Deep learning for genomic selection of aquatic animals
Genomic selection (GS) applied to the breeding of aquatic animals has been of great interest in recent years due to its higher accuracy and faster genetic progress than pedigree-based methods. The genetic analysis of complex traits in GS does not escape the current excitement around artificial intel...
Saved in:
| Published in: | Marine life science & technology Vol. 6; no. 4; pp. 631 - 650 |
|---|---|
| Main Authors: | , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Singapore
Springer Nature Singapore
01.11.2024
|
| Subjects: | |
| ISSN: | 2662-1746, 2662-1746 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Genomic selection (GS) applied to the breeding of aquatic animals has been of great interest in recent years due to its higher accuracy and faster genetic progress than pedigree-based methods. The genetic analysis of complex traits in GS does not escape the current excitement around artificial intelligence, including a renewed interest in deep learning (DL), such as deep neural networks (DNNs), convolutional neural networks (CNNs), and autoencoders. This article reviews the current status and potential of DL applications in phenotyping, genotyping and genomic estimated breeding value (GEBV) prediction of GS. It can be seen from this article that CNNs obtain phenotype data of aquatic animals efficiently, and without injury; DNNs as single nucleotide polymorphism (SNP) variant callers are critical to have shown higher accuracy in assessments of genotyping for the next-generation sequencing (NGS); autoencoder-based genotype imputation approaches are capable of highly accurate genotype imputation by encoding complex genotype relationships in easily portable inference models; sparse DNNs capture nonlinear relationships among genes to improve the accuracy of GEBV prediction for aquatic animals. Furthermore, future directions of DL in aquaculture are also discussed, which should expand the application to more aquaculture species. We believe that DL will be applied increasingly to molecular breeding of aquatic animals in the future. |
|---|---|
| AbstractList | Genomic selection (GS) applied to the breeding of aquatic animals has been of great interest in recent years due to its higher accuracy and faster genetic progress than pedigree-based methods. The genetic analysis of complex traits in GS does not escape the current excitement around artificial intelligence, including a renewed interest in deep learning (DL), such as deep neural networks (DNNs), convolutional neural networks (CNNs), and autoencoders. This article reviews the current status and potential of DL applications in phenotyping, genotyping and genomic estimated breeding value (GEBV) prediction of GS. It can be seen from this article that CNNs obtain phenotype data of aquatic animals efficiently, and without injury; DNNs as single nucleotide polymorphism (SNP) variant callers are critical to have shown higher accuracy in assessments of genotyping for the next-generation sequencing (NGS); autoencoder-based genotype imputation approaches are capable of highly accurate genotype imputation by encoding complex genotype relationships in easily portable inference models; sparse DNNs capture nonlinear relationships among genes to improve the accuracy of GEBV prediction for aquatic animals. Furthermore, future directions of DL in aquaculture are also discussed, which should expand the application to more aquaculture species. We believe that DL will be applied increasingly to molecular breeding of aquatic animals in the future.
The online version contains supplementary material available at 10.1007/s42995-024-00252-y. Genomic selection (GS) applied to the breeding of aquatic animals has been of great interest in recent years due to its higher accuracy and faster genetic progress than pedigree-based methods. The genetic analysis of complex traits in GS does not escape the current excitement around artificial intelligence, including a renewed interest in deep learning (DL), such as deep neural networks (DNNs), convolutional neural networks (CNNs), and autoencoders. This article reviews the current status and potential of DL applications in phenotyping, genotyping and genomic estimated breeding value (GEBV) prediction of GS. It can be seen from this article that CNNs obtain phenotype data of aquatic animals efficiently, and without injury; DNNs as single nucleotide polymorphism (SNP) variant callers are critical to have shown higher accuracy in assessments of genotyping for the next-generation sequencing (NGS); autoencoder-based genotype imputation approaches are capable of highly accurate genotype imputation by encoding complex genotype relationships in easily portable inference models; sparse DNNs capture nonlinear relationships among genes to improve the accuracy of GEBV prediction for aquatic animals. Furthermore, future directions of DL in aquaculture are also discussed, which should expand the application to more aquaculture species. We believe that DL will be applied increasingly to molecular breeding of aquatic animals in the future. Genomic selection (GS) applied to the breeding of aquatic animals has been of great interest in recent years due to its higher accuracy and faster genetic progress than pedigree-based methods. The genetic analysis of complex traits in GS does not escape the current excitement around artificial intelligence, including a renewed interest in deep learning (DL), such as deep neural networks (DNNs), convolutional neural networks (CNNs), and autoencoders. This article reviews the current status and potential of DL applications in phenotyping, genotyping and genomic estimated breeding value (GEBV) prediction of GS. It can be seen from this article that CNNs obtain phenotype data of aquatic animals efficiently, and without injury; DNNs as single nucleotide polymorphism (SNP) variant callers are critical to have shown higher accuracy in assessments of genotyping for the next-generation sequencing (NGS); autoencoder-based genotype imputation approaches are capable of highly accurate genotype imputation by encoding complex genotype relationships in easily portable inference models; sparse DNNs capture nonlinear relationships among genes to improve the accuracy of GEBV prediction for aquatic animals. Furthermore, future directions of DL in aquaculture are also discussed, which should expand the application to more aquaculture species. We believe that DL will be applied increasingly to molecular breeding of aquatic animals in the future.Genomic selection (GS) applied to the breeding of aquatic animals has been of great interest in recent years due to its higher accuracy and faster genetic progress than pedigree-based methods. The genetic analysis of complex traits in GS does not escape the current excitement around artificial intelligence, including a renewed interest in deep learning (DL), such as deep neural networks (DNNs), convolutional neural networks (CNNs), and