Image distortion correction for MRI in low field permanent magnet systems with strong B0 inhomogeneity and gradient field nonlinearities
Objective To correct for image distortions produced by standard Fourier reconstruction techniques on low field permanent magnet MRI systems with strong B 0 inhomogeneity and gradient field nonlinearities. Materials and methods Conventional image distortion correction algorithms require accurate Δ B...
Saved in:
| Published in: | Magma (New York, N.Y.) Vol. 34; no. 4; pp. 631 - 642 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Cham
Springer International Publishing
01.08.2021
|
| Subjects: | |
| ISSN: | 0968-5243, 1352-8661, 1352-8661 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Objective
To correct for image distortions produced by standard Fourier reconstruction techniques on low field permanent magnet MRI systems with strong
B
0
inhomogeneity and gradient field nonlinearities.
Materials and methods
Conventional image distortion correction algorithms require accurate
Δ
B
0
maps which are not possible to acquire directly when the
B
0
inhomogeneities also produce significant image distortions. Here we use a readout gradient time-shift in a TSE sequence to encode the
B
0
field inhomogeneities in the k-space signals. Using a non-shifted and a shifted acquisition as input,
Δ
B
0
maps and images were reconstructed in an iterative manner. In each iteration,
Δ
B
0
maps were reconstructed from the phase difference using Tikhonov regularization, while images were reconstructed using either conjugate phase reconstruction (CPR) or model-based (MB) image reconstruction, taking the reconstructed field map into account. MB reconstructions were, furthermore, combined with compressed sensing (CS) to show the flexibility of this approach towards undersampling. These methods were compared to the standard fast Fourier transform (FFT) image reconstruction approach in simulations and measurements. Distortions due to gradient nonlinearities were corrected in CPR and MB using simulated gradient maps.
Results
Simulation results show that for moderate field inhomogeneities and gradient nonlinearities,
Δ
B
0
maps and images reconstructed using iterative CPR result in comparable quality to that for iterative MB reconstructions. However, for stronger inhomogeneities, iterative MB reconstruction outperforms iterative CPR in terms of signal intensity correction. Combining MB with CS, similar image and
Δ
B
0
map quality can be obtained without a scan time penalty. These findings were confirmed by experimental results.
Discussion
In case of
B
0
inhomogeneities in the order of kHz, iterative MB reconstructions can help to improve both image quality and
Δ
B
0
map estimation. |
|---|---|
| AbstractList | To correct for image distortions produced by standard Fourier reconstruction techniques on low field permanent magnet MRI systems with strong [Formula: see text] inhomogeneity and gradient field nonlinearities.OBJECTIVETo correct for image distortions produced by standard Fourier reconstruction techniques on low field permanent magnet MRI systems with strong [Formula: see text] inhomogeneity and gradient field nonlinearities.Conventional image distortion correction algorithms require accurate [Formula: see text] maps which are not possible to acquire directly when the [Formula: see text] inhomogeneities also produce significant image distortions. Here we use a readout gradient time-shift in a TSE sequence to encode the [Formula: see text] field inhomogeneities in the k-space signals. Using a non-shifted and a shifted acquisition as input, [Formula: see text] maps and images were reconstructed in an iterative manner. In each iteration, [Formula: see text] maps were reconstructed from the phase difference using Tikhonov regularization, while