Handwritten stenography recognition and the LION dataset Handwritten stenography recognition and the LION dataset
In this paper, we establish the first baseline for handwritten stenography recognition, using the novel LION dataset, and investigate the impact of including selected aspects of stenographic theory into the recognition process. We make the LION dataset publicly available with the aim of encouraging...
Uloženo v:
| Vydáno v: | International journal on document analysis and recognition Ročník 28; číslo 1; s. 3 - 18 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.03.2025
Springer Nature B.V |
| Témata: | |
| ISSN: | 1433-2833, 1433-2825, 1433-2825 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In this paper, we establish the first baseline for handwritten stenography recognition, using the novel LION dataset, and investigate the impact of including selected aspects of stenographic theory into the recognition process. We make the LION dataset publicly available with the aim of encouraging future research in handwritten stenography recognition. A state-of-the-art text recognition model is trained to establish a baseline. Stenographic domain knowledge is integrated by transforming the target sequences into representations which approximate diplomatic transcriptions, wherein each symbol in the script is represented by its own character in the transliteration, as opposed to corresponding combinations of characters from the Swedish alphabet. Four such encoding schemes are evaluated and results are further improved by integrating a pre-training scheme, based on synthetic data. The baseline model achieves an average test character error rate (CER) of 29.81% and a word error rate (WER) of 55.14%. Test error rates are reduced significantly (
p
< 0.01) by combining stenography-specific target sequence encodings with pre-training and fine-tuning, yielding CERs in the range of 24.5–26% and WERs of 44.8–48.2%. An analysis of selected recognition errors illustrates the challenges that the stenographic writing system poses to text recognition. This work establishes the first baseline for handwritten stenography recognition. Our proposed combination of integrating stenography-specific knowledge, in conjunction with pre-training and fine-tuning on synthetic data, yields considerable improvements. Together with our precursor study on the subject, this is the first work to apply modern handwritten text recognition to stenography. The dataset and our code are publicly available via Zenodo. |
|---|---|
| AbstractList | In this paper, we establish the first baseline for handwritten stenography recognition, using the novel LION dataset, and investigate the impact of including selected aspects of stenographic theory into the recognition process. We make the LION dataset publicly available with the aim of encouraging future research in handwritten stenography recognition. A state-of-the-art text recognition model is trained to establish a baseline. Stenographic domain knowledge is integrated by transforming the target sequences into representations which approximate diplomatic transcriptions, wherein each symbol in the script is represented by its own character in the transliteration, as opposed to corresponding combinations of characters from the Swedish alphabet. Four such encoding schemes are evaluated and results are further improved by integrating a pre-training scheme, based on synthetic data. The baseline model achieves an average test character error rate (CER) of 29.81% and a word error rate (WER) of 55.14%. Test error rates are reduced significantly ( p < 0.01) by combining stenography-specific target sequence encodings with pre-training and fine-tuning, yielding CERs in the range of 24.5–26% and WERs of 44.8–48.2%. An analysis of selected recognition errors illustrates the challenges that the stenographic writing system poses to text recognition. This work establishes the first baseline for handwritten stenography recognition. Our proposed combination of integrating stenography-specific knowledge, in conjunction with pre-training and fine-tuning on synthetic data, yields considerable improvements. Together with our precursor study on the subject, this is the first work to apply modern handwritten text recognition to stenography. The dataset and our code are publicly available via Zenodo. In this paper, we establish the first baseline for handwritten stenography recognition, using the novel LION dataset, and investigate the impact of including selected aspects of stenographic theory into the recognition process. We make the LION dataset publicly available with the aim of encouraging future research in handwritten stenography recognition. A state-of-the-art text recognition model is trained to establish a baseline. Stenographic domain knowledge is integrated by transforming the target sequences into representations which approximate diplomatic transcriptions, wherein each symbol in the script is represented by its own character in the transliteration, as opposed to corresponding combinations of characters from the Swedish alphabet. Four such encoding schemes are evaluated and results are further improved by integrating a pre-training scheme, based on synthetic data. The baseline model achieves an average test character error rate (CER) of 29.81% and a word error rate (WER) of 55.14%. Test error rates are reduced significantly (p< 0.01) by combining stenography-specific target sequence encodings with pre-training and fine-tuning, yielding CERs in the range of 24.5–26% and WERs of 44.8–48.2%. An analysis of selected recognition errors illustrates the challenges that the stenographic writing system poses to text recognition. This work establishes the first baseline for handwritten stenography recognition. Our proposed combination of integrating stenography-specific knowledge, in conjunction with pre-training and fine-tuning on synthetic data, yields considerable improvements. Together with our precursor study on the subject, this is the first work to apply modern handwritten text recognition to stenography. The dataset and our code are publicly available via Zenodo. In this paper, we establish the first baseline for handwritten stenography recognition, using the novel LION dataset, and investigate the impact of including selected aspects of stenographic theory into the recognition process. We make the LION dataset publicly available with the aim of encouraging future research in handwritten stenography recognition. A state-of-the-art text recognition model is trained to establish a baseline. Stenographic domain knowledge is integrated by transforming the target sequences into representations which approximate diplomatic transcriptions, wherein each symbol in the script is represented by its own character in the transliteration, as opposed to corresponding combinations of characters from the Swedish alphabet. Four such encoding schemes are evaluated and results are further improved by integrating a pre-training scheme, based on synthetic data. The baseline model achieves an average test character error rate (CER) of 29.81% and a word error rate (WER) of 55.14%. Test error rates are reduced significantly ( p < 0.01) by combining stenography-specific target sequence encodings with pre-training and fine-tuning, yielding CERs in the range of 24.5–26% and WERs of 44.8–48.2%. An analysis of selected recognition errors illustrates the challenges that the stenographic writing system poses to text recognition. This work establishes the first baseline for handwritten stenography recognition. Our proposed combination of integrating stenography-specific knowledge, in conjunction with pre-training and fine-tuning on synthetic data, yields considerable improvements. Together with our precursor study on the subject, this is the first work to apply modern handwritten text recognition to stenography. The dataset and our code are publicly available via Zenodo. |
| Author | Nauwerck, Malin Heil, Raphaela |
| Author_xml | – sequence: 1 givenname: Raphaela orcidid: 0000-0002-5010-9149 surname: Heil fullname: Heil, Raphaela email: raphaela.heil@it.uu.se organization: Department of Information Technology, Uppsala University – sequence: 2 givenname: Malin orcidid: 0000-0002-4834-3761 surname: Nauwerck fullname: Nauwerck, Malin email: malin.nauwerck@barnboksinstitutet.se organization: The Swedish Institute for Children’s Books, Department of Literature and Rhetoric, Uppsala University |
| BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-497026$$DView record from Swedish Publication Index (Uppsala universitet) |
| BookMark | eNp9kE1Lw0AQhhepYFv9A54CXo3OfiY5lvrRQrEX9bpskk2aort1d0Ppv3drpN5kYGYOzzwM7wSNjDUaoWsMdxggu_exU5ICYSkAy4pUnKExZpSmJCd8dNopvUAT77cAOBNZPkb5Qpl677oQtEl8bLZ1arc5JE5XtjVd6KxJIpKEjU5Wy_VLUqugvA6X6LxRH15f_c4pent6fJ0v0tX6eTmfrdKKERpS1RRFnQHnhdC8JjpWpaBRGRaaQJ7jhummYEUGlQAtcA0lL8vIAuNUNYpO0e3g9Xu960u5c92ncgdpVScfuveZtK6VfS-PCiIifjPgO2e_eu2D3NremfihpIQzLnJgLFJkoCpnvXe6OWkxyGOgcghUxkDlT6DyqKa_n0TYtNr9qf-5-gZ3c3mX |
| Cites_doi | 10.1016/j.patcog.2022.108766 10.1108/eb026526 10.1109/TPAMI.2008.137 10.1145/1143844.1143891 10.1145/2037342.2037348 10.5617/dhnbpub.11271 10.1007/978-3-031-36616-1_11 10.1007/978-3-031-06555-2_21 10.1016/j.patrec.2022.04.009 10.1007/978-3-030-86334-0_8 10.1016/S0020-7373(86)80053-0 10.1109/ICDAR.2017.20 10.1109/ICDAR.2017.111 10.1109/ICCIKE47802.2019.9004359 10.1109/CVPR42600.2020.01472 10.1007/s100320200071 10.1109/ICDAR.2019.00208 10.14811/clr.v28i1.77 10.7202/1094130ar 10.1007/978-3-031-06555-2_19 10.1556/060.2019.64101 10.1109/ICIVC50857.2020.9177452 10.1109/ICPR48806.2021.9413255 10.1093/oso/9780192846792.001.0001 10.2307/3001968 10.1109/TENCON.2012.6412245 10.1007/978-3-030-86159-9_7 10.1007/978-3-030-00794-2_24 10.1109/TPAMI.1986.4767851 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2024 The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2024 – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION JQ2 ACNBI ADTPV AOWAS D8T DF2 ZZAVC |
| DOI | 10.1007/s10032-024-00479-6 |
| DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Computer Science Collection SWEPUB Uppsala universitet full text SwePub SwePub Articles SWEPUB Freely available online SWEPUB Uppsala universitet SwePub Articles full text |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | CrossRef ProQuest Computer Science Collection |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Computer Science |
| EISSN | 1433-2825 |
| EndPage | 18 |
| ExternalDocumentID | oai_DiVA_org_uu_497026 10_1007_s10032_024_00479_6 |
| GrantInformation_xml | – fundername: Uppsala University |