autoencoders. This article reviews the current status and potential of DL applications in phenotyping, genotyping and genomic estimated breeding value (GEBV) prediction of GS. It can be seen from this article that CNNs obtain phenotype data of aquatic animals efficiently, and without injury; DNNs as single nucleotide polymorphism (SNP) variant callers are critical to have shown higher accuracy in assessments of genotyping for the next-generation sequencing (NGS); autoencoder-based genotype imputation approaches are capable of highly accurate genotype imputation by encoding complex genotype relationships in easily portable inference models; sparse DNNs capture nonlinear relationships among genes to improve the accuracy of GEBV prediction for aquatic animals. Furthermore, future directions of DL in aquaculture are also discussed, which should expand the application to more aquaculture species. We believe that DL will be applied increasingly to molecular breeding of aquatic animals in the future.The online version contains supplementary material available at 10.1007/s42995-024-00252-y.Supplementary InformationThe online version contains supplementary material available at 10.1007/s42995-024-00252-y. |
| Author | Wang, Bo Zeng, Qifan Sturrock, Marc Bao, Zhenmin Ni, Ping Hu, Jingjie Wang, Yangfan |
| Author_xml | – sequence: 1 givenname: Yangfan surname: Wang fullname: Wang, Yangfan organization: MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China – sequence: 2 givenname: Ping surname: Ni fullname: Ni, Ping organization: MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China – sequence: 3 givenname: Marc surname: Sturrock fullname: Sturrock, Marc organization: Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland – sequence: 4 givenname: Qifan surname: Zeng fullname: Zeng, Qifan organization: MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China – sequence: 5 givenname: Bo surname: Wang fullname: Wang, Bo email: wb@ouc.edu.cn organization: MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China – sequence: 6 givenname: Zhenmin surname: Bao fullname: Bao, Zhenmin organization: MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Southern Marine Science and Engineer Guangdong Laboratory – sequence: 7 givenname: Jingjie surname: Hu fullname: Hu, Jingjie email: hujingjie@ouc.edu.cn organization: MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Southern Marine Science and Engineer Guangdong Laboratory |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39620094$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kD1PwzAURS1UREvpH2BAGVkC_k4yovIpVWKB2XKS5ypVYrd2MvTf45JWQgyd3pN17pXfuUYT6ywgdEvwA8E4ewycFoVIMeUpxlTQdH-BZlRKmpKMy8mffYoWIWzwgSJECn6FpqyQFOOCz5B8BtgmLWhvG7tOjPPJGqzrmioJ0ELVN84mziR6N-g-PmrbdLoNN-jSxAGL45yj79eXr-V7uvp8-1g-rdKKU9anWgqGOZFMAOesZITkRjNOccEol4abnNdCmFxDQeoCMkYyUUJdUlPnFc9KNkf3Y-_Wu90AoVddEypoW23BDUExwnER6_IsondHdCg7qNXWx5_6vTrdGoF8BCrvQvBgVNX0-nBg73XTKoLVwawazapoVv2aVfsYpf-ip_azITaGQoTtGrzauMHbqOtc6gfQqol9 |
| CitedBy_id | crossref_primary_10_1016_j_aquaculture_2025_742260 crossref_primary_10_1016_j_aiia_2025_01_012 crossref_primary_10_1016_j_aquaculture_2024_741895 crossref_primary_10_1080_23308249_2025_2497273 crossref_primary_10_1016_j_aquaculture_2025_742576 crossref_primary_10_1016_j_aquaculture_2025_743079 |
| Cites_doi | 10.1016/j.aquaculture.2020.735421 10.1093/genetics/157.4.1819 10.1534/g3.119.300585 10.1146/annurev-genet-120116-024846 10.1017/S0021859618000436 10.1016/j.aquaculture.2021.737715 10.1016/j.cub.2019.02.034 10.5751/ES-05971-180430 10.1186/s12711-021-00629-y 10.1534/g3.119.400116 10.1038/nbt.4235 10.1186/s12859-019-3299-y 10.1038/ng.3656 10.3389/fgene.2018.00082 10.1016/j.aquaculture.2019.02.055 10.1186/1471-2164-15-478 10.1038/s41559-020-1166-x 10.1016/j.ygeno.2021.04.038 10.1534/genetics.118.301298 10.3389/fgene.2018.00391 10.1016/j.aqrep.2021.100660 10.1093/nar/gkac424 10.2983/035.038.0202 10.1016/j.heliyon.2022.e12006 10.1016/j.jfoodeng.2019.109698 10.1186/s12863-018-0631-x 10.1016/j.cell.2019.01.033 10.1534/genetics.107.084285 10.1007/s10126-019-09925-7 10.1186/s13073-019-0689-8 10.3390/md15060182 10.1890/12-0021.1 10.3354/meps11643 10.1038/s41598-019-43336-x 10.1016/j.aquaculture.2021.737171 10.1016/j.ajhg.2018.07.015 10.1177/1177932219899051 10.1186/1297-9686-45-34 10.1038/s41592-023-01799-x 10.1534/g3.119.400800 10.1016/j.aquaculture.2020.736323 10.1016/j.jmir.2019.09.005 10.1038/s41576-022-00532-2 10.1186/s12864-018-4493-4 10.1007/s00343-017-6038-0 10.1038/nature14539 10.1007/978-1-0716-2205-6_17 10.1016/j.scitotenv.2019.134794 10.1111/2041-210X.13282 10.3390/genes11080841 10.1017/S0016672310000157 10.1093/bib/bbaa177 10.1016/j.aqrep.2021.100661 10.1111/j.2041-210X.2012.00212.x 10.1038/s41588-019-0481-0 10.3389/fgene.2021.665920 10.1016/j.molp.2020.01.008 10.1038/nbt.1740 10.1016/j.aquaculture.2023.739682 10.3389/fgene.2020.00108 10.1038/nrg2986 10.1016/j.aquaculture.2019.734767 10.1109/TIP.2021.3051767 10.1109/TPAMI.2022.3215307 10.1016/j.aquaculture.2022.738844 10.1016/j.aquaculture.2022.738090 10.1002/cpmb.59 10.1038/s41576-019-0180-9 10.1111/j.1748-7692.2004.tb01171.x 10.1198/016214501753382273 10.1007/978-1-62703-447-0_6 10.1186/s12711-017-0293-6 10.1111/jbg.12516 10.1038/nrg3404 10.1126/science.1181369 10.1038/s41588-020-00756-0 10.1002/ece3.2789 10.3389/fncom.2022.1001803 10.1109/TVCG.2019.2930691 10.1534/g3.117.300499 10.1186/s12863-017-0507-5 10.1111/j.1748-7692.2000.tb00971.x 10.1186/s12711-017-0291-8 10.3390/genes13122247 10.1186/s12711-015-0097-5 10.3389/fgene.2018.00693 10.1186/s13059-019-1720-5 10.1016/j.neucom.2017.09.044 10.1016/j.aquaculture.2021.736515 10.3389/fmars.2023.1104436 10.1109/TNNLS.2020.2966319 10.1109/TCYB.2020.2973450 10.1007/s11032-018-0865-3 10.1007/s10126-018-9847-z 10.1186/s12711-022-00724-8 10.1145/3465055 10.3389/fgene.2016.00096 10.1038/s41467-020-18972-x 10.24272/j.issn.2095-8137.2021.141 10.1007/s10709-010-9478-4 10.1093/bioinformatics/bts330 10.1007/978-1-62703-447-0_13 10.1111/raq.12716 10.1016/j.aquaculture.2023.740051 10.3389/fgene.2020.594770 10.1038/s41588-022-01048-5 10.2527/jas.2012-6162 10.1093/jas/sky071 10.1038/s41592-023-01973-1 10.1016/j.humimm.2021.02.012 10.1159/000489758 10.1098/rstb.2007.2170 10.13031/trans.12684 10.1016/0893-6080(89)90020-8 10.3389/fmars.2023.1259722 10.1016/j.aquaculture.2017.07.012 10.1101/2023.03.05.531147 10.7554/eLife.75600 10.1016/j.plantsci.2015.07.010 10.3389/fgene.2016.00221 10.1534/g3.118.200998 10.3389/fmars.2022.844597 10.3389/fmars.2023.1145083 10.1038/s41467-019-09025-z 10.3168/jds.2007-0980 10.1534/g3.119.400493 10.1038/srep19244 10.1146/annurev-vision-093019-113212 10.1016/j.ygeno.2022.110426 10.1038/nmeth.2206 10.1016/j.aquaculture.2023.740376 10.2135/cropsci2008.10.0595 10.1093/bib/bbab326 10.1016/S0140-6736(95)92880-4 10.1101/gr.200535.115 10.3390/s22197603 10.1093/icesjms/fsz216 10.1016/j.media.2020.101952 10.1038/nmeth.3547 10.1109/JBHI.2019.2942774 10.3389/fmars.2022.1093623 10.1186/s12864-016-2756-5 10.3390/s20061693 10.1109/TIP.2023.3286263 10.3389/fgene.2019.00543 10.1111/age.12909 10.1186/s40317-015-0086-z 10.3389/fgene.2021.656137 10.1016/j.aquaculture.2020.735415 10.1038/d41586-020-03446-3 10.1007/978-3-030-59354-4_9 10.1146/annurev.genom.9.081307.164242 10.1109/ACCESS.2019.2962823 10.1534/g3.116.035220 10.1016/j.aquaculture.2022.738320 10.1111/eva.13560 10.1038/s43588-023-00548-6 10.7554/eLife.59780 10.1214/09-AOS729 10.1186/1471-2164-12-87 10.1007/978-3-319-46484-8_29 |
