.Y.) Vol. 34; no. 4; pp. 631 - 642
Main Authors: Koolstra, Kirsten, O’Reilly, Thomas, Börnert, Peter, Webb, Andrew
Format: Journal Article
Language:English
Published: Cham Springer International Publishing 01.08.2021
Subjects:
ISSN:0968-5243, 1352-8661, 1352-8661
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Objective To correct for image distortions produced by standard Fourier reconstruction techniques on low field permanent magnet MRI systems with strong B 0 inhomogeneity and gradient field nonlinearities. Materials and methods Conventional image distortion correction algorithms require accurate Δ B 0 maps which are not possible to acquire directly when the B 0 inhomogeneities also produce significant image distortions. Here we use a readout gradient time-shift in a TSE sequence to encode the B 0 field inhomogeneities in the k-space signals. Using a non-shifted and a shifted acquisition as input, Δ B 0 maps and images were reconstructed in an iterative manner. In each iteration, Δ B 0 maps were reconstructed from the phase difference using Tikhonov regularization, while images were reconstructed using either conjugate phase reconstruction (CPR) or model-based (MB) image reconstruction, taking the reconstructed field map into account. MB reconstructions were, furthermore, combined with compressed sensing (CS) to show the flexibility of this approach towards undersampling. These methods were compared to the standard fast Fourier transform (FFT) image reconstruction approach in simulations and measurements. Distortions due to gradient nonlinearities were corrected in CPR and MB using simulated gradient maps. Results Simulation results show that for moderate field inhomogeneities and gradient nonlinearities, Δ B 0 maps and images reconstructed using iterative CPR result in comparable quality to that for iterative MB reconstructions. However, for stronger inhomogeneities, iterative MB reconstruction outperforms iterative CPR in terms of signal intensity correction. Combining MB with CS, similar image and Δ B 0 map quality can be obtained without a scan time penalty. These findings were confirmed by experimental results. Discussion In case of B 0 inhomogeneities in the order of kHz, iterative MB reconstructions can help to improve both image quality and Δ B 0 map estimation.
AbstractList To correct for image distortions produced by standard Fourier reconstruction techniques on low field permanent magnet MRI systems with strong [Formula: see text] inhomogeneity and gradient field nonlinearities.OBJECTIVETo correct for image distortions produced by standard Fourier reconstruction techniques on low field permanent magnet MRI systems with strong [Formula: see text] inhomogeneity and gradient field nonlinearities.Conventional image distortion correction algorithms require accurate [Formula: see text] maps which are not possible to acquire directly when the [Formula: see text] inhomogeneities also produce significant image distortions. Here we use a readout gradient time-shift in a TSE sequence to encode the [Formula: see text] field inhomogeneities in the k-space signals. Using a non-shifted and a shifted acquisition as input, [Formula: see text] maps and images were reconstructed in an iterative manner. In each iteration, [Formula: see text] maps were reconstructed from the phase difference using Tikhonov regularization, while images were reconstructed using either conjugate phase reconstruction (CPR) or model-based (MB) image reconstruction, taking the reconstructed field map into account. MB reconstructions were, furthermore, combined with compressed sensing (CS) to show the flexibility of this approach towards undersampling. These methods were compared to the standard fast Fourier transform (FFT) image reconstruction approach in simulations and measurements. Distortions due to gradient nonlinearities were corrected in CPR and MB using simulated gradient maps.MATERIALS AND METHODSConventional image distortion correction algorithms require accurate [Formula: see text] maps which are not possible to acquire directly when the [Formula: see text] inhomogeneities also produce significant image distortions. Here we use a readout gradient time-shift in a TSE sequence to encode the [Formula: see text] field inhomogeneities in the k-space signals. Using a non-shifted and a shifted acquisition as input, [Formula: see text] maps and images were reconstructed in an iterative manner. In each iteration, [Formula: see text] maps were reconstructed from the phase difference using Tikhonov regularization, while images were reconstructed using either conjugate phase reconstruction (CPR) or model-based (MB) image reconstruction, taking the reconstructed field map into account. MB reconstructions were, furthermore, combined with compressed sensing (CS) to show the flexibility of this approach towards undersampling. These methods were compared to the standard fast Fourier transform (FFT) image reconstruction approach in simulations and measurements. Distortions due to gradient nonlinearities were corrected in CPR and MB using simulated gradient maps.Simulation results show that for moderate field inhomogeneities and gradient nonlinearities, [Formula: see text] maps and images reconstructed using iterative CPR result in comparable quality to that for iterative MB reconstructions. However, for stronger inhomogeneities, iterative MB reconstruction outperforms iterative CPR in terms of signal intensity correction. Combining MB with CS, similar image and [Formula: see text] map quality can be obtained without a scan time penalty. These findings were confirmed by experimental results.RESULTSSimulation results show that for moderate field inhomogeneities and gradient nonlinearities, [Formula: see text] maps and images reconstructed using iterative CPR result in comparable quality to that for iterative MB reconstructions. However, for stronger inhomogeneities, iterative MB reconstruction outperforms iterative CPR in terms of signal intensity correction. Combining MB with CS, similar image and [Formula: see text] map quality can be obtained without a scan time penalty. These findings were confirmed by experimental results.In case of [Formula: see text] inhomogeneities in the order of kHz, iterative MB reconstructions can help to improve both image quality and [Formula: see text] map estimation.DISCUSSIONIn case of [Formula: see text] inhomogeneities in the order of kHz, iterative MB reconstructions can help to improve both image quality and [Formula: see text] map estimation.