| GroupedDBID | -Y2 -~C .86 06D 0R~ 0VY 1N0 1SB 203 29J 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 8TC 95- 95. 95~ 96X AABHQ AACDK AAGAY AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBE ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADHKG ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BDATZ BGNMA BSONS C6C CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV LAS LLZTM M4Y MA- MQGED N2Q NPVJJ NQJWS NU0 O9- O93 O9J OAM P9O PF0 PT4 PT5 QOS R89 R9I RNI ROL RPX RSV RZK S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ~A9 AAYXX ABBRH ABFSG ABRTQ ACSTC AEZWR AFDZB AFFHD AFHIU AFKRA AFOHR AGQPQ AHPBZ AHWEU AIXLP ARAPS ATHPR BENPR BGLVJ CCPQU CITATION HCIFZ K7- PHGZM PHGZT PQGLB JQ2 ACNBI ADTPV AOWAS D8T DF2 ZZAVC |
| ID | FETCH-LOGICAL-c423t-af99d705596e5d2e2e2ca0fa716e20881f4ef94970c60e61d0b5bb6e50453afa3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001248293700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1433-2833 1433-2825 |
| IngestDate | Tue Nov 04 16:51:02 EST 2025 Sun Nov 30 05:05:59 EST 2025 Sat Nov 29 08:04:59 EST 2025 Sun Mar 30 01:18:24 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Handwritten text recognition Stenography Shorthand Text encoding |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c423t-af99d705596e5d2e2e2ca0fa716e20881f4ef94970c60e61d0b5bb6e50453afa3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-4834-3761 0000-0002-5010-9149 |
| OpenAccessLink | https://link.springer.com/10.1007/s10032-024-00479-6 |
| PQID | 3254568044 |
| PQPubID | 2043688 |
| PageCount | 16 |
| ParticipantIDs | swepub_primary_oai_DiVA_org_uu_497026 proquest_journals_3254568044 crossref_primary_10_1007_s10032_024_00479_6 springer_journals_10_1007_s10032_024_00479_6 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-03-01 |
| PublicationDateYYYYMMDD | 2025-03-01 |
| PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationTitle | International journal on document analysis and recognition |
| PublicationTitleAbbrev | IJDAR |
| PublicationYear | 2025 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | A Graves (479_CR17) 2009; 31 479_CR51 479_CR52 479_CR14 K Barrere (479_CR26) 2022 479_CR11 479_CR12 479_CR18 479_CR15 479_CR16 479_CR6 479_CR5 S Bird (479_CR39) 2009 K Bohlund (479_CR2) 2018 U Ramstrand (479_CR34) 2011; 28 AF de Sousa Neto (479_CR13) 2022; 159 C Bonferroni (479_CR49) 1936; 8 479_CR20 479_CR21 479_CR22 479_CR23 479_CR29 R Heil (479_CR50) 2022 J Canny (479_CR37) 1986; 8 479_CR19 J Andersen (479_CR3) 2014 F Zhai (479_CR10) 2018 D Van Hulle (479_CR32) 2022 R Heil (479_CR7) 2023 M Nauwerck (479_CR35) 2021; 2021 479_CR30 479_CR36 M Nauwerck (479_CR1) 2022; 13 479_CR38 V Joosen (479_CR33) 2017 I Andrianova (479_CR27) 2019; 64 V Romero (479_CR47) 2019 H Bowles (479_CR28) 2018 KS Jones (479_CR40) 1972; 28 (479_CR31) 2004 U-V Marti (479_CR46) 2002; 5 L Kang (479_CR25) 2022; 129 L Törnqvist (479_CR4) 2015 479_CR42 479_CR43 479_CR41 479_CR44 479_CR45 479_CR9 C Wick (479_CR24) 2021 CG Leedham (479_CR8) 1986; 24 F Wilcoxon (479_CR48) 1945; 1 |
| References_xml | – volume: 129 year: 2022 ident: 479_CR25 publication-title: Pattern Recogn. doi: 10.1016/j.patcog.2022.108766 – ident: 479_CR44 – start-page: 103 volume-title: New Trends in Image Analysis and Processing - ICIAP 2019 year: 2019 ident: 479_CR47 – volume: 28 start-page: 11 issue: 1 year: 1972 ident: 479_CR40 publication-title: J. Doc. doi: 10.1108/eb026526 – ident: 479_CR29 – volume: 31 start-page: 855 issue: 5 year: 2009 ident: 479_CR17 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2008.137 – ident: 479_CR16 doi: 10.1145/1143844.1143891 – ident: 479_CR45 doi: 10.1145/2037342.2037348 – ident: 479_CR6 doi: 10.5617/dhnbpub.11271 – ident: 479_CR38 – ident: 479_CR30 – ident: 479_CR18 – start-page: 134 