| ContentType | Journal Article |
| Copyright | Ocean University of China 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: Ocean University of China 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | AAYXX CITATION NPM 7X8 |
| DOI | 10.1007/s42995-024-00252-y |
| DatabaseName | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2662-1746 |
| EndPage | 650 |
| ExternalDocumentID | 39620094 10_1007_s42995_024_00252_y |
| Genre | Journal Article Review |
| GroupedDBID | 0R~ 406 AACDK AAHNG AAJBT AASML AATNV AAUYE ABAKF ABECU ABJNI ABMQK ABTEG ABTKH ACAOD ACDTI ACHSB ACOKC ACPIV ACZOJ ADKNI ADTPH ADYFF AEFQL AEMSY AESKC AFBBN AFQWF AGMZJ AGQEE AIGIU AILAN AJZVZ ALMA_UNASSIGNED_HOLDINGS AMXSW AMYLF BAPOH DPUIP EBLON EBS EJD FIGPU FNLPD GGCAI IAO IGS IKXTQ ITC IWAJR JZLTJ LLZTM NPVJJ NQJWS PT4 ROL RPM RSV SJYHP SNE SNPRN SOHCF SOJ SRMVM SSLCW UOJIU UTJUX ZMTXR AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION KOV TGP NPM 7X8 |
| ID | FETCH-LOGICAL-c423t-a653041635e443b3118fa342093246f4f84d55f8ae91d9e73175bedb2fd8c47b3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 6 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001321669900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2662-1746 |
| IngestDate | Thu Jul 10 22:01:15 EDT 2025 Mon Sep 29 02:31:56 EDT 2025 Sat Nov 29 02:26:54 EST 2025 Tue Nov 18 22:40:13 EST 2025 Fri Feb 21 02:38:27 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Deep learning Breeding Genomic selection Future direction Aquaculture Aquatic animals |
| Language | English |
| License | Ocean University of China 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c423t-a653041635e443b3118fa342093246f4f84d55f8ae91d9e73175bedb2fd8c47b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
| PMID | 39620094 |
| PQID | 3140920987 |
| PQPubID | 23479 |
| PageCount | 20 |
| ParticipantIDs | proquest_miscellaneous_3140920987 pubmed_primary_39620094 crossref_citationtrail_10_1007_s42995_024_00252_y crossref_primary_10_1007_s42995_024_00252_y springer_journals_10_1007_s42995_024_00252_y |
| PublicationCentury | 2000 |
| PublicationDate | 2024-11-01 |
| PublicationDateYYYYMMDD | 2024-11-01 |
| PublicationDate_xml | – month: 11 year: 2024 text: 2024-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Singapore |
| PublicationPlace_xml | – name: Singapore |
| PublicationTitle | Marine life science & technology |
| PublicationTitleAbbrev | Mar Life Sci Technol |
| PublicationTitleAlternate | Mar Life Sci Technol |
| PublicationYear | 2024 |
| Publisher | Springer Nature Singapore |
| Publisher_xml | – name: Springer Nature Singapore |
| References | Bhat, Ali, Salgotra, Mir, Dutta, Jadon, Tyagi, Mushtaq, Jain, Singh, Singh, Prabhu (CR13) 2016; 7 Dias, Evans, Chen, Chen, Loguercio, Chan, Torkamani (CR35) 2022; 11 Lieberman-Aiden, van Berkum, Williams, Imakaev, Ragoczy, Telling, Amit, Lajoie, Sabo, Dorschner, Sandstrom, Bernstein, Bender, Groudine, Gnirke, Stamatoyannopoulos, Mirny, Lander, Dekker (CR84) 2009; 326 Wan, Chen, Li, Li (CR136) 2020; 20 Nielsen, Paul, Albrechtsen, Song (CR100) 2011; 12 Correa, Bangera, Figueroa, Lhorente, Yáñez (CR22) 2017; 49 Ehret, Hochstuhl, Gianola, Thaller (CR40) 2015; 47 Yoshida, Lhorente, Correa, Soto, Salas, Yáñez (CR154) 2019; 9 Gianola, Wu, Manfredi, Simianer (CR48) 2010; 138 Read (CR113) 2021; 7 Derry, Krzywinski, Altman (CR33) 2023; 20 Monkman, Hyder, Kaiser, Vidal (CR95) 2019; 10 Montesinos-López, Martín-Vallejo, Crossa, Gianola, Hernández-Suárez, Montesinos-López, Juliana, Singh (CR96) 2019; 9 Wang, Teng, Liu, Zhao, Wang, Hu, Bao, Zeng (CR137) 2022; 9 Joshi, Skaarud, Alvarez, Moen, Ødegård (CR67) 2021; 53 Das, Forer, Schönherr, Sidore, Locke, Kwong, Vrieze, Chew, Levy, McGue, Schlessinger, Stambolian, Loh, Iacono, Swaroop, Scott, Cucca, Kronenberg, Boehnke, Abecasis (CR27) 2016; 48 Defeo, Castrejon, Ortega, Kuhn, Gutierrez, Castilla (CR31) 2013; 18 Chang, Ubina, Cheng, Lan, Chen, Huang (CR17) 2022; 22 Segebarth, Griebel, Stein, von Collenberg, Martin, Fiedler, Comeras, Sah, Schoeffler, Lüffe, Dürr, Gupta, Sasi, Lillesaar, Lange, Tasan, Singewald, Pape, Flath, Blum (CR117) 2020; 9 DeWeerdt (CR34) 2020; 588 Zeng, Zhao, Wang, Wang, Teng, Hu, Bao, Wang (CR158) 2022; 50 Lehner (CR80) 2013; 14 Montesinos-López, Martín-Vallejo, Crossa, Gianola, Hernández-Suárez, Montesinos-López, Juliana, Singh (CR97) 2019; 9 Popic, Rohlicek, Cunial, Hajirasouliha, Meleshko, Garimella, Maheshwari (CR111) 2023; 20 Guo, Lu, Zuo, Zhang, Chen (CR51) 2021; 30 Honari, Constantin, Rhodin, Salzmann, Fua (CR59) 2023; 45 Luo, Sedlazeck, Lam, Schatz (CR90) 2019; 10 Aslam, Carraro, Sonesson, Meuwissen, Tsigenopoulos, Rigos, Bargelloni, Tzokas (CR4) 2020; 11 Shi, Qian, Yu, Wang, Wang, Zeng, Du, Xiao (CR118) 2021; 22 Álvarez-Ellacuría, Palmer, Catalán, Lisani (CR2) 2020; 77 Zhou, Yuan, Zhang, Zhang, Zhou, Ji, Wu, Zhao, Zhang, Liu, Jiang, Wang, Fang (CR164) 2023; 574 Wang, Sun, Zeng, Chen, Hu, Li, Wang, Bao (CR145) 2018; 20 de Moraes, dos Santos, de Lima, Aguiar, Missiaggia, da Costa, Rezende, Gonçalves, Acosta, Kirst, Resende, Muñoz (CR30) 2018; 38 Kamilaris, Prenafeta-Boldú (CR69) 2018; 156 Luo, Yu, Bao, Li (CR91) 2024; 581 Gutierrez, Symonds, King, Steiner, Bean, Houston (CR53) 2020; 51 Wolc, Dekkers (CR148) 2022; 54 Kosugi, Momozawa, Liu, Terao, Kubo, Kamatani (CR75) 2019; 20 Li, Willer, Sanna, Abecasis (CR82) 2009; 10 Falconer, Hills, Naumann, Poon, Chavez, Sanders, Zhao, Hirst, Lansdorp (CR41) 2012; 9 Palaiokostas, Vesely, Kocour, Prchal, Pokorova, Piackova, Pojezdal, Houston (CR107) 2019; 10 Wang, Mi, Rosa, Chen, Lin, Wang, Bao (CR143) 2018; 96 Zannella, Mosca, Mariani, Franci, Folliero, Galdiero, Tiscar, Galdiero (CR156) 2017; 15 Hayes (CR55) 2013; 1019 Yang, Feng, Zhang, Zhang, Doonan, Batchelor, Xiong, Yan (CR152) 2020; 13 Palaiokostas, Ferraresso, Franch, Houston, Bargelloni (CR105) 2016; 6 Zhang (CR160) 2010; 38 Costanzo, Kuzmin, van Leeuwen, Mair, Moffat, Boone, Andrews (CR23) 2019; 177 Zeng, Feng, Deng, Jiang, Bai, Wang, Qu, Liu, Jiang, He, Wang, Xu (CR157) 2024; 578 Jepsen, Thorstad, Havn, Lucas (CR64) 2015; 3 de Almeida, Reiter, Pagani, Stark (CR28) 2022; 54 Xing, Wei, Chen, Wang, Lu, Wang, Zhang, Bao (CR150) 2017; 7 Subramanian, Verma, Kumar, Jere, Anamika (CR125) 2020; 14 Wallace, Rodgers-Melnick, Buckler (CR135) 2018; 52 Langtimm, Beck, Edwards, Fick-Child, Ackerman, Barton, Hartley (CR77) 2004; 20 Peñaloza, Manousaki, Franch, Tsakogiannis, Sonesson, Aslam, Allal, Bargelloni, Houston, Tsigenopoulos (CR108) 2021; 113 Hillen, Coscia, Vandeputte, Herten, Hellemans, Maroso, Vergnet, Allal, Maes, Volckaert (CR57) 2017; 479 