Handwritten stenography recognition and the LION dataset Handwritten stenography recognition and the LION dataset

In this paper, we establish the first baseline for handwritten stenography recognition, using the novel LION dataset, and investigate the impact of including selected aspects of stenographic theory into the recognition process. We make the LION dataset publicly available with the aim of encouraging...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal on document analysis and recognition Ročník 28; číslo 1; s. 3 - 18
Hlavní autoři: Heil, Raphaela, Nauwerck, Malin
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.03.2025
Springer Nature B.V
Témata:
ISSN:1433-2833, 1433-2825, 1433-2825
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this paper, we establish the first baseline for handwritten stenography recognition, using the novel LION dataset, and investigate the impact of including selected aspects of stenographic theory into the recognition process. We make the LION dataset publicly available with the aim of encouraging future research in handwritten stenography recognition. A state-of-the-art text recognition model is trained to establish a baseline. Stenographic domain knowledge is integrated by transforming the target sequences into representations which approximate diplomatic transcriptions, wherein each symbol in the script is represented by its own character in the transliteration, as opposed to corresponding combinations of characters from the Swedish alphabet. Four such encoding schemes are evaluated and results are further improved by integrating a pre-training scheme, based on synthetic data. The baseline model achieves an average test character error rate (CER) of 29.81% and a word error rate (WER) of 55.14%. Test error rates are reduced significantly ( p < 0.01) by combining stenography-specific target sequence encodings with pre-training and fine-tuning, yielding CERs in the range of 24.5–26% and WERs of 44.8–48.2%. An analysis of selected recognition errors illustrates the challenges that the stenographic writing system poses to text recognition. This work establishes the first baseline for handwritten stenography recognition. Our proposed combination of integrating stenography-specific knowledge, in conjunction with pre-training and fine-tuning on synthetic data, yields considerable improvements. Together with our precursor study on the subject, this is the first work to apply modern handwritten text recognition to stenography. The dataset and our code are publicly available via Zenodo.
AbstractList In this paper, we establish the first baseline for handwritten stenography recognition, using the novel LION dataset, and investigate the impact of including selected aspects of stenographic theory into the recognition process. We make the LION dataset publicly available with the aim of encouraging future research in handwritten stenography recognition. A state-of-the-art text recognition model is trained to establish a baseline. Stenographic domain knowledge is integrated by transforming the target sequences into representations which approximate diplomatic transcriptions, wherein each symbol in the script is represented by its own character in the transliteration, as opposed to corresponding combinations of characters from the Swedish alphabet. Four such encoding schemes are evaluated and results are further improved by integrating a pre-training scheme, based on synthetic data. The baseline model achieves an average test character error rate (CER) of 29.81% and a word error rate (WER) of 55.14%. Test error rates are reduced significantly ( p < 0.01) by combining stenography-specific target sequence encodings with pre-training and fine-tuning, yielding CERs in the range of 24.5–26% and WERs of 44.8–48.2%. An analysis of selected recognition errors illustrates the challenges that the stenographic writing system poses to text recognition. This work establishes the first baseline for handwritten stenography recognition. Our proposed combination of integrating stenography-specific knowledge, in conjunction with pre-training and fine-tuning on synthetic data, yields considerable improvements. Together with our precursor study on the subject, this is the first work to apply modern handwritten text recognition to stenography. The dataset and our code are publicly available via Zenodo.
In this paper, we establish the first baseline for handwritten stenography recognition, using the novel LION dataset, and investigate the impact of including selected aspects of stenographic theory into the recognition process. We make the LION dataset publicly available with the aim of encouraging future research in handwritten stenography recognition. A state-of-the-art text recognition model is trained to establish a baseline. Stenographic domain knowledge is integrated by transforming the target sequences into representations which approximate diplomatic transcriptions, wherein each symbol in the script is represented by its own character in the transliteration, as opposed to corresponding combinations of characters from the Swedish alphabet. Four such encoding schemes are evaluated and results are further improved by integrating a pre-training scheme, based on synthetic data. The baseline model achieves an average test character error rate (CER) of 29.81% and a word error rate (WER) of 55.14%. Test error rates are reduced significantly (p&lt; 0.01) by combining stenography-specific target sequence encodings with pre-training and fine-tuning, yielding CERs in the range of 24.5–26% and WERs of 44.8–48.2%. An analysis of selected recognition errors illustrates the challenges that the stenographic writing system poses to text recognition. This work establishes the first baseline for handwritten stenography recognition. Our proposed combination of integrating stenography-specific knowledge, in conjunction with pre-training and fine-tuning on synthetic data, yields considerable improvements. Together with our precursor study on the subject, this is the first work to apply modern handwritten text recognition to stenography. The dataset and our code are publicly available via Zenodo.