volume-title: Pattern Recognition and Image Analysis–IbPRIA 2023 year: 2023 ident: 479_CR7 doi: 10.1007/978-3-031-36616-1_11 – volume-title: Dickens and the Stenographic Mind year: 2018 ident: 479_CR28 – start-page: 309 volume-title: Document Analysis Systems year: 2022 ident: 479_CR50 doi: 10.1007/978-3-031-06555-2_21 – ident: 479_CR41 – volume: 159 start-page: 232 year: 2022 ident: 479_CR13 publication-title: Pattern Recogn. Lett. doi: 10.1016/j.patrec.2022.04.009 – start-page: 112 volume-title: Document Analysis and Recognition–ICDAR 2021 year: 2021 ident: 479_CR24 doi: 10.1007/978-3-030-86334-0_8 – volume: 24 start-page: 375 issue: 4 year: 1986 ident: 479_CR8 publication-title: Int. J. Man Mach. Stud. doi: 10.1016/S0020-7373(86)80053-0 – ident: 479_CR19 doi: 10.1109/ICDAR.2017.20 – ident: 479_CR52 – volume-title: Man Tar Vanliga Ord: Att Läsa Om Astrid Lindgren year: 2015 ident: 479_CR4 – ident: 479_CR20 doi: 10.1109/ICDAR.2017.111 – volume: 2021 start-page: 197 year: 2021 ident: 479_CR35 publication-title: Från Strindberg Till Storyte Korskopplingar Mellan Ljud Och Litt. Daidalos, Göteborg – ident: 479_CR11 doi: 10.1109/ICCIKE47802.2019.9004359 – ident: 479_CR42 – start-page: 17 volume-title: Genetic Criticism: Origins and Perspectives year: 2004 ident: 479_CR31 – ident: 479_CR15 doi: 10.1109/CVPR42600.2020.01472 – volume: 5 start-page: 39 issue: 1 year: 2002 ident: 479_CR46 publication-title: Int. J. Doc. Anal. Recogn. doi: 10.1007/s100320200071 – ident: 479_CR21 doi: 10.1109/ICDAR.2019.00208 – ident: 479_CR23 – volume: 28 start-page: 14445 issue: 1 year: 2011 ident: 479_CR34 publication-title: Barnboken doi: 10.14811/clr.v28i1.77 – ident: 479_CR5 – start-page: 298 volume-title: 24 the Genetic Study of Children’s Literature year: 2017 ident: 479_CR33 – volume: 13 start-page: 1 issue: 1 year: 2022 ident: 479_CR1 publication-title: Mém. Livre Stud. Book Cult. doi: 10.7202/1094130ar – volume-title: Denna Dagen, Ett Liv: en Biografi Över Astrid Lindgren year: 2014 ident: 479_CR3 – volume-title: Natural Language Processing with Python: Analyzing Text with the Natural Language Toolkit year: 2009 ident: 479_CR39 – start-page: 275 volume-title: Document Analysis Systems year: 2022 ident: 479_CR26 doi: 10.1007/978-3-031-06555-2_19 – volume: 64 start-page: 1 issue: 1 year: 2019 ident: 479_CR27 publication-title: Stud. Slavica Acad. Scientiarum doi: 10.1556/060.2019.64101 – ident: 479_CR12 doi: 10.1109/ICIVC50857.2020.9177452 – ident: 479_CR36 – ident: 479_CR14 doi: 10.1109/ICPR48806.2021.9413255 – volume-title: Genetic Criticism: Tracing Creativity in Literature year: 2022 ident: 479_CR32 doi: 10.1093/oso/9780192846792.001.0001 – ident: 479_CR43 – volume-title: Den Okända Astrid Lindgren: Åren Som Bokförläggare och Chef year: 2018 ident: 479_CR2 – volume: 8 start-page: 3 year: 1936 ident: 479_CR49 publication-title: Pubbl. R Isti. Super. Sci. Econ. Comme. Firenze – volume: 1 start-page: 80 issue: 6 year: 1945 ident: 479_CR48 publication-title: Biomet. Bull. doi: 10.2307/3001968 – ident: 479_CR22 – ident: 479_CR9 doi: 10.1109/TENCON.2012.6412245 – ident: 479_CR51 doi: 10.1007/978-3-030-86159-9_7 – start-page: 222 volume-title: Text, Speech, and Dialogue year: 2018 ident: 479_CR10 doi: 10.1007/978-3-030-00794-2_24 – volume: 8 start-page: 679 issue: 6 year: 1986 ident: 479_CR37 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.1986.4767851 |
| RelatedPersons | Lindgren, Astrid (1907-2002) |
| RelatedPersons_xml | – fullname: Lindgren, Astrid (1907-2002) |
| SSID | ssj0017678 |
| Score | 2.3689926 |