Lv, Wang, Ni, Lin, Hou, Ding, Chang, Hu, Wang, Bao (CR93) 2022; 114 Bertolotti, Layer, Gundappa, Gallagher, Pehlivanoglu, Nome, Robledo, Kent, Røsæg, Holen, Mulugeta, Ashton, Hindar, Sægrov, Florø-Larsen, Erkinaro, Primmer, Bernatchez, Martin, Johnston (CR12) 2020; 11 Ortega, Celentano, Delgado, Defeo (CR103) 2016; 545 Palaiokostas, Kocour, Prchal, Houston (CR106) 2018; 9 Vallejo, Leeds, Gao, Parsons, Martin, Evenhuis, Fragomeni, Wiens, Palti (CR133) 2017; 49 Poplin, Chang, Alexander, Schwartz, Colthurst, Ku, Newburger, Dijamco, Nguyen, Afshar, Gross, Dorfman, McLean, DePristo (CR112) 2018; 36 Watanabe, Stringer, Frei, Umićević Mirkov, de Leeuw, Polderman, van der Sluis, Andreassen, Neale, Posthuma (CR147) 2019; 51 Yuan, Wang, Yan, Zhang, Xue, Chen, Lin, Zhang, Shen, Chen (CR155) 2021; 12 Gutierrez, Matika, Bean, Houston (CR52) 2018; 9 Tan, Zheng (CR128) 2020; 701 Soon, Ransangan (CR123) 2019; 38 Zhou, Troyanskaya (CR163) 2015; 12 Joshi, Almeida, da Costa, Skaarud, de Pádua, Knutsen, Moen, Alvarez (CR66) 2021; 537 Currie, Hawk, Rohren, Vial, Klein (CR25) 2019; 50 Griot, Allal, Phocas, Brard-Fudulea, Morvezen, Haffray, François, Morin, Bestin, Bruant, Cariou, Peyrou, Brunier, Vandeputte (CR49) 2021; 12 LeCun, Bengio, Hinton (CR78) 2015; 521 Wang, Xin, Zhu, Wang, Wang, Ni, Song, Liu, Wang, Bao, Hu (CR146) 2022; 9 Fan, Li (CR42) 2001; 96 Zhu, Ni, Xing, Wang, Huang, Hu, Hu, Wu, Bao (CR165) 2021; 545 Sato, Hosoya, Yoshikawa, Ohki, Kobayashi, Itou, Kikuchi (CR116) 2019; 9 Gao, Wang, Liu, Ma, Jin, Liu, Wang, Yan, Li (CR45) 2023; 10 Gianola, Okut, Weigel, Rosa (CR46) 2011; 12 Cai, Gao, J (CR16) 2019; 20 Cong, Yang, Zhang, Li, Guo, Huang, Kwong (CR21) 2023; 32 Khan, Khan, Ullah, Alam, Bangash, Suud (CR72) 2022; 16 Gundappa, Robledo, Hamilton, Houston, Prendergast, Macqueen (CR50) 2023 Zhao, Li, Zhang, Zhu, Liu, Lu, Ye (CR162) 2018; 61 Luo, Yu, Bao, Xiang, Li (CR92) 2022; 557 Song, Dong, Yan, Wang, Tian, Hu (CR121) 2023; 1 Bolger, Morrison, Vance, Lee, Farid (CR14) 2012; 3 Du, Stöck, Kneitz, Klopp, Woltering, Adolfi, Feron, Prokopov, Makunin, Kichigin, Schmidt, Fischer, Kuhl, Wuertz, Gessner, Kloas, Cabau, Iampietro, Parrinello, Tomlinson (CR39) 2020; 4 Ayub, Zhao, Meloy, Sullivan, Pfefferbaum, Adeli, Pohl (CR5) 2020; 12329 Barría, Peñaloza, Papadopoulou, Mahmuddin, Doeschl-Wilson, Benzie, Houston, Wiener (CR9) 2023; 16 Guzelbulut, Suzuki, Shimono (CR54) 2022; 8 Bellot, de Los, Pérez-Enciso (CR11) 2018; 210 Meuwissen, Hayes, Goddard (CR94) 2001; 157 Zhang, Li, Liu, Gu, Ye, Zhang, Li, Jiang, Wang, Fang (CR161) 2021; 534 Slatko, Gardner, Ausubel (CR120) 2018; 122 Baur, Denner, Wiestler, Albarqouni, Navab (CR10) 2020; 69 Kjetså, Ødegård, Meuwissen (CR74) 2020; 526 Nguyen, Premachandra, Kilian, Knibb (CR99) 2018; 19 Shi, Yuan, Yang, Du, Wang, Sheng, Wu, Xiao (CR119) 2018; 83 Jiang, Li, Dong, Soowannayan (CR65) 2023; 10 Ilnicka, Schneider (CR63) 2023; 3 Tarassenko (CR130) 1995; 346 Dou, Li, Fu, Jiao, Li, Li, Wang, Hu, Wang, Bao (CR38) 2016; 6 Ke, Wang, Bai, Zhao, Gong, Deng, Qu, Suo, Chen, Zhou, Xu (CR70) 2022; 553 Kitzman, Mackenzie, Adey, Hiatt, Patwardhan, Sudmant, Ng, Alkan, Qiu, Eichler, Shendure (CR73) 2011; 29 Chaudhari, Mithal, Polatkan, Ramanath (CR18) 2021; 12 Sun, Shi, Liu, Dong, Plant, Wang, Zhou (CR126) 2018; 275 He, Liu, Tao (CR56) 2020; 31 Gianola, van Kaam (CR47) 2008; 178 CR85 Xiao, Liang, Liu (CR149) 2022; 52 Wang, Ren, Zhao, Li, Kong, Xu, Hu, Hu, Bao (CR144) 2022; 549 Dai, Kong, Liu, Lu, Sui, Meng, Luan (CR26) 2020; 527 Li, Xu, Jiang, Xiao, Deng, Han (CR81) 2020; 8 Kelley, Snoek, Rinn (CR71) 2016; 26 Piepho (CR110) 2009; 49 Vallejo, Leeds, Fragomeni, Gao, Hernandez, Misztal, Welch, Wiens, Palti (CR132) 2016; 7 Hu, Chitnis, Monos, Dinh (CR62) 2021; 82 Tsairidou, Hamilton, Robledo, Bron, Houston (CR131) 2020; 10 Xu, Cheng, Guo, Han, Liu, Fang (CR151) 2021; 27 Hornik, Stinchcombe, White (CR61) 1989; 2 Tan, Ransangan (CR129) 2015; 235 Palaiokostas (CR104) 2021; 20 Forcada, Aguilar (CR44) 2000; 16 Ho, Urban, Mills (CR58) 2020; 21 Sargolzaei, Chesnais, Schenkel (CR115) 2014; 15 Novakovsky, Dexter, Libbrecht, Wasserman, Mostafavi (CR101) 2023; 24 Song, Dong, Yan, Wang, Tian, Sun, Dong, Zhu, Hu (CR122) 2022; 15 Wang, Chakraborty, Yu (CR138) 2022; 44 Kriegeskorte, Golan (CR76) 2019; 29 CR98 Wang, Yu, Li, Zhang, Xiang (CR140) 2017; 35 Clark, van der Werf (CR19) 2013; 1019 Horn, Meuwissen, Moghadam, Hillestad, Sonesson (CR60) 2020; 519 Okut, Wu, Rosa, Bauck, Woodward, Schnabel, Taylor, Gianola (CR102) 2013; 45 Liao, Zhou, Liu, Jin, Li, Liu, Fan, Zou, Mu, Shen, Liu, Xiao, Yuan, Liu (CR83) 2021; 42 Yoshida, Bangera, Carvalheiro, Correa, Figueroa, Lhorente, Yáñez (CR153) 2018; 8 de Los, Brunner, Hadlich, Rebl, Kühn, Wittenburg, Goldammer, Verleih (CR29) 2020; 11 Wang, Yang, Li, Liu (CR139) 2022; 13 Talukder, Barham, Li, Hu (CR127) 2021; 22 Balagourouchetty, Pragatheeswaran, Pottakkat, Ramkumar (CR6) 2020; 24 Dias, Torkamani (CR36) 2019; 11 VanRaden (CR134) 2008; 91 Stokowski, Sobiegraj, Kulczykowska (CR124) 2023; 10 Dong, Xiao, Wang, Wang (CR37) 2016; 17 Browning, Zhou, Browning (CR15) 2018; 103 Long, Gianola, Rosa, Weigel, Kranis, González-Recio (CR89) 2010; 92 Pérez-Rodríguez, Gianola, Weigel, Rosa, Crossa (CR109) 2013; 91 Zenger, Khatkar, Jones, Khalilisamani, Jerry, Raadsma (CR159) 2019; 9 Collard, Mackill (CR20) 2008; 363 Joshi, Skaaurd, Tola Alvarez (CR68) 2021; 138 Lee, Schatz (CR79) 2012; 28 Allal, Nguyen (CR1) 2022; 2467 Liu, Luo, Ma, Wang, Shu, Su, Qu (CR87) 2020; 11 Delomas, Hollenbeck, Matt, Thompson (CR32) 2023; 562 Wang, Yu, Yuan, Zhang, Huang, Li, Xiang (CR141) 2017; 18 Aslam, Carraro, Bestin, Cariou, Sonesson, Bruant, Haffray, Bargelloni, Meuwissen (CR3) 2018; 19 Cuevas, Montesinos-López, Juliana, Guzmán, Pérez-Rodríguez, González-Bucio, Burgueño, Montesinos-López, Crossa (CR24) 2019; 9 Barabaschi, Tondelli, Desiderio, Volante, Vaccino, Valè, Cattivelli (CR7) 2016; 242 Bargelloni, Tassiello, Babbucci, Ferraresso, Franch, Montanucci, Carnier (CR8) 2021; 20 Liu, Dong, Gu, Han, Zhang, Fang, Wang (CR86) 2019; 21 Rubinacci, Ribeiro, Hofmeister, Delaneau (CR114) 2021; 53 Liu (CR88) 2020; 266 Wang, Yu, Zhang, Zhang, Huang, Xiang, Li (CR142) 2019; 505 Fearnbach, Durban, Parsons, Cla GG Monkman (252_CR95) 2019; 10 N Kriegeskorte (252_CR76) 2019; 29 E Lieberman-Aiden (252_CR84) 2009; 326 Q Wang (252_CR141) 2017; 18 J Zhou (252_CR163) 2015; 12 A Barría (252_CR9) 2023; 16 H Lee (252_CR79) 2012; 28 S Kosugi (252_CR75) 2019; 20 TK Soon (252_CR123) 2019; 38 DT Bolger (252_CR14) 2012; 3 H Song (252_CR122) 2022; 15 HP Piepho (252_CR110) 2009; 49 D Gianola (252_CR48) 2010; 138 L Tarassenko (252_CR130) 1995; 346 R Cong (252_CR21) 2023; 32 Y Gao (252_CR45) 2023; 10 Y Wang (252_CR146) 2022; 9 K Watanabe (252_CR147) 2019; 51 RL Vallejo (252_CR132) 2016; 7 J Lv (252_CR93) 2022; 114 M Costanzo (252_CR23) 2019; 177 K Hornik (252_CR61) 1989; 2 OA Montesinos-López (252_CR97) 2019; 9 N Long (252_CR89) 2010; 92 K Du (252_CR39) 2020; 4 H Jiang (252_CR65) 2023; 10 MH Kjetså (252_CR74) 2020; 526 O Defeo (252_CR31) 2013; 18 JO Kitzman (252_CR73) 