Objective To correct for image distortions produced by standard Fourier reconstruction techniques on low field permanent magnet MRI systems with strong B 0 inhomogeneity and gradient field nonlinearities. Materials and methods Conventional image distortion correction algorithms require accurate Δ B 0 maps which are not possible to acquire directly when the B 0 inhomogeneities also produce significant image distortions. Here we use a readout gradient time-shift in a TSE sequence to encode the B 0 field inhomogeneities in the k-space signals. Using a non-shifted and a shifted acquisition as input, Δ B 0 maps and images were reconstructed in an iterative manner. In each iteration, Δ B 0 maps were reconstructed from the phase difference using Tikhonov regularization, while images were reconstructed using either conjugate phase reconstruction (CPR) or model-based (MB) image reconstruction, taking the reconstructed field map into account. MB reconstructions were, furthermore, combined with compressed sensing (CS) to show the flexibility of this approach towards undersampling. These methods were compared to the standard fast Fourier transform (FFT) image reconstruction approach in simulations and measurements. Distortions due to gradient nonlinearities were corrected in CPR and MB using simulated gradient maps. Results Simulation results show that for moderate field inhomogeneities and gradient nonlinearities, Δ B 0 maps and images reconstructed using iterative CPR result in comparable quality to that for iterative MB reconstructions. However, for stronger inhomogeneities, iterative MB reconstruction outperforms iterative CPR in terms of signal intensity correction. Combining MB with CS, similar image and Δ B 0 map quality can be obtained without a scan time penalty. These findings were confirmed by experimental results. Discussion In case of B 0 inhomogeneities in the order of kHz, iterative MB reconstructions can help to improve both image quality and Δ B 0 map estimation.
Author Koolstra, Kirsten
Webb, Andrew
O’Reilly, Thomas
Börnert, Peter
Author_xml – sequence: 1
  givenname: Kirsten
  orcidid: 0000-0002-7873-1511
  surname: Koolstra
  fullname: Koolstra, Kirsten
  email: K.Koolstra@lumc.nl
  organization: Radiology, Division of Image Processing, Leiden University Medical Center
– sequence: 2
  givenname: Thomas
  surname: O’Reilly
  fullname: O’Reilly, Thomas
  organization: Radiology, C.J. Gorter Center for High-Field MRI, Leiden University Medical Center
– sequence: 3
  givenname: Peter
  surname: Börnert
  fullname: Börnert, Peter
  organization: Radiology, C.J. Gorter Center for High-Field MRI, Leiden University Medical Center, Philips Research
– sequence: 4
  givenname: Andrew