images were reconstructed using either conjugate phase reconstruction (CPR) or model-based (MB) image reconstruction, taking the reconstructed field map into account. MB reconstructions were, furthermore, combined with compressed sensing (CS) to show the flexibility of this approach towards undersampling. These methods were compared to the standard fast Fourier transform (FFT) image reconstruction approach in simulations and measurements. Distortions due to gradient nonlinearities were corrected in CPR and MB using simulated gradient maps.MATERIALS AND METHODSConventional image distortion correction algorithms require accurate [Formula: see text] maps which are not possible to acquire directly when the [Formula: see text] inhomogeneities also produce significant image distortions. Here we use a readout gradient time-shift in a TSE sequence to encode the [Formula: see text] field inhomogeneities in the k-space signals. Using a non-shifted and a shifted acquisition as input, [Formula: see text] maps and images were reconstructed in an iterative manner. In each iteration, [Formula: see text] maps were reconstructed from the phase difference using Tikhonov regularization, while images were reconstructed using either conjugate phase reconstruction (CPR) or model-based (MB) image reconstruction, taking the reconstructed field map into account. MB reconstructions were, furthermore, combined with compressed sensing (CS) to show the flexibility of this approach towards undersampling. These methods were compared to the standard fast Fourier transform (FFT) image reconstruction approach in simulations and measurements. Distortions due to gradient nonlinearities were corrected in CPR and MB using simulated gradient maps.Simulation results show that for moderate field inhomogeneities and gradient nonlinearities, [Formula: see text] maps and images reconstructed using iterative CPR result in comparable quality to that for iterative MB reconstructions. However, for stronger inhomogeneities, iterative MB reconstruction outperforms iterative CPR in terms of signal intensity correction. Combining MB with CS, similar image and [Formula: see text] map quality can be obtained without a scan time penalty. These findings were confirmed by experimental results.RESULTSSimulation results show that for moderate field inhomogeneities and gradient nonlinearities, [Formula: see text] maps and images reconstructed using iterative CPR result in comparable quality to that for iterative MB reconstructions. However, for stronger inhomogeneities, iterative MB reconstruction outperforms iterative CPR in terms of signal intensity correction. Combining MB with CS, similar image and [Formula: see text] map quality can be obtained without a scan time penalty. These findings were confirmed by experimental results.In case of [Formula: see text] inhomogeneities in the order of kHz, iterative MB reconstructions can help to improve both image quality and [Formula: see text] map estimation.DISCUSSIONIn case of [Formula: see text] inhomogeneities in the order of kHz, iterative MB reconstructions can help to improve both image quality and [Formula: see text] map estimation. Objective To correct for image distortions produced by standard Fourier reconstruction techniques on low field permanent magnet MRI systems with strong B 0 inhomogeneity and gradient field nonlinearities. Materials and methods Conventional image distortion correction algorithms require accurate Δ B 0 maps which are not possible to acquire directly when the B 0 inhomogeneities also produce significant image distortions. Here we use a readout gradient time-shift in a TSE sequence to encode the B 0 field inhomogeneities in the k-space signals. Using a non-shifted and a shifted acquisition as input, Δ B 0 maps and images were reconstructed