2011; 29 JA Bhat (252_CR13) 2016; 7 A Wolc (252_CR148) 2022; 54 CA Langtimm (252_CR77) 2004; 20 R Joshi (252_CR66) 2021; 537 A Álvarez-Ellacuría (252_CR2) 2020; 77 T Hu (252_CR62) 2021; 82 X Yuan (252_CR155) 2021; 12 AC Bertolotti (252_CR12) 2020; 11 AP Gutierrez (252_CR53) 2020; 51 S Das (252_CR27) 2016; 48 M Sargolzaei (252_CR115) 2014; 15 K Wang (252_CR139) 2022; 13 BL Browning (252_CR15) 2018; 103 S DeWeerdt (252_CR34) 2020; 588 H Song (252_CR121) 2023; 1 J Wang (252_CR138) 2022; 44 C-H Zhang (252_CR160) 2010; 38 GM Yoshida (252_CR153) 2018; 8 Y LeCun (252_CR78) 2015; 521 R Nielsen (252_CR100) 2011; 12 S Shi (252_CR118) 2021; 22 S Tsairidou (252_CR131) 2020; 10 Y Li (252_CR82) 2009; 10 JCA Read (252_CR113) 2021; 7 S Chaudhari (252_CR18) 2021; 12 H Okut (252_CR102) 2013; 45 H Fearnbach (252_CR43) 2012; 22 L Bargelloni (252_CR8) 2021; 20 S Honari (252_CR59) 2023; 45 R Joshi (252_CR68) 2021; 138 X Sun (252_CR126) 2018; 275 TA Delomas (252_CR32) 2023; 562 AP Gutierrez (252_CR52) 2018; 9 R Poplin (252_CR112) 2018; 36 R Luo (252_CR90) 2019; 10 M Stokowski (252_CR124) 2023; 10 L Ortega (252_CR103) 2016; 545 L Dong (252_CR37) 2016; 17 L Balagourouchetty (252_CR6) 2020; 24 P Dai (252_CR26) 2020; 527 T Liu (252_CR87) 2020; 11 KS Tan (252_CR129) 2015; 235 R Ayub (252_CR5) 2020; 12329 A Talukder (252_CR127) 2021; 22 ML Aslam (252_CR3) 2018; 19 D Gianola (252_CR47) 2008; 178 B Lehner (252_CR80) 2013; 14 W Zhang (252_CR161) 2021; 534 J Cuevas (252_CR24) 2019; 9 J Fan (252_CR42) 2001; 96 C Zannella (252_CR156) 2017; 15 MK Gundappa (252_CR50) 2023 S Shi (252_CR119) 2018; 83 A Khan (252_CR72) 2022; 16 Y Wang (252_CR145) 2018; 20 S Rubinacci (252_CR114) 2021; 53 L Wan (252_CR136) 2020; 20 L Cai (252_CR16) 2019; 20 A Kamilaris (252_CR69) 2018; 156 G Novakovsky (252_CR101) 2023; 24 Q Xing (252_CR150) 2017; 7 J Zeng (252_CR157) 2024; 578 H Wang (252_CR137) 2022; 9 Y Guo (252_CR51) 2021; 30 W Yang (252_CR152) 2020; 13 SS Ho (252_CR58) 2020; 21 GM Yoshida (252_CR154) 2019; 9 X Zhu (252_CR165) 2021; 545 BC Collard (252_CR20) 2008; 363 YH Liao (252_CR83) 2021; 42 Y Wang (252_CR143) 2018; 96 V Popic (252_CR111) 2023; 20 C Baur (252_CR10) 2020; 69 SA Clark (252_CR19) 2013; 1019 M Zhou (252_CR164) 2023; 574 I Subramanian (252_CR125) 2020; 14 DR Kelley (252_CR71) 2016; 26 D Segebarth (252_CR117) 2020; 9 R Dias (252_CR35) 2022; 11 G Liu (252_CR86) 2019; 21 JG Wallace (252_CR135) 2018; 52 G Currie (252_CR25) 2019; 50 A Ilnicka (252_CR63) 2023; 3 C Palaiokostas (252_CR106) 2018; 9 SS Horn (252_CR60) 2020; 519 C Peñaloza (252_CR108) 2021; 113 K Correa (252_CR22) 2017; 49 P Pérez-Rodríguez (252_CR109) 2013; 91 CC Chang (252_CR17) 2022; 22 K Tan (252_CR128) 2020; 701 P Bellot (252_CR11) 2018; 210 R Joshi (252_CR67) 2021; 53 OA Montesinos-López (252_CR96) 2019; 9 A Derry (252_CR33) 2023; 20 NH Nguyen (252_CR99) 2018; 19 Y Xiao (252_CR149) 2022; 52 BFX de Moraes (252_CR30) 2018; 38 D Gianola (252_CR46) 2011; 12 J Forcada (252_CR44) 2000; 16 L Xu (252_CR151) 2021; 27 PM VanRaden (252_CR134) 2008; 91 R-Pérez L de Los (252_CR29) 2020; 11 BP de Almeida (252_CR28) 2022; 54 B Hayes (252_CR55) 2013; 1019 252_CR85 C Palaiokostas (252_CR104) 2021; 20 Z Luo (252_CR92) 2022; 557 RL Vallejo (252_CR133) 2017; 49 F Allal (252_CR1) 2022; 2467 Q Ke (252_CR70) 2022; 553 JEJ Hillen (252_CR57) 2017; 479 KR Zenger (252_CR159) 2019; 9 A Ehret (252_CR40) 2015; 47 J Dou (252_CR38) 2016; 6 Z Luo (252_CR91) 2024; 581 Q Zeng (252_CR158) 2022; 50 C Palaiokostas (252_CR105) 2016; 6 R Griot (252_CR49) 2021; 12 C Palaiokostas (252_CR107) 2019; 10 F He (252_CR56) 2020; 31 BE Slatko (252_CR120) 2018; 122 E Falconer (252_CR41) 2012; 9 D Barabaschi (252_CR7) 2016; 242 N Jepsen (252_CR64) 2015; 3 Q Wang (252_CR140) 2017; 35 252_CR98 TH Meuwissen (252_CR94) 2001; 157 J Zhao (252_CR162) 2018; 61 ML Aslam (252_CR4) 2020; 11 Q Wang (252_CR142) 2019; 505 Y Wang (252_CR144) 2022; 549 M Sato (252_CR116) 2019; 9 R Dias (252_CR36) 2019; 11 C Guzelbulut (252_CR54) 2022; 8 Z Liu (252_CR88) 2020; 266 J Li (252_CR81) 2020; 8 |
| References_xml | – volume: 527 year: 2020 ident: CR26 article-title: Evaluation of the utility of genomic information to improve genetic evaluation of feed efficiency traits of the pacific white shrimp publication-title: Aquaculture doi: 10.1016/j.aquaculture.2020.735421 – volume: 157 start-page: 1819 year: 2001 end-page: 1829 ident: CR94 article-title: Prediction of total genetic value using genome-wide dense marker maps publication-title: Genetics doi: 10.1093/genetics/157.4.1819 – volume: 9 start-page: 1545 year: 2019 end-page: 1556 ident: CR97 article-title: New deep learning genomic-based prediction model for multiple traits with binary, ordinal, and continuous phenotypes publication-title: G3 doi: 10.1534/g3.119.300585 – volume: 52 start-page: 421 year: 2018 end-page: 444 ident: CR135 article-title: On the road to breeding 4.0: unraveling the good, the bad, and the boring of crop quantitative genomics publication-title: Annu Rev Genet doi: 10.1146/annurev-genet-120116-024846 – volume: 156 start-page: 312 year: 2018 end-page: 322 ident: CR69 article-title: A review of the use of convolutional neural networks in agriculture publication-title: J Agric Sci doi: 10.1017/S0021859618000436 – volume: 549 year: 2022 ident: CR144 article-title: Estimating genetic parameters of muscle imaging trait with 2b-RAD SNP markers in Zhikong scallop ( ) publication-title: Aquaculture doi: 10.1016/j.aquaculture.2021.737715 – volume: 29 start-page: R231 year: 2019 end-page: R236 ident: CR76 article-title: Neural network models and deep learning publication-title: Curr Biol doi: 10.1016/j.cub.2019.02.034 – volume: 18 start-page: 30 year: 2013 ident: CR31 article-title: Impacts of climate variability on Latin American small-scale fisheries publication-title: Ecol Soc doi: 10.5751/ES-05971-180430 – volume: 53 start-page: 37 year: 2021 ident: CR67 article-title: Bayesian genomic models boost prediction accuracy for survival to infection in Nile tilapia ( ) publication-title: Genet Sel Evol doi: 10.1186/s12711-021-00629-y – volume: 9 start-page: 2597 year: 2019 end-page: 2607 ident: CR154 article-title: Genome-wide association study and cost-efficient genomic predictions for growth and fillet yield in Nile tilapia ( ) publication-title: G3 doi: 10.1534/g3.119.400116 – volume: 36 start-page: 983 year: 2018 end-page: 987 ident: CR112 article-title: A universal SNP and small-indel variant caller using deep neural networks publication-title: Nat Biotechnol doi: 10.1038/nbt.4235 – volume: 20 start-page: 665 year: 2019 ident: CR16 article-title: DeepSV: accurate calling of genomic deletions from high-throughput sequencing data using deep convolutional neural network publication-title: BMC Bioinform doi: 10.1186/s12859-019-3299-y – volume: 48 start-page: 1284 year: 2016 end-page: 1287 ident: CR27 article-title: Next-generation genotype imputation service and methods publication-title: Nat Genet doi: 10.1038/ng.3656 – volume: 9 start-page: 82 year: 2018 ident: CR106 article-title: Accuracy