  surname: Webb
  fullname: Webb, Andrew
  organization: Radiology, C.J. Gorter Center for High-Field MRI, Leiden University Medical Center
BookMark eNp9kc1u1DAUhS1URKeFF2DlJZuUaztxnA0SVPyM1KoSateWx7nJuErswfZQzRvw2PU0ZQGLrq6le76j63POyIkPHgl5z-CCAbQfEwMh6go4qwA6aCv-iqyYaHilpGQnZAWdVFXDa3FKzlK6h6JsQLwhp0I0wKVUK_JnPZsRae9SDjG74KkNMaJ9eg4h0uufa-o8ncIDHRxOPd1hnI1Hn2khPWaaDinjnOiDy1uacgx-pF-gQNswhxE9unygxvd0jKZ3R3AxKr-ZnEcTXXaY3pLXg5kSvnue5-Tu29fbyx_V1c339eXnq8rWXOTKim4ztK3qAWvDbGNNLyTU1sieo4WuBAJmaIVkUmDXYGNMZ6QVykq2QWzEOfm0-O72mxl7W-6JZtK76GYTDzoYp__deLfVY_itlRBK1V0x-PBsEMOvPaasZ5csTlMJJeyT5rViJVoGskjVIrUxpBRx0NZlc4y2OLtJM9DHIvVSpC716KciNS8o_w_9e-GLkFigVMR-xKjvwz76EudL1CPxNrVO
CitedBy_id crossref_primary_10_1007_s10334_023_01073_3
crossref_primary_10_1038_s41598_023_46747_z
crossref_primary_10_1002_mrm_30352
crossref_primary_10_1002_mrm_30255
crossref_primary_10_1007_s10334_023_01092_0
crossref_primary_10_1002_mrm_30334
crossref_primary_10_1002_mrm_30104
crossref_primary_10_1016_j_phro_2023_100497
crossref_primary_10_1007_s00500_023_08542_w
crossref_primary_10_1016_j_aanat_2021_151866
crossref_primary_10_1109_TBME_2024_3396223
crossref_primary_10_3389_fphy_2023_1249771
crossref_primary_10_1109_ACCESS_2021_3093530
crossref_primary_10_1002_mrm_29009
crossref_primary_10_1002_nbm_4867
crossref_primary_10_3390_foods10092151
crossref_primary_10_3389_fphy_2021_701157
Cites_doi 10.1002/mrm.20261
10.1137/040605412
10.1002/mrm.25859
10.1002/cmr.b.20018
10.1109/TMAG.2017.2751001
10.1007/s10334-008-0105-7
10.1109/42.3926
10.1038/s41598-016-0028-x
10.1002/mrm.27371
10.1002/mrm.27547
10.1137/080725891
10.1016/j.neuroimage.2016.07.009
10.1016/j.jmr.2017.03.001
10.1002/mrm.1910380509
10.1016/j.jmr.2019.106578
10.1002/mrm.1910370523
10.1109/TMI.2008.923956
10.1016/j.mri.2019.09.008
10.1002/mrm.1910370619
10.1038/srep15177
10.1002/mrm.1910340111
10.1002/mrm.23085
10.1002/mrm.28396
10.1137/1.9780898718003
10.1109/PIERS-FALL.2017.8293655
ContentType Journal Article
Copyright The Author(s) 2021
2021. The Author(s).
Copyright_xml – notice: The Author(s) 2021
– notice: 2021. The Author(s).
DBID C6C
AAYXX
CITATION
7X8
5PM
DOI 10.1007/s10334-021-00907-2
DatabaseName Springer Nature OA Free Journals
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Database_xml – sequence: 1
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1352-8661
EndPage 642
ExternalDocumentID PMC8338849
10_1007_s10334_021_00907_2
GrantInformation_xml – fundername: European Research Advanced Grant
  grantid: 670629 NOMA MRI
– fundername: ;
  grantid: 670629 NOMA MRI
GroupedDBID ---
--K
-53
-5E
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
1B1
1N0
1SB
203
28-
29M
29~
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3SX
3V.