in an iterative manner. In each iteration, Δ B 0 maps were reconstructed from the phase difference using Tikhonov regularization, while images were reconstructed using either conjugate phase reconstruction (CPR) or model-based (MB) image reconstruction, taking the reconstructed field map into account. MB reconstructions were, furthermore, combined with compressed sensing (CS) to show the flexibility of this approach towards undersampling. These methods were compared to the standard fast Fourier transform (FFT) image reconstruction approach in simulations and measurements. Distortions due to gradient nonlinearities were corrected in CPR and MB using simulated gradient maps. Results Simulation results show that for moderate field inhomogeneities and gradient nonlinearities, Δ B 0 maps and images reconstructed using iterative CPR result in comparable quality to that for iterative MB reconstructions. However, for stronger inhomogeneities, iterative MB reconstruction outperforms iterative CPR in terms of signal intensity correction. Combining MB with CS, similar image and Δ B 0 map quality can be obtained without a scan time penalty. These findings were confirmed by experimental results. Discussion In case of B 0 inhomogeneities in the order of kHz, iterative MB reconstructions can help to improve both image quality and Δ B 0 map estimation. |
| Author | Koolstra, Kirsten Webb, Andrew O’Reilly, Thomas Börnert, Peter |
| Author_xml | – sequence: 1 givenname: Kirsten orcidid: 0000-0002-7873-1511 surname: Koolstra fullname: Koolstra, Kirsten email: K.Koolstra@lumc.nl organization: Radiology, Division of Image Processing, Leiden University Medical Center – sequence: 2 givenname: Thomas surname: O’Reilly fullname: O’Reilly, Thomas organization: Radiology, C.J. Gorter Center for High-Field MRI, Leiden University Medical Center – sequence: 3 givenname: Peter surname: Börnert fullname: Börnert, Peter organization: Radiology, C.J. Gorter Center for High-Field MRI, Leiden University Medical Center, Philips Research – sequence: 4 givenname: Andrew surname: Webb fullname: Webb, Andrew organization: Radiology, C.J. Gorter Center for High-Field MRI, Leiden University Medical Center |
| BookMark | eNp9kc1u1DAUhS1URKeFF2DlJZuUaztxnA0SVPyM1KoSateWx7nJuErswfZQzRvw2PU0ZQGLrq6le76j63POyIkPHgl5z-CCAbQfEwMh6go4qwA6aCv-iqyYaHilpGQnZAWdVFXDa3FKzlK6h6JsQLwhp0I0wKVUK_JnPZsRae9SDjG74KkNMaJ9eg4h0uufa-o8ncIDHRxOPd1hnI1Hn2khPWaaDinjnOiDy1uacgx-pF-gQNswhxE9unygxvd0jKZ3R3AxKr-ZnEcTXXaY3pLXg5kSvnue5-Tu29fbyx_V1c339eXnq8rWXOTKim4ztK3qAWvDbGNNLyTU1sieo4WuBAJmaIVkUmDXYGNMZ6QVykq2QWzEOfm0-O72mxl7W-6JZtK76GYTDzoYp__deLfVY_itlRBK1V0x-PBsEMOvPaasZ5csTlMJJeyT5rViJVoGskjVIrUxpBRx0NZlc4y2OLtJM9DHIvVSpC716KciNS8o_w_9e-GLkFigVMR-xKjvwz76EudL1CPxNrVO |
| CitedBy_id | crossref_primary_10_1007_s10334_023_01073_3 crossref_primary_10_1038_s41598_023_46747_z crossref_primary_10_1002_mrm_30352 crossref_primary_10_1002_mrm_30255 crossref_primary_10_1007_s10334_023_01092_0 crossref_primary_10_1002_mrm_30334 crossref_primary_10_1002_mrm_30104 crossref_primary_10_1016_j_phro_2023_100497 crossref_primary_10_1007_s00500_023_08542_w crossref_primary_10_1016_j_aanat_2021_151866 crossref_primary_10_1109_TBME_2024_3396223 crossref_primary_10_3389_fphy_2023_1249771 crossref_primary_10_1109_ACCESS_2021_3093530 crossref_primary_10_1002_mrm_29009 crossref_primary_10_1002_nbm_4867 crossref_primary_10_3390_foods10092151 crossref_primary_10_3389_fphy_2021_701157 |
| Cites_doi | 10.1002/mrm.20261 10.1137/040605412 10.1002/mrm.25859 10.1002/cmr.b.20018 10.1109/TMAG.2017.2751001 10.1007/s10334-008-0105-7 10.1109/42.3926 10.1038/s41598-016-0028-x 10.1002/mrm.27371 10.1002/mrm.27547 10.1137/080725891 10.1016/j.neuroimage.2016.07.009 10.1016/j.jmr.2017.03.001 10.1002/mrm.1910380509 10.1016/j.jmr.2019.106578 10.1002/mrm.1910370523 10.1109/TMI.2008.923956 10.1016/j.mri.2019.09.008 10.1002/mrm.1910370619 10.1038/srep15177 10.1002/mrm.1910340111 10.1002/mrm.23085 10.1002/mrm.28396 10.1137/1.9780898718003 10.1109/PIERS-FALL.2017.8293655 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2021 2021. The Author(s). |