of genomic evaluations of juvenile growth rate in common carp ( ) using genotyping by sequencing publication-title: Front Genet doi: 10.3389/fgene.2018.00082 – volume: 505 start-page: 212 year: 2019 end-page: 216 ident: CR142 article-title: Evaluation on the genomic selection in for the resistance against publication-title: Aquaculture doi: 10.1016/j.aquaculture.2019.02.055 – volume: 15 start-page: 478 year: 2014 ident: CR115 article-title: A new approach for efficient genotype imputation using information from relatives publication-title: BMC Genom doi: 10.1186/1471-2164-15-478 – volume: 4 start-page: 841 year: 2020 end-page: 852 ident: CR39 article-title: The sterlet sturgeon genome sequence and the mechanisms of segmental rediploidization publication-title: Nat Ecol Evol doi: 10.1038/s41559-020-1166-x – volume: 113 start-page: 2096 year: 2021 end-page: 2107 ident: CR108 article-title: Development and testing of a combined species SNP array for the European seabass ( ) and gilthead seabream ( ) publication-title: Genomics doi: 10.1016/j.ygeno.2021.04.038 – volume: 210 start-page: 809 year: 2018 end-page: 819 ident: CR11 article-title: Can deep learning improve genomic prediction of complex human traits? publication-title: Genetics doi: 10.1534/genetics.118.301298 – volume: 9 start-page: 391 year: 2018 ident: CR52 article-title: Genomic selection for growth traits in pacific oyster ( ): potential of low-density marker panels for breeding value prediction publication-title: Front Genet doi: 10.3389/fgene.2018.00391 – volume: 20 year: 2021 ident: CR104 article-title: Predicting for disease resistance in aquaculture species using machine learning models publication-title: Aquac Rep doi: 10.1016/j.aqrep.2021.100660 – volume: 50 start-page: 66 year: 2022 end-page: 74 ident: CR158 article-title: Aquaculture Molecular Breeding Platform (AMBP): a comprehensive web server for genotype imputation and genetic analysis in aquaculture publication-title: Nucleic Acids Res doi: 10.1093/nar/gkac424 – volume: 38 start-page: 223 year: 2019 end-page: 232 ident: CR123 article-title: Extrinsic factors and marine bivalve mass mortalities: an overview publication-title: J Shellfish Res doi: 10.2983/035.038.0202 – volume: 8 year: 2022 ident: CR54 article-title: Singular value decomposition-based gait characterization publication-title: Heliyon doi: 10.1016/j.heliyon.2022.e12006 – volume: 266 year: 2020 ident: CR88 article-title: Soft-shell shrimp recognition based on an improved AlexNet for quality evaluations publication-title: J Food Eng doi: 10.1016/j.jfoodeng.2019.109698 – volume: 19 start-page: 43 year: 2018 ident: CR3 article-title: Genetics of resistance to photobacteriosis in gilthead sea bream ( ) using 2b-RAD sequencing publication-title: BMC Genet doi: 10.1186/s12863-018-0631-x – volume: 177 start-page: 85 year: 2019 end-page: 100 ident: CR23 article-title: Global genetic networks and the genotype-to-phenotype relationship publication-title: Cell doi: 10.1016/j.cell.2019.01.033 – volume: 178 start-page: 2289 year: 2008 end-page: 2303 ident: CR47 article-title: Reproducing kernel Hilbert spaces regression methods for genomic assisted prediction of quantitative traits publication-title: Genetics doi: 10.1534/genetics.107.084285 – volume: 21 start-page: 806 year: 2019 end-page: 812 ident: CR86 article-title: Evaluation of genomic selection for seven economic traits in yellow drum ( ) publication-title: Mar Biotechnol doi: 10.1007/s10126-019-09925-7 – volume: 11 start-page: 70 year: 2019 ident: CR36 article-title: Artificial intelligence in clinical and genomic diagnostics publication-title: Genome Med doi: 10.1186/s13073-019-0689-8 – volume: 15 start-page: 182 year: 2017 ident: CR156 article-title: Microbial diseases of bivalve mollusks: infections, immunology and antimicrobial defense publication-title: Mar Drugs doi: 10.3390/md15060182 – ident: CR85 – volume: 22 start-page: 1689 year: 2012 end-page: 1700 ident: CR43 article-title: Photographic mark-recapture analysis of local dynamics within an open population of dolphins publication-title: Ecol Appl doi: 10.1890/12-0021.1 – volume: 545 start-page: 203 year: 2016 end-page: 213 ident: CR103 article-title: Climate change influences on abundance, individual size and body abnormalities in a sandy beach clam publication-title: Mar Ecol Prog Ser doi: 10.3354/meps11643 – volume: 9 start-page: 6904 year: 2019 ident: CR116 article-title: A highly flexible and repeatable genotyping method for aquaculture studies based on target amplicon sequencing using next-generation sequencing technology publication-title: Sci Rep doi: 10.1038/s41598-019-43336-x – volume: 545 year: 2021 ident: CR165 article-title: Genomic prediction of growth traits in scallops using convolutional neural networks publication-title: Aquaculture doi: 10.1016/j.aquaculture.2021.737171 – volume: 235 start-page: 1 year: 2015 end-page: 25 ident: CR129 article-title: Factors influencing the toxicity, detoxification and biotransformation of paralytic shellfish toxins publication-title: Rev Environ Contam Toxicol – volume: 103 start-page: 338 year: 2018 end-page: 348 ident: CR15 article-title: A one-penny imputed genome from next-generation reference panels publication-title: Am J Hum Genet doi: 10.1016/j.ajhg.2018.07.015 – volume: 14 start-page: 1177932219899051 year: 2020 ident: CR125 article-title: Multi-omics data integration, interpretation, and its application publication-title: Bioinform Biol Insights doi: 10.1177/1177932219899051 – volume: 45 start-page: 34 year: 2013 ident: CR102 article-title: Predicting expected progeny difference for marbling score in Angus cattle using artificial neural networks and Bayesian regression models publication-title: Genet Sel Evol doi: 10.1186/1297-9686-45-34 – volume: 20 start-page: 559 year: 2023 end-page: 568 ident: CR111 article-title: Cue: a deep-learning framework for structural variant discovery and genotyping publication-title: Nat Methods doi: 10.1038/s41592-023-01799-x – volume: 10 start-page: 581 year: 2020 end-page: 590 ident: CR131 article-title: Optimizing low-cost genotyping and imputation strategies for genomic selection in Atlantic salmon publication-title: G3-Genes Genom Genet doi: 10.1534/g3.119.400800 – volume: 534 year: 2021 ident: CR161 article-title: Evaluation for the effect of low-coverage sequencing on genomic selection in large yellow croaker publication-title: Aquaculture doi: 10.1016/j.aquaculture.2020.736323 – volume: 50 start-page: 477 year: 2019 end-page: 487 ident: CR25 article-title: Machine learning and deep learning in medical imaging: intelligent imaging publication-title: J Med Imaging Radiat Sci doi: 10.1016/j.jmir.2019.09.005 – volume: 24 start-page: 125 year: 2023 end-page: 137 ident: CR101 article-title: Obtaining genetics insights from deep learning via explainable artificial intelligence publication-title: Nat Rev Genet doi: 10.1038/s41576-022-00532-2 – volume: 19 start-page: 107 year: 2018 ident: CR99 article-title: Genomic prediction