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67Z
6NX
7X7
88E
88I
8FE
8FG
8FH
8FI
8FJ
8FW
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAEDT
AAHNG
AAIAL
AAJBT
AAJKR
AALRI
AANXM
AANZL
AAQFI
AAQXK
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAXUO
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABWVN
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIUM
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACRPL
ACSNA
ACUDM
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMUD
ADNMO
ADPHR
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
AKRWK
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
BPHCQ
BSONS
BVXVI
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
EMOBN
EN4
EPAXT
ESBYG
F5P
FDB
FEDTE
FERAY
FFXSO
FGOYB
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GRRUI
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KPH
LAK
LK5
LLZTM
M1P
M2P
M41
M4Y
M7R
MA-
N2Q
NB0
NDZJH
NPVJJ
NQ-
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9S
PCBAR
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
R2-
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RPZ
RRX
RSV
RZK
S16
S1Z
S26
S27
S28
S37
S3B
SAP
SCLPG
SDE
SDH
SEW
SHX
SISQX
SJYHP
SMD
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
SSZ
STPWE
SV3
SZ9
SZN
T13
T16
TSG
TSK
TSV
TT1
TUC
U2A
U9L
UG4
UHS
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK6
WK8
YLTOR
Z45
Z7X
Z82
Z83
Z88
Z8R
Z8V
Z8W
ZMTXR
ZOVNA
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEUPX
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AFPUW
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
7X8
5PM
ID FETCH-LOGICAL-c423t-c39bf778d0e4a1c5cad3604ca6d2ec093340af736163e95e5aa9a6c38c61bee53
IEDL.DBID RSV
ISICitedReferencesCount 26
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000612253600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0968-5243
1352-8661
IngestDate Tue Nov 04 01:45:18 EST 2025
Thu Sep 04 19:14:26 EDT 2025
Sat Nov 29 03:00:48 EST 2025
Tue Nov 18 22:19:03 EST 2025
Fri Feb 21 02:47:56 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Low field MRI
Distortion correction
B
mapping
Conjugate phase reconstruction
Model-based reconstruction
Language English
License Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c423t-c39bf778d0e4a1c5cad3604ca6d2ec093340af736163e95e5aa9a6c38c61bee53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-7873-1511
OpenAccessLink https://link.springer.com/10.1007/s10334-021-00907-2
PMID 33502668
PQID 2481668106
PQPubID 23479
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8338849
proquest_miscellaneous_2481668106
crossref_citationtrail_10_1007_s10334_021_00907_2
crossref_primary_10_1007_s10334_021_00907_2
springer_journals_10_1007_s10334_021_00907_2
PublicationCentury 2000
PublicationDate 2021-08-01
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
PublicationSubtitle Official Journal of the European Society for Magnetic Resonance in Medicine and Biology
PublicationTitle Magma (New York, N.Y.)
PublicationTitleAbbrev Magn Reson Mater Phy
PublicationYear 2021
Publisher Springer International Publishing
Publisher_xml – name: Springer International Publishing
References Jezzard, Balaban (CR10) 1995; 34
CR18
Zaitsev, Hennig, Speck (CR9) 2004; 52
Koolstra, van Gemert, Börnert, Webb, Remis (CR28) 2019
Zimmerman Cooley, Haskell, Cauley (CR5) 2017; 54
Cooley, Stockmann, Armstrong (CR4) 2015; 72
Osher, Burger, Goldfarb, Xu, Yin (CR22) 2005; 4
Goldstein, Osher (CR23) 2009; 2
Galiana, Stockmann, Tam, Constable (CR25) 2012; 67
Hennig, Welz, Schultz (CR26) 2008; 21
Raich, Blümler (CR1) 2004; 23
O’Reilly, Teeuwisse, Webb (CR6) 2019
Maeda, Sano, Yokoyama (CR16) 1988; 7