In this paper, we establish the first baseline for handwritten stenography recognition, using the novel LION dataset, and investigate the impact of including selected aspects of stenographic theory into the recognition process. We make the LION dataset publicly available with the aim of encouraging future research in handwritten stenography recognition. A state-of-the-art text recognition model is trained to establish a baseline. Stenographic domain knowledge is integrated by transforming the target sequences into representations which approximate diplomatic transcriptions, wherein each symbol in the script is represented by its own character in the transliteration, as opposed to corresponding combinations of characters from the Swedish alphabet. Four such encoding schemes are evaluated and results are further improved by integrating a pre-training scheme, based on synthetic data. The baseline model achieves an average test character error rate (CER) of 29.81% and a word error rate (WER) of 55.14%. Test error rates are reduced significantly ( p < 0.01) by combining stenography-specific target sequence encodings with pre-training and fine-tuning, yielding CERs in the range of 24.5–26% and WERs of 44.8–48.2%. An analysis of selected recognition errors illustrates the challenges that the stenographic writing system poses to text recognition. This work establishes the first baseline for handwritten stenography recognition. Our proposed combination of integrating stenography-specific knowledge, in conjunction with pre-training and fine-tuning on synthetic data, yields considerable improvements. Together with our precursor study on the subject, this is the first work to apply modern handwritten text recognition to stenography. The dataset and our code are publicly available via Zenodo.
Author Nauwerck, Malin
Heil, Raphaela
Author_xml – sequence: 1
  givenname: Raphaela
  orcidid: 0000-0002-5010-9149
  surname: Heil
  fullname: Heil, Raphaela
  email: raphaela.heil@it.uu.se
  organization: Department of Information Technology, Uppsala University
– sequence: 2
  givenname: Malin
  orcidid: 0000-0002-4834-3761
  surname: Nauwerck
  fullname: Nauwerck, Malin
  email: malin.nauwerck@barnboksinstitutet.se
  organization: The Swedish Institute for Children’s Books, Department of Literature and Rhetoric, Uppsala University
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-497026$$DView record from Swedish Publication Index (Uppsala universitet)
BookMark eNp9kE1Lw0AQhhepYFv9A54CXo3OfiY5lvrRQrEX9bpskk2aort1d0Ppv3drpN5kYGYOzzwM7wSNjDUaoWsMdxggu_exU5ICYSkAy4pUnKExZpSmJCd8dNopvUAT77cAOBNZPkb5Qpl677oQtEl8bLZ1arc5JE5XtjVd6KxJIpKEjU5Wy_VLUqugvA6X6LxRH15f_c4pent6fJ0v0tX6eTmfrdKKERpS1RRFnQHnhdC8JjpWpaBRGRaaQJ7jhummYEUGlQAtcA0lL8vIAuNUNYpO0e3g9Xu960u5c92ncgdpVScfuveZtK6VfS-PCiIifjPgO2e_eu2D3NremfihpIQzLnJgLFJkoCpnvXe6OWkxyGOgcghUxkDlT6DyqKa_n0TYtNr9qf-5-gZ3c3mX
Cites_doi 10.1016/j.patcog.2022.108766
10.1108/eb026526
10.1109/TPAMI.2008.137
10.1145/1143844.1143891
10.1145/2037342.2037348
10.5617/dhnbpub.11271
10.1007/978-3-031-36616-1_11
10.1007/978-3-031-06555-2_21
10.1016/j.patrec.2022.04.009
10.1007/978-3-030-86334-0_8
10.1016/S0020-7373(86)80053-0
10.1109/ICDAR.2017.20
10.1109/ICDAR.2017.111
10.1109/ICCIKE47802.2019.9004359
10.1109/CVPR42600.2020.01472
10.1007/s100320200071
10.1109/ICDAR.2019.00208
10.14811/clr.v28i1.77
10.7202/1094130ar
10.1007/978-3-031-06555-2_19
10.1556/060.2019.64101
10.1109/ICIVC50857.2020.9177452
10.1109/ICPR48806.2021.9413255
10.1093/oso/9780192846792.001.0001
10.2307/3001968
10.1109/TENCON.2012.6412245
10.1007/978-3-030-86159-9_7
10.1007/978-3-030-00794-2_24
10.1109/TPAMI.1986.4767851
ContentType Journal Article
Copyright The Author(s) 2024
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