using DArT-Seq technology for yellowtail kingfish publication-title: BMC Genom doi: 10.1186/s12864-018-4493-4 – volume: 35 start-page: 1221 year: 2017 end-page: 1229 ident: CR140 article-title: Predictive ability of genomic selection models for breeding value estimation on growth traits of Pacific white shrimp publication-title: Chin J Oceanol Limnol doi: 10.1007/s00343-017-6038-0 – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: CR78 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 2467 start-page: 469 year: 2022 end-page: 491 ident: CR1 article-title: Genomic selection in aquaculture species publication-title: Methods Mol Biol doi: 10.1007/978-1-0716-2205-6_17 – volume: 701 year: 2020 ident: CR128 article-title: Ocean acidification and adaptive bivalve farming publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2019.134794 – volume: 10 start-page: 2045 year: 2019 end-page: 2056 ident: CR95 article-title: Using machine vision to estimate fish length from images using regional convolutional neural networks publication-title: Methods Ecol Evol doi: 10.1111/2041-210X.13282 – volume: 11 start-page: 841 year: 2020 ident: CR29 article-title: Comparative analysis of the transcriptome and distribution of putative SNPs in two rainbow trout ( ) breeding strains by using next-generation sequencing publication-title: Genes doi: 10.3390/genes11080841 – volume: 92 start-page: 209 year: 2010 end-page: 225 ident: CR89 article-title: Radial basis function regression methods for predicting quantitative traits using SNP markers publication-title: Genet Res doi: 10.1017/S0016672310000157 – volume: 22 start-page: bbaa177 year: 2021 ident: CR127 article-title: Interpretation of deep learning in genomics and epigenomics publication-title: Brief Bioinform doi: 10.1093/bib/bbaa177 – volume: 20 year: 2021 ident: CR8 article-title: Data imputation and machine learning improve association analysis and genomic prediction for resistance to fish photobacteriosis in the gilthead sea bream publication-title: Aquac Rep doi: 10.1016/j.aqrep.2021.100661 – volume: 3 start-page: 813 year: 2012 end-page: 822 ident: CR14 article-title: A computer-assisted system for photographic mark–recapture analysis publication-title: Methods Ecol Evol doi: 10.1111/j.2041-210X.2012.00212.x – volume: 51 start-page: 1339 year: 2019 end-page: 1348 ident: CR147 article-title: A global overview of pleiotropy and genetic architecture in complex traits publication-title: Nat Genet doi: 10.1038/s41588-019-0481-0 – volume: 12 year: 2021 ident: CR49 article-title: Optimization of genomic selection to improve disease resistance in two marine fishes, the European sea bass ( ) and the gilthead sea bream ( ) publication-title: Front Genet doi: 10.3389/fgene.2021.665920 – volume: 12 start-page: 87 year: 2011 ident: CR46 article-title: Predicting complex quantitative traits with Bayesian neural networks: a case study with Jersey cows and wheat publication-title: BMC Genom – volume: 13 start-page: 187 year: 2020 end-page: 214 ident: CR152 article-title: Crop phenomics and high-throughput phenotyping: past decades, current challenges, and future perspectives publication-title: Mol Plant doi: 10.1016/j.molp.2020.01.008 – volume: 29 start-page: 59 year: 2011 end-page: 63 ident: CR73 article-title: Haplotype-resolved genome sequencing of a Gujarati Indian individual publication-title: Nat Biotechnol doi: 10.1038/nbt.1740 – volume: 574 year: 2023 ident: CR164 article-title: The study of the genomic selection of white gill disease resistance in large yellow croaker ( ) publication-title: Aquaculture doi: 10.1016/j.aquaculture.2023.739682 – volume: 11 start-page: 108 year: 2020 ident: CR87 article-title: High-throughput sequencing with the preselection of markers is a good alternative to SNP chips for genomic prediction in broilers publication-title: Front Genet doi: 10.3389/fgene.2020.00108 – volume: 12 start-page: 443 year: 2011 end-page: 451 ident: CR100 article-title: Genotype and SNP calling from next-generation sequencing data publication-title: Nat Rev Genet doi: 10.1038/nrg2986 – volume: 519 year: 2020 ident: CR60 article-title: Accuracy of selection for omega-3 fatty acid content in Atlantic salmon fillets publication-title: Aquaculture doi: 10.1016/j.aquaculture.2019.734767 – volume: 30 start-page: 2669 year: 2021 end-page: 2681 ident: CR51 article-title: Deep likelihood network for image restoration with multiple degradation levels publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2021.3051767 – volume: 45 start-page: 6415 year: 2023 end-page: 6427 ident: CR59 article-title: Temporal representation learning on monocular videos for 3D human pose estimation publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2022.3215307 – volume: 562 year: 2023 ident: CR32 article-title: Evaluating cost-effective genotyping strategies for genomic selection in oysters publication-title: Aquaculture doi: 10.1016/j.aquaculture.2022.738844 – volume: 553 year: 2022 ident: CR70 article-title: GWAS and genomic prediction revealed potential for genetic improvement of large yellow croaker adapting to high plant protein diet publication-title: Aquaculture doi: 10.1016/j.aquaculture.2022.738090 – volume: 122 year: 2018 ident: CR120 article-title: Overview of next-generation sequencing technologies publication-title: Curr Protoc Mol Biol doi: 10.1002/cpmb.59 – volume: 21 start-page: 171 year: 2020 end-page: 189 ident: CR58 article-title: Structural variation in the sequencing era publication-title: Nat Rev Genet doi: 10.1038/s41576-019-0180-9 – volume: 20 start-page: 438 year: 2004 end-page: 463 ident: CR77 article-title: Survival estimates for Florida manatees from the photo-identification of individuals publication-title: Mar Mamm Sci doi: 10.1111/j.1748-7692.2004.tb01171.x – volume: 96 start-page: 1348 year: 2001 end-page: 1360 ident: CR42 article-title: Variable selection via nonconcave penalized likelihood and its oracle properties publication-title: J Am Stat Assoc doi: 10.1198/016214501753382273 – volume: 1019 start-page: 149 year: 2013 end-page: 169 ident: CR55 article-title: Overview of statistical methods for genome-wide association studies (GWAS) publication-title: Methods Mol Biol doi: 10.1007/978-1-62703-447-0_6 – volume: 49 start-page: 17 year: 2017 ident: CR133 article-title: Genomic selection models double the accuracy of predicted breeding values for bacterial cold water disease resistance compared to a traditional pedigree-based model in rainbow trout aquaculture publication-title: Genet Sel Evol doi: 10.1186/s12711-017-0293-6 – volume: 138 start-page: 338 year: 2021 end-page: 348 ident: CR68 article-title: Experimental validation of genetic selection for resistance against via different routes of infection in the commercial Nile tilapia breeding programme publication-title: J Anim Breed Genet doi: 10.1111/jbg.12516 – volume: 14 start-page: 168 year: 2013 end-page: 178 ident: CR80 article-title: Genotype to phenotype: lessons from model organisms for human