Han, Moritz, Oberacker, Waiczies, Niendorf, Winter (CR19) 2017; 7
CR2
Dymerska, Poser, Barth, Trattnig, Robinson (CR11) 2018; 168
Cooley, McDaniel, Stockmann (CR13) 2020; 2004
CR29
Funai, Fessler, Yeo, Olafsson, Noll (CR14) 2008; 27
CR24
CR21
Wan, Gullberg, Parker, Zeng (CR8) 1997; 37
Robson, Gore, Constable (CR7) 1997; 38
Man, Pauly, Macovski (CR15) 1997; 37
Usman, Kakkar, Matakos, Kirkham, Arridge, Atkinson (CR17) 2020; 65
Usman, Kakkar, Kirkham, Arridge, Atkinson (CR12) 2019; 81
Sarracanie, Lapierre, Salameh, Waddington, Witzel, Rosen (CR20) 2015; 5
Layton, Kroboth, Jia, Littin, Yu, Zaitsev (CR27) 2016; 76
Tayler, Sakellariou (CR3) 2017; 277
K Koolstra (907_CR28) 2019
MCD Tayler (907_CR3) 2017; 277
P Jezzard (907_CR10) 1995; 34
907_CR21
KJ Layton (907_CR27) 2016; 76
907_CR24
907_CR29
X Wan (907_CR8) 1997; 37
J Hennig (907_CR26) 2008; 21
M Zaitsev (907_CR9) 2004; 52
LC Man (907_CR15) 1997; 37
M Sarracanie (907_CR20) 2015; 5
AK Funai (907_CR14) 2008; 27
H Raich (907_CR1) 2004; 23
T Goldstein (907_CR23) 2009; 2
C Zimmerman Cooley (907_CR5) 2017; 54
G Galiana (907_CR25) 2012; 67
M Usman (907_CR17) 2020; 65
H Han (907_CR19) 2017; 7
MD Robson (907_CR7) 1997; 38
A Maeda (907_CR16) 1988; 7
B Dymerska (907_CR11) 2018; 168
C Cooley (907_CR4) 2015; 72
907_CR18
T O’Reilly (907_CR6) 2019
S Osher (907_CR22) 2005; 4
M Usman (907_CR12) 2019; 81
907_CR2
CZ Cooley (907_CR13) 2020; 2004
References_xml – volume: 52
  start-page: 1156
  issue: 5
  year: 2004
  end-page: 1166
  ident: CR9
  article-title: Point spread function mapping with parallel imaging techniques and high acceleration factors: fast, robust, and flexible method for echo-planar imaging distortion correction
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.20261
– volume: 4
  start-page: 460
  issue: 2
  year: 2005
  end-page: 489
  ident: CR22
  article-title: An iterative regularization method for total variation-based image restoration
  publication-title: Multiscale Model Simul
  doi: 10.1137/040605412
– volume: 76
  start-page: 104
  issue: 1
  year: 2016
  end-page: 117
  ident: CR27
  article-title: Trajectory optimization based on the signal-to-noise ratio for spatial encoding with nonlinear encoding fields
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.25859
– ident: CR18
– volume: 23
  start-page: 16
  issue: 1
  year: 2004
  end-page: 25
  ident: CR1
  article-title: Design and construction of a dipolar halbach array with a homogeneous field from identical bar magnets: NMR Mandhalas
  publication-title: Concepts Magn Reson Part B Magn Reson Eng
  doi: 10.1002/cmr.b.20018
– volume: 54
  start-page: 1
  issue: 1
  year: 2017
  end-page: 12
  ident: CR5
  article-title: Design of Sparse Halbach magnet arrays for portable MRI using a genetic algorithm
  publication-title: IEEE Trans Magn
  doi: 10.1109/TMAG.2017.2751001
– ident: CR2
– volume: 21
  start-page: 5
  issue: 1–2
  year: 2008
  end-page: 14
  ident: CR26
  article-title: Parallel imaging in non-bijective, curvilinear magnetic field gradients: a concept study
  publication-title: Magn Reson Mater Physics, Biol Med
  doi: 10.1007/s10334-008-0105-7
– volume: 7
  start-page: 26
  issue: 1
  year: 1988
  end-page: 31
  ident: CR16
  article-title: Reconstruction by weighted correlation for MRI with time-varying gradients
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/42.3926
– ident: CR29
– volume: 7
  start-page: 1
  issue: 1
  year: 2017
  end-page: 12
  ident: CR19
  article-title: Open source 3D multipurpose measurement system with submillimetre fidelity and first application in magnetic resonance
  publication-title: Sci Rep
  doi: 10.1038/s41598-016-0028-x
– year: 2019
  ident: CR28
