Solving a class of feature selection problems via fractional 0–1 programming

Feature selection is a fundamental preprocessing step for many machine learning and pattern recognition systems. Notably, some mutual-information-based and correlation-based feature selection problems can be formulated as fractional programs with a single ratio of polynomial 0–1 functions. In this p...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Annals of operations research Ročník 303; číslo 1-2; s. 265 - 295
Hlavní autoři: Mehmanchi, Erfan, Gómez, Andrés, Prokopyev, Oleg A.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.08.2021
Springer
Springer Nature B.V
Témata:
ISSN:0254-5330, 1572-9338
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Feature selection is a fundamental preprocessing step for many machine learning and pattern recognition systems. Notably, some mutual-information-based and correlation-based feature selection problems can be formulated as fractional programs with a single ratio of polynomial 0–1 functions. In this paper, we study approaches that ensure globally optimal solutions for these feature selection problems. We conduct computational experiments with several real datasets and report encouraging results. The considered solution methods perform well for medium- and reasonably large-sized datasets, where the existing mixed-integer linear programs from the literature fail.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0254-5330
1572-9338
DOI:10.1007/s10479-020-03917-w