JQ2
ACNBI
ADTPV
AOWAS
D8T
DF2
ZZAVC
DOI 10.1007/s10032-024-00479-6
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Computer Science Collection
SWEPUB Uppsala universitet full text
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Uppsala universitet
SwePub Articles full text
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList CrossRef
ProQuest Computer Science Collection


DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1433-2825
EndPage 18
ExternalDocumentID oai_DiVA_org_uu_497026
10_1007_s10032_024_00479_6
GrantInformation_xml – fundername: Uppsala University
GroupedDBID -Y2
-~C
.86
06D
0R~
0VY
1N0
1SB
203
29J
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
8TC
95-
95.
95~
96X
AABHQ
AACDK
AAGAY
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADHKG
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BDATZ
BGNMA
BSONS
C6C
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAS
LLZTM
M4Y
MA-
MQGED
N2Q
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P9O
PF0
PT4
PT5
QOS
R89
R9I
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
~A9
AAYXX
ABBRH
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
K7-
PHGZM
PHGZT
PQGLB
JQ2
ACNBI
ADTPV
AOWAS
D8T
DF2
ZZAVC
ID FETCH-LOGICAL-c423t-af99d705596e5d2e2e2ca0fa716e20881f4ef94970c60e61d0b5bb6e50453afa3
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001248293700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1433-2833
1433-2825
IngestDate Tue Nov 04 16:51:02 EST 2025
Sun Nov 30 05:05:59 EST 2025
Sat Nov 29 08:04:59 EST 2025
Sun Mar 30 01:18:24 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Handwritten text recognition
Stenography
Shorthand
Text encoding
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c423t-af99d705596e5d2e2e2ca0fa716e20881f4ef94970c60e61d0b5bb6e50453afa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4834-3761
0000-0002-5010-9149
OpenAccessLink https://link.springer.com/10.1007/s10032-024-00479-6
PQID 3254568044
PQPubID 2043688
PageCount 16
ParticipantIDs swepub_primary_oai_DiVA_org_uu_497026
proquest_journals_3254568044
crossref_primary_10_1007_s10032_024_00479_6
springer_journals_10_1007_s10032_024_00479_6
PublicationCentury 2000
PublicationDate 2025-03-01
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle International journal on document analysis and recognition
PublicationTitleAbbrev IJDAR
PublicationYear 2025
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References A Graves (479_CR17) 2009; 31
479_CR51
479_CR52
479_CR14
K Barrere (479_CR26) 2022
479_CR11
479_CR12
479_CR18
479_CR15
479_CR16
479_CR6
479_CR5
S Bird (479_CR39) 2009
K Bohlund (479_CR2) 2018
U Ramstrand (479_CR34) 2011; 28
AF de Sousa Neto (479_CR13) 2022; 159
C Bonferroni (479_CR49) 1936; 8
479_CR20
479_CR21
479_CR22
479_CR23
479_CR29
R Heil (479_CR50) 2022
J Canny (479_CR37) 1986; 8
479_CR19
J Andersen (479_CR3) 2014
F Zhai (479_CR10) 2018
D Van Hulle (479_CR32) 2022
R Heil (479_CR7) 2023
M Nauwerck (479_CR35) 2021; 2021
479_CR30
479_CR36
M Nauwerck (479_CR1) 2022; 13
479_CR38
V Joosen (479_CR33) 2017
I Andrianova (479_CR27) 2019; 64
V Romero (479_CR47) 2019
H Bowles (479_CR28) 2018
KS Jones (479_CR40) 1972; 28
(479_CR31) 2004
U-V Marti (479_CR46) 2002; 5
L Kang (479_CR25) 2022; 129
L Törnqvist (479_CR4) 2015
479_CR42
479_CR43
479_CR41
479_CR44
479_CR45
479_CR9
C Wick (479_CR24) 2021
CG Leedham (479_CR8) 1986; 24
F Wilcoxon (479_CR48) 1945; 1
References_xml – volume: 129
  year: 2022
  ident: 479_CR25
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2022.108766
– ident: 479_CR44
– start-page: 103
  volume-title: New Trends in Image Analysis and Processing - ICIAP 2019
  year: 2019
  ident: 479_CR47
– volume: 28
  start-page: 11
  issue: 1
  year: 1972
  ident: 479_CR40
  publication-title: J. Doc.