  article-title: Accelerating compressed sensing in parallel imaging reconstructions using an efficient circulant preconditioner for cartesian trajectories
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.27371
– ident: CR21
– volume: 81
  start-page: 1979
  issue: 3
  year: 2019
  end-page: 1992
  ident: CR12
  article-title: Model-based reconstruction framework for correction of signal pile-up and geometric distortions in prostate diffusion MRI
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.27547
– volume: 2
  start-page: 323
  issue: 2
  year: 2009
  end-page: 343
  ident: CR23
  article-title: The split Bregman method for L1-regularized problems
  publication-title: SIAM J Imaging Sci
  doi: 10.1137/080725891
– volume: 168
  start-page: 321
  year: 2018
  end-page: 331
  ident: CR11
  article-title: A method for the dynamic correction of B0-related distortions in single-echo EPI at 7 T
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.07.009
– volume: 277
  start-page: 143
  year: 2017
  end-page: 148
  ident: CR3
  article-title: Low-cost, pseudo-Halbach dipole magnets for NMR
  publication-title: J Magn Reson
  doi: 10.1016/j.jmr.2017.03.001
– volume: 2004
  start-page: 13183
  year: 2020
  ident: CR13
  article-title: A portable brain MRI scanner for underserved settings and point-of-care imaging
  publication-title: arXiv Prepr arXiv
– volume: 38
  start-page: 733
  issue: 5
  year: 1997
  end-page: 740
  ident: CR7
  article-title: Measurement of the point spread function in MRI using constant time imaging
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.1910380509
– year: 2019
  ident: CR6
  article-title: Three-dimensional MRI in a homogenous 27 cm diameter bore Halbach array magnet
  publication-title: J Magn Reson
  doi: 10.1016/j.jmr.2019.106578
– volume: 37
  start-page: 785
  issue: 5
  year: 1997
  end-page: 792
  ident: CR15
  article-title: Multifrequency interpolation for fast off-resonance correction
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.1910370523
– volume: 27
  start-page: 1484
  issue: 10
  year: 2008
  end-page: 1494
  ident: CR14
  article-title: Regularized field map estimation in MRI
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2008.923956
– volume: 65
  start-page: 90
  year: 2020
  end-page: 99
  ident: CR17
  article-title: Joint B0 and image estimation integrated with model based reconstruction for field map update and distortion correction in prostate diffusion MRI
  publication-title: Magn Reson Imaging
  doi: 10.1016/j.mri.2019.09.008
– volume: 37
  start-page: 932
  issue: 6
  year: 1997
  end-page: 942
  ident: CR8
  article-title: Reduction of geometric and intensity distortions in echo-planar imaging using a multireference scan
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.1910370619
– volume: 72
  start-page: 1
  issue: 3
  year: 2015
  end-page: 15
  ident: CR4
  article-title: 2D Imaging in a lightweight portable MRI scanner without gradient coils
  publication-title: Magn Reson Med
– volume: 5
  start-page: 1
  issue: 1
  year: 2015
  end-page: 9
  ident: CR20
  article-title: Low-cost high-performance MRI
  publication-title: Sci Rep
  doi: 10.1038/srep15177
– volume: 34
  start-page: 65
  issue: 1
  year: 1995
  end-page: 73
  ident: CR10
  article-title: Correction for geometric distortion in echo planar images from B0 field variations
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.1910340111
– volume: 67
  start-page: 1120
  issue: 4
  year: 2012
  end-page: 1126
  ident: CR25
  article-title: Spin dephasing under nonlinear gradients: implications for imaging and field mapping
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.23085