| Copyright_xml | – notice: The Author(s) 2021 – notice: 2021. The Author(s). |
| DBID | C6C AAYXX CITATION 7X8 5PM |
| DOI | 10.1007/s10334-021-00907-2 |
| DatabaseName | Springer Nature OA Free Journals CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1352-8661 |
| EndPage | 642 |
| ExternalDocumentID | PMC8338849 10_1007_s10334_021_00907_2 |
| GrantInformation_xml | – fundername: European Research Advanced Grant grantid: 670629 NOMA MRI – fundername: ; grantid: 670629 NOMA MRI |
| GroupedDBID | --- --K -53 -5E -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 1B1 1N0 1SB 203 28- 29M 29~ 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3SX 3V. 4.4 406 408 409 40D 40E 53G 5GY 5QI 5VS 67Z 6NX 7X7 88E 88I 8FE 8FG 8FH 8FI 8FJ 8FW 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAEDT AAHNG AAIAL AAJBT AAJKR AALRI AANXM AANZL AAQFI AAQXK AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAXUO AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTKH ABTMW ABULA ABUWG ABWNU ABWVN ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIUM ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACRPL ACSNA ACUDM ACZOJ ADBBV ADHHG ADHIR ADINQ ADKNI ADKPE ADMUD ADNMO ADPHR ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD AKRWK ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BHPHI BKSAR BPHCQ BSONS BVXVI C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD EMOBN EN4 EPAXT ESBYG F5P FDB FEDTE FERAY FFXSO FGOYB FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GRRUI GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW KPH LAK LK5 LLZTM M1P M2P M41 M4Y M7R MA- N2Q NB0 NDZJH NPVJJ NQ- NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9S PCBAR PF0 PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOR QOS R2- R4E R89 R9I RHV RIG RNI RNS ROL RPX RPZ RRX RSV RZK S16 S1Z S26 S27 S28 S37 S3B SAP SCLPG SDE SDH SEW SHX SISQX SJYHP SMD SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD SSZ STPWE SV3 SZ9 SZN T13 T16 TSG TSK TSV TT1 TUC U2A U9L UG4 UHS UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK6 WK8 YLTOR Z45 Z7X Z82 Z83 Z88 Z8R Z8V Z8W ZMTXR ZOVNA ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEUPX AEZWR AFDZB AFFHD AFHIU AFOHR AFPUW AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PJZUB PPXIY PQGLB 7X8 5PM |
| ID | FETCH-LOGICAL-c423t-c39bf778d0e4a1c5cad3604ca6d2ec093340af736163e95e5aa9a6c38c61bee53 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 26 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000612253600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0968-5243 1352-8661 |
| IngestDate | Tue Nov 04 01:45:18 EST 2025 Thu Sep 04 19:14:26 EDT 2025 Sat Nov 29 03:00:48 EST 2025 Tue Nov 18 22:19:03 EST 2025 Fri Feb 21 02:47:56 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Low field MRI Distortion correction B mapping Conjugate phase reconstruction Model-based reconstruction |
| Language | English |
| License | Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c423t-c39bf778d0e4a1c5cad3604ca6d2ec093340af736163e95e5aa9a6c38c61bee53 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-7873-1511 |
| OpenAccessLink | https://link.springer.com/10.1007/s10334-021-00907-2 |
| PMID | 33502668 |
| PQID | 2481668106 |
| PQPubID | 23479 |
| PageCount | 12 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8338849 proquest_miscellaneous_2481668106 crossref_citationtrail_10_1007_s10334_021_00907_2 crossref_primary_10_1007_s10334_021_00907_2 springer_journals_10_1007_s10334_021_00907_2 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-08-01 |