  doi: 10.1108/eb026526
– ident: 479_CR29
– volume: 31
  start-page: 855
  issue: 5
  year: 2009
  ident: 479_CR17
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2008.137
– ident: 479_CR16
  doi: 10.1145/1143844.1143891
– ident: 479_CR45
  doi: 10.1145/2037342.2037348
– ident: 479_CR6
  doi: 10.5617/dhnbpub.11271
– ident: 479_CR38
– ident: 479_CR30
– ident: 479_CR18
– start-page: 134
  volume-title: Pattern Recognition and Image Analysis–IbPRIA 2023
  year: 2023
  ident: 479_CR7
  doi: 10.1007/978-3-031-36616-1_11
– volume-title: Dickens and the Stenographic Mind
  year: 2018
  ident: 479_CR28
– start-page: 309
  volume-title: Document Analysis Systems
  year: 2022
  ident: 479_CR50
  doi: 10.1007/978-3-031-06555-2_21
– ident: 479_CR41
– volume: 159
  start-page: 232
  year: 2022
  ident: 479_CR13
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/j.patrec.2022.04.009
– start-page: 112
  volume-title: Document Analysis and Recognition–ICDAR 2021
  year: 2021
  ident: 479_CR24
  doi: 10.1007/978-3-030-86334-0_8
– volume: 24
  start-page: 375
  issue: 4
  year: 1986
  ident: 479_CR8
  publication-title: Int. J. Man Mach. Stud.
  doi: 10.1016/S0020-7373(86)80053-0
– ident: 479_CR19
  doi: 10.1109/ICDAR.2017.20
– ident: 479_CR52
– volume-title: Man Tar Vanliga Ord: Att Läsa Om Astrid Lindgren
  year: 2015
  ident: 479_CR4
– ident: 479_CR20
  doi: 10.1109/ICDAR.2017.111
– volume: 2021
  start-page: 197
  year: 2021
  ident: 479_CR35
  publication-title: Från Strindberg Till Storyte Korskopplingar Mellan Ljud Och Litt. Daidalos, Göteborg
– ident: 479_CR11
  doi: 10.1109/ICCIKE47802.2019.9004359
– ident: 479_CR42
– start-page: 17
  volume-title: Genetic Criticism: Origins and Perspectives
  year: 2004
  ident: 479_CR31
– ident: 479_CR15
  doi: 10.1109/CVPR42600.2020.01472
– volume: 5
  start-page: 39
  issue: 1
  year: 2002
  ident: 479_CR46
  publication-title: Int. J. Doc. Anal. Recogn.
  doi: 10.1007/s100320200071
– ident: 479_CR21
  doi: 10.1109/ICDAR.2019.00208
– ident: 479_CR23
– volume: 28
  start-page: 14445
  issue: 1
  year: 2011
  ident: 479_CR34
  publication-title: Barnboken
  doi: 10.14811/clr.v28i1.77
– ident: 479_CR5
– start-page: 298
  volume-title: 24 the Genetic Study of Children’s Literature
  year: 2017
  ident: 479_CR33
– volume: 13
  start-page: 1
  issue: 1
  year: 2022
  ident: 479_CR1
  publication-title: Mém. Livre Stud. Book Cult.