– ident: CR24
– year: 2019
  ident: 907_CR6
  publication-title: J Magn Reson
  doi: 10.1016/j.jmr.2019.106578
– ident: 907_CR21
– volume: 168
  start-page: 321
  year: 2018
  ident: 907_CR11
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.07.009
– volume: 67
  start-page: 1120
  issue: 4
  year: 2012
  ident: 907_CR25
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.23085
– volume: 54
  start-page: 1
  issue: 1
  year: 2017
  ident: 907_CR5
  publication-title: IEEE Trans Magn
  doi: 10.1109/TMAG.2017.2751001
– ident: 907_CR18
  doi: 10.1002/mrm.28396
– volume: 52
  start-page: 1156
  issue: 5
  year: 2004
  ident: 907_CR9
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.20261
– volume: 72
  start-page: 1
  issue: 3
  year: 2015
  ident: 907_CR4
  publication-title: Magn Reson Med
– volume: 2
  start-page: 323
  issue: 2
  year: 2009
  ident: 907_CR23
  publication-title: SIAM J Imaging Sci
  doi: 10.1137/080725891
– volume: 34
  start-page: 65
  issue: 1
  year: 1995
  ident: 907_CR10
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.1910340111
– volume: 37
  start-page: 785
  issue: 5
  year: 1997
  ident: 907_CR15
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.1910370523
– ident: 907_CR24
– volume: 7
  start-page: 1
  issue: 1
  year: 2017
  ident: 907_CR19
  publication-title: Sci Rep
  doi: 10.1038/s41598-016-0028-x
– volume: 23
  start-page: 16
  issue: 1
  year: 2004
  ident: 907_CR1
  publication-title: Concepts Magn Reson Part B Magn Reson Eng
  doi: 10.1002/cmr.b.20018
– volume: 2004
  start-page: 13183
  year: 2020
  ident: 907_CR13
  publication-title: arXiv Prepr arXiv
– volume: 4
  start-page: 460
  issue: 2
  year: 2005
  ident: 907_CR22
  publication-title: Multiscale Model Simul
  doi: 10.1137/040605412
– volume: 38
  start-page: 733
  issue: 5
  year: 1997
  ident: 907_CR7
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.1910380509
– volume: 37
  start-page: 932
  issue: 6
  year: 1997
  ident: 907_CR8
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.1910370619
– volume: 76
  start-page: 104
  issue: 1
  year: 2016
  ident: 907_CR27
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.25859
– ident: 907_CR29
  doi: 10.1137/1.9780898718003
– volume: 27
  start-page: 1484
  issue: 10
  year: 2008
  ident: 907_CR14
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2008.923956
– volume: 277
  start-page: 143
  year: 2017
  ident: 907_CR3
  publication-title: J Magn Reson
  doi: 10.1016/j.jmr.2017.03.001
– volume: 7
  start-page: 26
  issue: 1
  year: 1988
  ident: 907_CR16
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/42.3926
– volume: 5
  start-page: 1
  issue: 1
  year: 2015
  ident: 907_CR20
  publication-title: Sci Rep
  doi: 10.1038/srep15177
– ident: 907_CR2
  doi: 10.1109/PIERS-FALL.2017.8293655
– volume: 21
  start-page: 5
  issue: 1–2
  year: 2008
  ident: 907_CR26
  publication-title: Magn Reson Mater Physics, Biol Med
  doi: 10.1007/s10334-008-0105-7
– volume: 65
  start-page: 90
  year: 2020
  ident: 907_CR17
  publication-title: Magn Reson Imaging
  doi: 10.1016/j.mri.2019.09.008
– year: 2019
  ident: 907_CR28
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.27371
– volume: 81
  start-page: 1979
  issue: 3
  year: 2019
  ident: 907_CR12
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.27547
SSID ssj0021503
Score 2.4260986
Snippet Objective To correct for image distortions produced by standard Fourier reconstruction techniques on low field permanent magnet MRI systems with strong B 0...
To correct for image distortions produced by standard Fourier reconstruction techniques on low field permanent magnet MRI systems with strong [Formula: see...