| PublicationDateYYYYMMDD | 2021-08-01 |
| PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham |
| PublicationSubtitle | Official Journal of the European Society for Magnetic Resonance in Medicine and Biology |
| PublicationTitle | Magma (New York, N.Y.) |
| PublicationTitleAbbrev | Magn Reson Mater Phy |
| PublicationYear | 2021 |
| Publisher | Springer International Publishing |
| Publisher_xml | – name: Springer International Publishing |
| References | Jezzard, Balaban (CR10) 1995; 34 CR18 Zaitsev, Hennig, Speck (CR9) 2004; 52 Koolstra, van Gemert, Börnert, Webb, Remis (CR28) 2019 Zimmerman Cooley, Haskell, Cauley (CR5) 2017; 54 Cooley, Stockmann, Armstrong (CR4) 2015; 72 Osher, Burger, Goldfarb, Xu, Yin (CR22) 2005; 4 Goldstein, Osher (CR23) 2009; 2 Galiana, Stockmann, Tam, Constable (CR25) 2012; 67 Hennig, Welz, Schultz (CR26) 2008; 21 Raich, Blümler (CR1) 2004; 23 O’Reilly, Teeuwisse, Webb (CR6) 2019 Maeda, Sano, Yokoyama (CR16) 1988; 7 Han, Moritz, Oberacker, Waiczies, Niendorf, Winter (CR19) 2017; 7 CR2 Dymerska, Poser, Barth, Trattnig, Robinson (CR11) 2018; 168 Cooley, McDaniel, Stockmann (CR13) 2020; 2004 CR29 Funai, Fessler, Yeo, Olafsson, Noll (CR14) 2008; 27 CR24 CR21 Wan, Gullberg, Parker, Zeng (CR8) 1997; 37 Robson, Gore, Constable (CR7) 1997; 38 Man, Pauly, Macovski (CR15) 1997; 37 Usman, Kakkar, Matakos, Kirkham, Arridge, Atkinson (CR17) 2020; 65 Usman, Kakkar, Kirkham, Arridge, Atkinson (CR12) 2019; 81 Sarracanie, Lapierre, Salameh, Waddington, Witzel, Rosen (CR20) 2015; 5 Layton, Kroboth, Jia, Littin, Yu, Zaitsev (CR27) 2016; 76 Tayler, Sakellariou (CR3) 2017; 277 K Koolstra (907_CR28) 2019 MCD Tayler (907_CR3) 2017; 277 P Jezzard (907_CR10) 1995; 34 907_CR21 KJ Layton (907_CR27) 2016; 76 907_CR24 907_CR29 X Wan (907_CR8) 1997; 37 J Hennig (907_CR26) 2008; 21 M Zaitsev (907_CR9) 2004; 52 LC Man (907_CR15) 1997; 37 M Sarracanie (907_CR20) 2015; 5 AK Funai (907_CR14) 2008; 27 H Raich (907_CR1) 2004; 23 T Goldstein (907_CR23) 2009; 2 C Zimmerman Cooley (907_CR5) 2017; 54 G Galiana (907_CR25) 2012; 67 M Usman (907_CR17) 2020; 65 H Han (907_CR19) 2017; 7 MD Robson (907_CR7) 1997; 38 A Maeda (907_CR16) 1988; 7 B Dymerska (907_CR11) 2018; 168 C Cooley (907_CR4) 2015; 72 907_CR18 T O’Reilly (907_CR6) 2019 S Osher (907_CR22) 2005; 4 M Usman (907_CR12) 2019; 81 907_CR2 CZ Cooley (907_CR13) 2020; 2004 |
| References_xml | – volume: 52 start-page: 1156 issue: 5 year: 2004 end-page: 1166 ident: CR9 article-title: Point spread function mapping with parallel imaging techniques and high acceleration factors: fast, robust, and flexible method for echo-planar imaging distortion correction publication-title: Magn Reson Med doi: 10.1002/mrm.20261 – volume: 4 start-page: 460 issue: 2 year: 2005 end-page: 489 ident: CR22 article-title: An iterative regularization method for total variation-based image restoration publication-title: Multiscale Model Simul doi: 10.1137/040605412 – volume: 76 start-page: 104 issue: 1 year: 2016 end-page: 117 ident: CR27 article-title: Trajectory optimization based on the signal-to-noise ratio for spatial encoding with nonlinear encoding fields publication-title: Magn Reson Med doi: 10.1002/mrm.25859 – ident: CR18 – volume: 23 start-page: 16 issue: 1 year: 2004 end-page: 25 ident: CR1 article-title: Design and construction of a dipolar halbach array with a homogeneous field from identical bar magnets: NMR Mandhalas publication-title: Concepts Magn Reson Part B Magn Reson Eng doi: 10.1002/cmr.b.20018 – volume: 54 start-page: 1 issue: 1 year: 2017 end-page: 12 ident: CR5 article-title: Design of Sparse Halbach magnet arrays for portable MRI using a genetic algorithm publication-title: IEEE Trans Magn doi: 10.1109/TMAG.2017.2751001 – ident: CR2 – volume: 21 start-page: 5 issue: 1–2 