  doi: 10.7202/1094130ar
– volume-title: Denna Dagen, Ett Liv: en Biografi Över Astrid Lindgren
  year: 2014
  ident: 479_CR3
– volume-title: Natural Language Processing with Python: Analyzing Text with the Natural Language Toolkit
  year: 2009
  ident: 479_CR39
– start-page: 275
  volume-title: Document Analysis Systems
  year: 2022
  ident: 479_CR26
  doi: 10.1007/978-3-031-06555-2_19
– volume: 64
  start-page: 1
  issue: 1
  year: 2019
  ident: 479_CR27
  publication-title: Stud. Slavica Acad. Scientiarum
  doi: 10.1556/060.2019.64101
– ident: 479_CR12
  doi: 10.1109/ICIVC50857.2020.9177452
– ident: 479_CR36
– ident: 479_CR14
  doi: 10.1109/ICPR48806.2021.9413255
– volume-title: Genetic Criticism: Tracing Creativity in Literature
  year: 2022
  ident: 479_CR32
  doi: 10.1093/oso/9780192846792.001.0001
– ident: 479_CR43
– volume-title: Den Okända Astrid Lindgren: Åren Som Bokförläggare och Chef
  year: 2018
  ident: 479_CR2
– volume: 8
  start-page: 3
  year: 1936
  ident: 479_CR49
  publication-title: Pubbl. R Isti. Super. Sci. Econ. Comme. Firenze
– volume: 1
  start-page: 80
  issue: 6
  year: 1945
  ident: 479_CR48
  publication-title: Biomet. Bull.
  doi: 10.2307/3001968
– ident: 479_CR22
– ident: 479_CR9
  doi: 10.1109/TENCON.2012.6412245
– ident: 479_CR51
  doi: 10.1007/978-3-030-86159-9_7
– start-page: 222
  volume-title: Text, Speech, and Dialogue
  year: 2018
  ident: 479_CR10
  doi: 10.1007/978-3-030-00794-2_24
– volume: 8
  start-page: 679
  issue: 6
  year: 1986
  ident: 479_CR37
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.1986.4767851
RelatedPersons Lindgren, Astrid (1907-2002)
RelatedPersons_xml – fullname: Lindgren, Astrid (1907-2002)
SSID ssj0017678
Score 2.3689926
Snippet In this paper, we establish the first baseline for handwritten stenography recognition, using the novel LION dataset, and investigate the impact of including...
SourceID swepub
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 3
SubjectTerms Computer Science
Computerized Image Processing
Creative process
Crowdsourcing
Cultural heritage
Datasets
Datoriserad bildbehandling
Deep learning
Digital humanities
Errors
Handwriting
Handwriting recognition
Image Processing and Computer Vision
Lindgren, Astrid (1907-2002)
Neural networks
Novels
Original Paper
Pattern Recognition
Synthetic data
Writing
Subtitle Handwritten stenography recognition and the LION dataset
Title Handwritten stenography recognition and the LION dataset
URI https://link.springer.com/article/10.1007/s10032-024-00479-6
https://www.proquest.com/docview/3254568044
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-497026
Volume 28