| Snippet | In this paper, we establish the first baseline for handwritten stenography recognition, using the novel LION dataset, and investigate the impact of including... |
| SourceID | swepub proquest crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 3 |
| SubjectTerms | Computer Science Computerized Image Processing Creative process Crowdsourcing Cultural heritage Datasets Datoriserad bildbehandling Deep learning Digital humanities Errors Handwriting Handwriting recognition Image Processing and Computer Vision Lindgren, Astrid (1907-2002) Neural networks Novels Original Paper Pattern Recognition Synthetic data Writing |
| Subtitle | Handwritten stenography recognition and the LION dataset |
| Title | Handwritten stenography recognition and the LION dataset |
| URI | https://link.springer.com/article/10.1007/s10032-024-00479-6 https://www.proquest.com/docview/3254568044 https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-497026 |
| Volume | 28 |
| WOSCitedRecordID | wos001248293700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1433-2825 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017678 issn: 1433-2825 databaseCode: RSV dateStart: 19980201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagMLBQnqJQkAeYwFJqO048VkDVAVWIR9XNchIbdUlRksLf55xXASEkUDbHcpLz-e5zfPcdQucR51FsA05YIt2vGw1LypiQiBC8rTBeYAe2LDYRTCbhbCbv66SwvIl2b44kS0v9KdnNY5SATyElLzoR62gD3F3oCjY8PE7bs4Ogsr8ABBgB58nqVJmfx_jqjlYYsz0W_UYhWrqdUfd_L7yDtmuYiYeVXuyiNZPuoW4NOXG9oHNoaqo6NG37KBzrNHnP5gWgaQw6kNak1riNNVqkGLpggI74DkwxdlGmuSkO0PPo9ul6TOr6CiQGEFUQbaVMHJuOFMZPqIEr1p7VsIUyFKzPwHJjJZeBFwvPiEHiRX4UQV-AgUxbzQ5RJ12k5ghhyWLKkwE1TPg8sn6kXSF1Jr3YJAyUoYcuGzGr14pGQ60Ik52cFMhJlXJSoof6zUyoeknlilEH9kKP8x66agS-uv3baBfVDLZPdpTaN_PpUC2yF7VcKveJVBz_bdgTtEVdLeAyHq2POkW2NKdoM34r5nl2VqrkB5hd2dk |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgIMGF8RSDATnACSK1TZY2xwmYhhgTgjFxi_pI0C4dWjv4-zhduwFCSKDe0ihtHcf-0tifAU4jzqPY-JyyRNpfNyEuKa0DKgL0tkI7vnFNUWzC7_eD52d5XyaFZVW0e3UkWVjqT8luDvMo-hRa8KJTsQwrHD2WZcx_eBzOzw78mf1FIMAoOk9Wpsr8PMZXd7TAmPNj0W8UooXb6dT_98KbsFHCTNKe6cUWLOl0G-ol5CTlgs6wqarqULXtQNAN0-R9MsoRTRPUgbQktSbzWKNxSrALQehIemiKiY0yzXS-C0-d68Fll5b1FWiMICqnoZEysWw6UuhW4mm84tAxIW6htIfWxzVcG8ml78TC0cJNnKgVRdgXYSALTcj2oJaOU70PRLLY44nraSZaPDKtKLSF1Jl0Yp0wVIYGnFdiVq8zGg21IEy2clIoJ1XISYkGNKuZUOWSyhTzLNgLHM4bcFEJfHH7t9HOZjM4f7Kl1L4aDdtqPHlR06myn-iJg78NewJr3cFdT_Vu-reHsO7ZusBFbFoTavlkqo9gNX7LR9nkuFDPD9eG3L0 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB58IV6sT6zPHPSkwe0mzW6OopaKpRTU0lvYRyK9bMt2q3_fyb6qIoLI3rIh2Z1MMl-SmW8AzkPOw8h4nLJY2qObAKeU1j4VPlpboR3PtEyebMLr9_3RSA4-RfHn3u7VlWQR02BZmpLsehqb60-Bbw5zKdoXmnOkU7EMq9w60tv9-tOwvkfwirUYQQGjaEhZGTbzcxtfTdMCb9ZXpN_oRHMT1Gn8_-O3YLOEn-Sm0JdtWNLJDjRKKErKiT7DoirbQ1W2C343SOL3dJxhVwR1IynJrkntgzRJCFYhCClJD5doYr1PZzrbg5fO_fNtl5Z5F2iE4CqjgZEytiw7Uuh27Gp8osAxAW6ttIurUstwbSSXnhMJR4tW7ITtMMS6CA9ZYAK2DyvJJNEHQCSLXB63XM1Em4emHQY2wTqTTqRjhkrShMtK5Gpa0GuoBZGylZNCOalcTko04bgaFVVOtZlirgWBvsN5E64q4S9e_9baRTGadc-WavtuPLxRk_RVzefK_qIrDv_W7BmsD-46qvfQfzyCDdemC85d1o5hJUvn-gTWordsPEtPc039AO8u5aE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Handwritten+stenography+recognition+and+the+LION+dataset&rft.jtitle=International+journal+on+document+analysis+and+recognition&rft.au=Heil%2C+Raphaela&rft.au=Nauwerck%2C+Malin&rft.date=2025-03-01&rft.issn=1433-2833&rft.eissn=1433-2825&rft.volume=28&rft.issue=1&rft.spage=3&rft.epage=18&rft_id=info:doi/10.1007%2Fs10032-024-00479-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10032_024_00479_6 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-2833&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-2833&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-2833&client=summon |