year: 2008 end-page: 14 ident: CR26 article-title: Parallel imaging in non-bijective, curvilinear magnetic field gradients: a concept study publication-title: Magn Reson Mater Physics, Biol Med doi: 10.1007/s10334-008-0105-7 – volume: 7 start-page: 26 issue: 1 year: 1988 end-page: 31 ident: CR16 article-title: Reconstruction by weighted correlation for MRI with time-varying gradients publication-title: IEEE Trans Med Imaging doi: 10.1109/42.3926 – ident: CR29 – volume: 7 start-page: 1 issue: 1 year: 2017 end-page: 12 ident: CR19 article-title: Open source 3D multipurpose measurement system with submillimetre fidelity and first application in magnetic resonance publication-title: Sci Rep doi: 10.1038/s41598-016-0028-x – year: 2019 ident: CR28 article-title: Accelerating compressed sensing in parallel imaging reconstructions using an efficient circulant preconditioner for cartesian trajectories publication-title: Magn Reson Med doi: 10.1002/mrm.27371 – ident: CR21 – volume: 81 start-page: 1979 issue: 3 year: 2019 end-page: 1992 ident: CR12 article-title: Model-based reconstruction framework for correction of signal pile-up and geometric distortions in prostate diffusion MRI publication-title: Magn Reson Med doi: 10.1002/mrm.27547 – volume: 2 start-page: 323 issue: 2 year: 2009 end-page: 343 ident: CR23 article-title: The split Bregman method for L1-regularized problems publication-title: SIAM J Imaging Sci doi: 10.1137/080725891 – volume: 168 start-page: 321 year: 2018 end-page: 331 ident: CR11 article-title: A method for the dynamic correction of B0-related distortions in single-echo EPI at 7 T publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.07.009 – volume: 277 start-page: 143 year: 2017 end-page: 148 ident: CR3 article-title: Low-cost, pseudo-Halbach dipole magnets for NMR publication-title: J Magn Reson doi: 10.1016/j.jmr.2017.03.001 – volume: 2004 start-page: 13183 year: 2020 ident: CR13 article-title: A portable brain MRI scanner for underserved settings and point-of-care imaging publication-title: arXiv Prepr arXiv – volume: 38 start-page: 733 issue: 5 year: 1997 end-page: 740 ident: CR7 article-title: Measurement of the point spread function in MRI using constant time imaging publication-title: Magn Reson Med doi: 10.1002/mrm.1910380509 – year: 2019 ident: CR6 article-title: Three-dimensional MRI in a homogenous 27 cm diameter bore Halbach array magnet publication-title: J Magn Reson doi: 10.1016/j.jmr.2019.106578 – volume: 37 start-page: 785 issue: 5 year: 1997 end-page: 792 ident: CR15 article-title: Multifrequency interpolation for fast off-resonance correction publication-title: Magn Reson Med doi: 10.1002/mrm.1910370523 – volume: 27 start-page: 1484 issue: 10 year: 2008 end-page: 1494 ident: CR14 article-title: Regularized field map estimation in MRI publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2008.923956 – volume: 65 start-page: 90 year: 2020 end-page: 99 ident: CR17 article-title: Joint B0 and image estimation integrated with model based reconstruction for field map update and distortion correction in prostate diffusion MRI publication-title: Magn Reson Imaging doi: 10.1016/j.mri.2019.09.008 – volume: 37 start-page: 932 issue: 6 year: 1997 end-page: 942 ident: CR8 article-title: Reduction of geometric and intensity distortions in echo-planar imaging using a multireference scan publication-title: Magn Reson Med doi: 10.1002/mrm.1910370619 – volume: 72 start-page: 1 issue: 3 year: 2015 end-page: 15 ident: CR4 article-title: 2D Imaging in a lightweight portable MRI scanner without gradient coils publication-title: Magn Reson Med – volume: 5 start-page: 1 issue: 1 year: 2015 end-page: 9 ident: CR20 article-title: Low-cost high-performance MRI publication-title: Sci Rep doi: 10.1038/srep15177 – volume: 34 start-page: 65 issue: 