WOSCitedRecordID wos001248293700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1433-2825
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017678
  issn: 1433-2825
  databaseCode: RSV
  dateStart: 19980201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagMLBQnqJQkAeYwFJqO048VkDVAVWIR9XNchIbdUlRksLf55xXASEkUDbHcpLz-e5zfPcdQucR51FsA05YIt2vGw1LypiQiBC8rTBeYAe2LDYRTCbhbCbv66SwvIl2b44kS0v9KdnNY5SATyElLzoR62gD3F3oCjY8PE7bs4Ogsr8ABBgB58nqVJmfx_jqjlYYsz0W_UYhWrqdUfd_L7yDtmuYiYeVXuyiNZPuoW4NOXG9oHNoaqo6NG37KBzrNHnP5gWgaQw6kNak1riNNVqkGLpggI74DkwxdlGmuSkO0PPo9ul6TOr6CiQGEFUQbaVMHJuOFMZPqIEr1p7VsIUyFKzPwHJjJZeBFwvPiEHiRX4UQV-AgUxbzQ5RJ12k5ghhyWLKkwE1TPg8sn6kXSF1Jr3YJAyUoYcuGzGr14pGQ60Ik52cFMhJlXJSoof6zUyoeknlilEH9kKP8x66agS-uv3baBfVDLZPdpTaN_PpUC2yF7VcKveJVBz_bdgTtEVdLeAyHq2POkW2NKdoM34r5nl2VqrkB5hd2dk
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgIMGF8RSDATnACSK1TZY2xwmYhhgTgjFxi_pI0C4dWjv4-zhduwFCSKDe0ihtHcf-0tifAU4jzqPY-JyyRNpfNyEuKa0DKgL0tkI7vnFNUWzC7_eD52d5XyaFZVW0e3UkWVjqT8luDvMo-hRa8KJTsQwrHD2WZcx_eBzOzw78mf1FIMAoOk9Wpsr8PMZXd7TAmPNj0W8UooXb6dT_98KbsFHCTNKe6cUWLOl0G-ol5CTlgs6wqarqULXtQNAN0-R9MsoRTRPUgbQktSbzWKNxSrALQehIemiKiY0yzXS-C0-d68Fll5b1FWiMICqnoZEysWw6UuhW4mm84tAxIW6htIfWxzVcG8ml78TC0cJNnKgVRdgXYSALTcj2oJaOU70PRLLY44nraSZaPDKtKLSF1Jl0Yp0wVIYGnFdiVq8zGg21IEy2clIoJ1XISYkGNKuZUOWSyhTzLNgLHM4bcFEJfHH7t9HOZjM4f7Kl1L4aDdtqPHlR06myn-iJg78NewJr3cFdT_Vu-reHsO7ZusBFbFoTavlkqo9gNX7LR9nkuFDPD9eG3L0
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB58IV6sT6zPHPSkwe0mzW6OopaKpRTU0lvYRyK9bMt2q3_fyb6qIoLI3rIh2Z1MMl-SmW8AzkPOw8h4nLJY2qObAKeU1j4VPlpboR3PtEyebMLr9_3RSA4-RfHn3u7VlWQR02BZmpLsehqb60-Bbw5zKdoXmnOkU7EMq9w60tv9-tOwvkfwirUYQQGjaEhZGTbzcxtfTdMCb9ZXpN_oRHMT1Gn8_-O3YLOEn-Sm0JdtWNLJDjRKKErKiT7DoirbQ1W2C343SOL3dJxhVwR1IynJrkntgzRJCFYhCClJD5doYr1PZzrbg5fO_fNtl5Z5F2iE4CqjgZEytiw7Uuh27Gp8osAxAW6ttIurUstwbSSXnhMJR4tW7ITtMMS6CA9ZYAK2DyvJJNEHQCSLXB63XM1Em4emHQY2wTqTTqRjhkrShMtK5Gpa0GuoBZGylZNCOalcTko04bgaFVVOtZlirgWBvsN5E64q4S9e_9baRTGadc-WavtuPLxRk_RVzefK_qIrDv_W7BmsD-46qvfQfzyCDdemC85d1o5hJUvn-gTWordsPEtPc039AO8u5aE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Handwritten+stenography+recognition+and+the+LION+dataset&rft.jtitle=International+journal+on+document+analysis+and+recognition&rft.au=Heil%2C+Raphaela&rft.au=Nauwerck%2C+Malin&rft.date=2025-03-01&rft.issn=1433-2833&rft.eissn=1433-2825&rft.volume=28&rft.issue=1&rft.spage=3&rft.epage=18&rft_id=info:doi/10.1007%2Fs10032-024-00479-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10032_024_00479_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-2833&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-2833&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-2833&client=summon