SourceID pubmedcentral
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 631
SubjectTerms Basic Science - Reconstruction algorithms and artificial intelligence
Biomedical Engineering and Bioengineering
Computer Appl. in Life Sciences
Health Informatics
Imaging
Medicine
Medicine & Public Health
Radiology
Short Communication
Solid State Physics
Title Image distortion correction for MRI in low field permanent magnet systems with strong B0 inhomogeneity and gradient field nonlinearities
URI https://link.springer.com/article/10.1007/s10334-021-00907-2
https://www.proquest.com/docview/2481668106
https://pubmed.ncbi.nlm.nih.gov/PMC8338849
Volume 34
WOSCitedRecordID wos000612253600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK
  customDbUrl:
  eissn: 1352-8661
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021503
  issn: 0968-5243
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-QwDLZYQCsuPHYXMbxkpL0tlTpN2qRHQCA4gBCwq7lVmTQDI0EHTQv8BX42dtoODFohwblJGiWO8zm2PwP81mRuWbp2giRNDBkouQgMoeYgUipMcjqaUhtfbEKdneleLz1vksLKNtq9dUl6Tf0m2U0IGXBIAeGCUAWkeOfoutNcsOHi8t_EzCKIUxeQ55yiSIomVeb_Y0xfR68Y832E5Ds3qb99jpa-Nu9lWGzQJu7V4rECM674Ad9PG3_6T3g-uSN9grnnCuEtQsvVOnyuAxKcxdOLExwWeDt6Qh_rhvesyQuaL1LPwlVYU0GXyA-6WPLD-jXuh9TpZnQ3Iul0BPPRFDlej310WdUMVNQcHWbsKV1_wd-jw6uD46CpzRBYAmBVYEXaHyil89BJ07WxNblIQmlNkkfO8jOJDM1AiYTwnktjFxuTmsQKbZNu37lYrMIs_citATpCmf3cmJjZAHVqmCmXYUpkUzkguNOBbrtFmW2Iy7l-xm32SrnMS5zREmd-ibOoA38mfe5r2o4PW--0O5_R6WKXCa3k6KHMIsl-VU12cwfUlEhMhmV-7ukvxfDG83RrMv-1TDuw2wpG1iiI8oPJrH-u-QYsRF62OCZxE2ar8YPbgnn7WA3L8TZ8Uz297c_HC7bOCpY
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED6hDQEvG7-mdQw4JN62SGnsJM4jIKZWrBUaBfXNch13q7SlVZOyf4E_mzsnaemEJsFzbMeyz-fvfHffAbxXZG5ZunaCJEsMGSi5CAyh5iBK0zDJ6WhKZXyxiXQ4VONx9rVJCivbaPfWJek19R_JbkLIgEMKCBeEaUCKd1fSjcWM-RfffqzNLII4dQF5zimKpGhSZf4-xvZ1tMGYdyMk77hJ_e1ztv9_834Kew3axA-1eDyDB654Do8GjT_9Bfzq35A-wdxzhfAWoeVqHT7XAQnO4uCij7MCr-e36GPdcMGavKD5IvUsXIU1FXSJ_KCLJT-sX-LHkDpdzW_mJJ2OYD6aIsfLpY8uq5qBipqjwyw9petL-H72efSpFzS1GQJLAKwKrMgm0zRVeeik6drYmlwkobQmySNn-ZlEhmaaioTwnstiFxuTmcQKZZPuxLlYHMAO_cgdAjpCmZPcmJjZAFVmmCmXYUpkMzkluNOBbrtF2jbE5Vw_41pvKJd5iTUtsfZLrKMOnKz7LGrajntbv2t3XtPpYpcJreR8VepIsl9Vkd3cgXRLJNbDMj_39pdiduV5uhWZ_0pmHThtBUM3CqK8ZzJH_9b8LTzujQbn-rw__PIKnkRezjg-8Rh2quXKvYaH9mc1K5dv_Cn5DfT-DJI
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED8hQGgvMPYhCvu4SbxtEWnsJM7jvqpVGxViH-LNcm0XKkFaNQH-Bf7s3TlpoWhCmnhObCfns_07393vAPYVmVuWjp0oKzJDBooTkSHUHCV5HmeOlqZUJhSbyAcDdXJSHN3J4g_R7nOXZJPTwCxNZX0wdaODO4lvQsiIwwsII8R5RJvwmuRAerbXf_5ZmFwEd5pi8pxflEjRps38u4_lo-kWb96PlrznMg0nUW_r8f_wFDZbFIofG7XZhhVfPoONw9bP_hxu-he0z6ALHCI8dWi5ikfIgUCCuXh43MdxieeTawwxcDjlHb6k0ZFalr7GhiK6Qr7oxYov3E_xU0yNziYXE9JaT_AfTenwdBaizuq2o7Lh7jCzQPX6An73vv76_C1qazZEloBZHVlRDEd5rlzspena1Bonslhak7nEW74-kbEZ5SIjHOiL1KfGFCazQtmsO_Q-FS9hlQbyO4Ce0OfQGZMyS6AqDDPoMnxJbCFHBIM60J1Pl7YtoTnX1TjXt1TMLGJNItZBxDrpwPtFm2lD5_Hg2-_mWqBp1bErhSQ5uax0Itnfqsie7kC-pB6Lbpm3e_lJOT4L_N1KCKVk0YEPcyXR7cZRPfAxu__3-lvYOPrS0z_6g-978CQJasZhi69gtZ5d-tewbq_qcTV7ExbMX6UfFXY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Image+distortion+correction+for+MRI+in+low+field+permanent+magnet+systems+with+strong+B0+inhomogeneity+and+gradient+field+nonlinearities&rft.jtitle=Magma+%28New+York%2C+N.Y.%29&rft.au=Koolstra%2C+Kirsten&rft.au=O%27Reilly%2C+Thomas&rft.au=B%C3%B6rnert%2C+Peter&rft.au=Webb%2C+Andrew&rft.date=2021-08-01&rft.issn=1352-8661&rft.eissn=1352-8661&rft.volume=34&rft.issue=4&rft.spage=631&rft_id=info:doi/10.1007%2Fs10334-021-00907-2&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0968-5243&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0968-5243&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0968-5243&client=summon