1 year: 1995 end-page: 73 ident: CR10 article-title: Correction for geometric distortion in echo planar images from B0 field variations publication-title: Magn Reson Med doi: 10.1002/mrm.1910340111 – volume: 67 start-page: 1120 issue: 4 year: 2012 end-page: 1126 ident: CR25 article-title: Spin dephasing under nonlinear gradients: implications for imaging and field mapping publication-title: Magn Reson Med doi: 10.1002/mrm.23085 – ident: CR24 – year: 2019 ident: 907_CR6 publication-title: J Magn Reson doi: 10.1016/j.jmr.2019.106578 – ident: 907_CR21 – volume: 168 start-page: 321 year: 2018 ident: 907_CR11 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.07.009 – volume: 67 start-page: 1120 issue: 4 year: 2012 ident: 907_CR25 publication-title: Magn Reson Med doi: 10.1002/mrm.23085 – volume: 54 start-page: 1 issue: 1 year: 2017 ident: 907_CR5 publication-title: IEEE Trans Magn doi: 10.1109/TMAG.2017.2751001 – ident: 907_CR18 doi: 10.1002/mrm.28396 – volume: 52 start-page: 1156 issue: 5 year: 2004 ident: 907_CR9 publication-title: Magn Reson Med doi: 10.1002/mrm.20261 – volume: 72 start-page: 1 issue: 3 year: 2015 ident: 907_CR4 publication-title: Magn Reson Med – volume: 2 start-page: 323 issue: 2 year: 2009 ident: 907_CR23 publication-title: SIAM J Imaging Sci doi: 10.1137/080725891 – volume: 34 start-page: 65 issue: 1 year: 1995 ident: 907_CR10 publication-title: Magn Reson Med doi: 10.1002/mrm.1910340111 – volume: 37 start-page: 785 issue: 5 year: 1997 ident: 907_CR15 publication-title: Magn Reson Med doi: 10.1002/mrm.1910370523 – ident: 907_CR24 – volume: 7 start-page: 1 issue: 1 year: 2017 ident: 907_CR19 publication-title: Sci Rep doi: 10.1038/s41598-016-0028-x – volume: 23 start-page: 16 issue: 1 year: 2004 ident: 907_CR1 publication-title: Concepts Magn Reson Part B Magn Reson Eng doi: 10.1002/cmr.b.20018 – volume: 2004 start-page: 13183 year: 2020 ident: 907_CR13 publication-title: arXiv Prepr arXiv – volume: 4 start-page: 460 issue: 2 year: 2005 ident: 907_CR22 publication-title: Multiscale Model Simul doi: 10.1137/040605412 – volume: 38 start-page: 733 issue: 5 year: 1997 ident: 907_CR7 publication-title: Magn Reson Med doi: 10.1002/mrm.1910380509 – volume: 37 start-page: 932 issue: 6 year: 1997 ident: 907_CR8 publication-title: Magn Reson Med doi: 10.1002/mrm.1910370619 – volume: 76 start-page: 104 issue: 1 year: 2016 ident: 907_CR27 publication-title: Magn Reson Med doi: 10.1002/mrm.25859 – ident: 907_CR29 doi: 10.1137/1.9780898718003 – volume: 27 start-page: 1484 issue: 10 year: 2008 ident: 907_CR14 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2008.923956 – volume: 277 start-page: 143 year: 2017 ident: 907_CR3 publication-title: J Magn Reson doi: 10.1016/j.jmr.2017.03.001 – volume: 7 start-page: 26 issue: 1 year: 1988 ident: 907_CR16 publication-title: IEEE Trans Med Imaging doi: 10.1109/42.3926 – volume: 5 start-page: 1 issue: 1 year: 2015 ident: 907_CR20 publication-title: Sci Rep doi: 10.1038/srep15177 – ident: 907_CR2 doi: 10.1109/PIERS-FALL.2017.8293655 – volume: 21 start-page: 5 issue: 1–2 year: 2008 ident: 907_CR26 publication-title: Magn Reson Mater Physics, Biol Med doi: 10.1007/s10334-008-0105-7 – volume: 65 start-page: 90 year: 2020 ident: 907_CR17 publication-title: Magn Reson Imaging doi: 10.1016/j.mri.2019.09.008 – year: 2019 ident: 907_CR28 publication-title: Magn Reson Med doi: 10.1002/mrm.27371 – volume: 81 start-page: 1979 issue: 3 year: 2019 ident: 907_CR12 publication-title: Magn Reson Med doi: 10.1002/mrm.27547 |
| SSID | ssj0021503 |
| Score | 2.4260986 |
| Snippet | Objective
To correct for image distortions produced by standard Fourier reconstruction techniques on low field permanent magnet MRI systems with strong
B
0... To correct for image distortions produced by standard Fourier reconstruction techniques on low field permanent magnet MRI systems with strong [Formula: see... |
| SourceID | pubmedcentral proquest crossref springer |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 631 |
| SubjectTerms | Basic Science - Reconstruction algorithms and artificial intelligence Biomedical Engineering and Bioengineering Computer Appl. in Life Sciences Health Informatics Imaging Medicine Medicine & Public Health Radiology Short Communication Solid State Physics |
| Title | Image distortion correction for MRI in low field permanent magnet systems with strong B0 inhomogeneity and gradient field nonlinearities |
| URI | https://link.springer.com/article/10.1007/s10334-021-00907-2 https://www.proquest.com/docview/2481668106 https://pubmed.ncbi.nlm.nih.gov/PMC8338849 |
| Volume | 34 |
| WOSCitedRecordID | wos000612253600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK customDbUrl: eissn: 1352-8661 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0021503 issn: 0968-5243 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-QwDLZYQCsuPHYXMbxkpL0tlTpN2qRHQCA4gBCwq7lVmTQDI0EHTQv8BX42dtoODFohwblJGiWO8zm2PwP81mRuWbp2giRNDBkouQgMoeYgUipMcjqaUhtfbEKdneleLz1vksLKNtq9dUl6Tf0m2U0IGXBIAeGCUAWkeOfoutNcsOHi8t_EzCKIUxeQ55yiSIomVeb_Y0xfR68Y832E5Ds3qb99jpa-Nu9lWGzQJu7V4rECM674Ad9PG3_6T3g-uSN9grnnCuEtQsvVOnyuAxKcxdOLExwWeDt6Qh_rhvesyQuaL1LPwlVYU0GXyA-6WPLD-jXuh9TpZnQ3Iul0BPPRFDlej310WdUMVNQcHWbsKV1_wd-jw6uD46CpzRBYAmBVYEXaHyil89BJ07WxNblIQmlNkkfO8jOJDM1AiYTwnktjFxuTmsQKbZNu37lYrMIs_citATpCmf3cmJjZAHVqmCmXYUpkUzkguNOBbrtFmW2Iy7l-xm32SrnMS5zREmd-ibOoA38mfe5r2o4PW--0O5_R6WKXCa3k6KHMIsl-VU12cwfUlEhMhmV-7ukvxfDG83RrMv-1TDuw2wpG1iiI8oPJrH-u-QYsRF62OCZxE2ar8YPbgnn7WA3L8TZ8Uz297c_HC7bOCpY |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED6hDQEvG7-mdQw4JN62SGnsJM4jIKZWrBUaBfXNch13q7SlVZOyf4E_mzsnaemEJsFzbMeyz-fvfHffAbxXZG5ZunaCJEsMGSi5CAyh5iBK0zDJ6WhKZXyxiXQ4VONx9rVJCivbaPfWJek19R_JbkLIgEMKCBeEaUCKd1fSjcWM-RfffqzNLII4dQF5zimKpGhSZf4-xvZ1tMGYdyMk77hJ_e1ztv9_834Kew3axA-1eDyDB654Do8GjT_9Bfzq35A-wdxzhfAWoeVqHT7XAQnO4uCij7MCr-e36GPdcMGavKD5IvUsXIU1FXSJ_KCLJT-sX-LHkDpdzW_mJJ2OYD6aIsfLpY8uq5qBipqjwyw9petL-H72efSpFzS1GQJLAKwKrMgm0zRVeeik6drYmlwkobQmySNn-ZlEhmaaioTwnstiFxuTmcQKZZPuxLlYHMAO_cgdAjpCmZPcmJjZAFVmmCmXYUpkMzkluNOBbrtF2jbE5Vw_41pvKJd5iTUtsfZLrKMOnKz7LGrajntbv2t3XtPpYpcJreR8VepIsl9Vkd3cgXRLJNbDMj_39pdiduV5uhWZ_0pmHThtBUM3CqK8ZzJH_9b8LTzujQbn-rw__PIKnkRezjg-8Rh2quXKvYaH9mc1K5dv_Cn5DfT-DJI |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED8hQGgvMPYhCvu4SbxtEWnsJM7jvqpVGxViH-LNcm0XKkFaNQH-Bf7s3TlpoWhCmnhObCfns_07393vAPYVmVuWjp0oKzJDBooTkSHUHCV5HmeOlqZUJhSbyAcDdXJSHN3J4g_R7nOXZJPTwCxNZX0wdaODO4lvQsiIwwsII8R5RJvwmuRAerbXf_5ZmFwEd5pi8pxflEjRps38u4_lo-kWb96PlrznMg0nUW_r8f_wFDZbFIofG7XZhhVfPoONw9bP_hxu-he0z6ALHCI8dWi5ikfIgUCCuXh43MdxieeTawwxcDjlHb6k0ZFalr7GhiK6Qr7oxYov3E_xU0yNziYXE9JaT_AfTenwdBaizuq2o7Lh7jCzQPX6An73vv76_C1qazZEloBZHVlRDEd5rlzspena1Bonslhak7nEW74-kbEZ5SIjHOiL1KfGFCazQtmsO_Q-FS9hlQbyO4Ce0OfQGZMyS6AqDDPoMnxJbCFHBIM60J1Pl7YtoTnX1TjXt1TMLGJNItZBxDrpwPtFm2lD5_Hg2-_mWqBp1bErhSQ5uax0Itnfqsie7kC-pB6Lbpm3e_lJOT4L_N1KCKVk0YEPcyXR7cZRPfAxu__3-lvYOPrS0z_6g-978CQJasZhi69gtZ5d-tewbq_qcTV7ExbMX6UfFXY |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Image+distortion+correction+for+MRI+in+low+field+permanent+magnet+systems+with+strong+B0+inhomogeneity+and+gradient+field+nonlinearities&rft.jtitle=Magma+%28New+York%2C+N.Y.%29&rft.au=Koolstra%2C+Kirsten&rft.au=O%27Reilly%2C+Thomas&rft.au=B%C3%B6rnert%2C+Peter&rft.au=Webb%2C+Andrew&rft.date=2021-08-01&rft.issn=1352-8661&rft.eissn=1352-8661&rft.volume=34&rft.issue=4&rft.spage=631&rft_id=info:doi/10.1007%2Fs10334-021-00907-2&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0968-5243&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0968-5243&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0968-5243&client=summon |