genetics publication-title: Nat Rev Genet doi: 10.1038/nrg3404 – volume: 326 start-page: 289 issue: 5950 year: 2009 end-page: 293 ident: CR84 article-title: Comprehensive mapping of long-range interactions reveals folding principles of the human genome publication-title: Science doi: 10.1126/science.1181369 – volume: 53 start-page: 120 year: 2021 end-page: 126 ident: CR114 article-title: Efficient phasing and imputation of low-coverage sequencing data using large reference panels publication-title: Nat Genet doi: 10.1038/s41588-020-00756-0 – volume: 7 start-page: 1616 year: 2017 end-page: 1626 ident: CR150 article-title: Using a multiscale image processing method to characterize the periodic growth patterns on scallop shells publication-title: Ecol Evol doi: 10.1002/ece3.2789 – volume: 16 start-page: 1001803 year: 2022 ident: CR72 article-title: A computational classification method of breast cancer images using the VGGNet model publication-title: Front Comput Neurosci doi: 10.3389/fncom.2022.1001803 – volume: 27 start-page: 68 year: 2021 end-page: 82 ident: CR151 article-title: FlyFusion: realtime dynamic scene reconstruction using a flying depth camera publication-title: IEEE Trans vis Comput Graph doi: 10.1109/TVCG.2019.2930691 – volume: 8 start-page: 719 year: 2018 end-page: 726 ident: CR153 article-title: Genomic prediction accuracy for resistance against in farmed rainbow trout publication-title: G3 doi: 10.1534/g3.117.300499 – volume: 18 start-page: 45 year: 2017 ident: CR141 article-title: Effects of marker density and population structure on the genomic prediction accuracy for growth trait in Pacific white shrimp publication-title: BMC Genet doi: 10.1186/s12863-017-0507-5 – volume: 16 start-page: 767 year: 2000 end-page: 793 ident: CR44 article-title: Use of photographic identification in capture-recapture studies of mediterranean monk seals publication-title: Mar Mamm Sci doi: 10.1111/j.1748-7692.2000.tb00971.x – volume: 49 start-page: 15 year: 2017 ident: CR22 article-title: The use of genomic information increases the accuracy of breeding value predictions for sea louse ( ) resistance in Atlantic salmon ( ) publication-title: Genet Sel Evol doi: 10.1186/s12711-017-0291-8 – volume: 13 start-page: 2247 year: 2022 ident: CR139 article-title: Systematic evaluation of genomic prediction algorithms for genomic prediction and breeding of aquatic animals publication-title: Genes doi: 10.3390/genes13122247 – volume: 47 start-page: 22 year: 2015 ident: CR40 article-title: Application of neural networks with back-propagation to genome-enabled prediction of complex traits in Holstein-Friesian and German Fleckvieh cattle publication-title: Genet Sel Evol doi: 10.1186/s12711-015-0097-5 – volume: 9 start-page: 693 year: 2019 ident: CR159 article-title: Genomic selection in aquaculture: application, limitations and opportunities with special reference to marine shrimp and pearl oysters publication-title: Front Genet doi: 10.3389/fgene.2018.00693 – volume: 20 start-page: 117 year: 2019 ident: CR75 article-title: Comprehensive evaluation of structural variation detection algorithms for whole genome sequencing publication-title: Genome Biol doi: 10.1186/s13059-019-1720-5 – volume: 275 start-page: 897 year: 2018 end-page: 908 ident: CR126 article-title: Transferring deep knowledge for object recognition in Low-quality underwater videos publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.09.044 – volume: 537 year: 2021 ident: CR66 article-title: Genomic selection for resistance to Francisellosis in commercial Nile tilapia population: genetic and genomic parameters, correlation with growth rate and predictive ability publication-title: Aquaculture doi: 10.1016/j.aquaculture.2021.736515 – volume: 10 start-page: 1104436 year: 2023 ident: CR124 article-title: Potential role of climate change on the spread of salmonid skin condition: the biogeochemical hypothesis on ulcerative dermal necrosis on the Słupia River - Poland publication-title: Front Mar Sci doi: 10.3389/fmars.2023.1104436 – volume: 31 start-page: 5349 year: 2020 end-page: 5362 ident: CR56 article-title: Why ResNet works? Residuals generalize publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2020.2966319 – volume: 52 start-page: 287 year: 2022 end-page: 300 ident: CR149 article-title: A transfer learning-based multi-instance learning method with weak labels publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2020.2973450 – volume: 38 start-page: 115 year: 2018 ident: CR30 article-title: Genomic selection prediction models comparing sequence capture and SNP array genotyping methods publication-title: Mol Breed doi: 10.1007/s11032-018-0865-3 – volume: 20 start-page: 769 year: 2018 end-page: 779 ident: CR145 article-title: Predicting growth traits with genomic selection methods in Zhikong scallop ( ) publication-title: Mar Biotechnol doi: 10.1007/s10126-018-9847-z – volume: 54 start-page: 31 year: 2022 ident: CR148 article-title: Application of Bayesian genomic prediction methods to genome-wide association analyses publication-title: Genet Sel Evol doi: 10.1186/s12711-022-00724-8 – volume: 12 start-page: 1 year: 2021 end-page: 32 ident: CR18 article-title: An attentive survey of attention models publication-title: ACM Trans Intell Syst Technol doi: 10.1145/3465055 – volume: 7 start-page: 96 year: 2016 ident: CR132 article-title: Evaluation of genome-enabled selection for bacterial cold water disease resistance using progeny performance data in rainbow trout: insights on genotyping methods and genomic prediction models publication-title: Front Genet doi: 10.3389/fgene.2016.00096 – volume: 11 start-page: 5176 year: 2020 ident: CR12 article-title: The structural variation landscape in 492 Atlantic salmon genomes publication-title: Nat Commun doi: 10.1038/s41467-020-18972-x – volume: 42 start-page: 492 year: 2021 end-page: 501 ident: CR83 article-title: 3DPhenoFish: application for two- and three-dimensional fish morphological phenotype extraction from point cloud analysis publication-title: Zool Res doi: 10.24272/j.issn.2095-8137.2021.141 – volume: 138 start-page: 959 year: 2010 end-page: 977 ident: CR48 article-title: A non-parametric mixture model for genome-enabled prediction of genetic value for a quantitative trait publication-title: Genetica doi: 10.1007/s10709-010-9478-4 – volume: 28 start-page: 2097 year: 2012 end-page: 2105 ident: CR79 article-title: Genomic dark matter: the reliability of short read mapping illustrated by the genome mappability score publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts330 – volume: 1019 start-page: 321 year: 2013 end-page: 330 ident: CR19 article-title: Genomic best linear unbiased prediction (gBLUP) for the estimation of genomic breeding values publication-title: Methods Mol Biol doi: 10.1007/978-1-62703-447-0_13 – volume: 15 start-page: 274 year: 2022 end-page: 291 ident: CR122 article-title: Genomic selection and its research progress in aquaculture breeding publication-title: Rev Aquac doi: 10.1111/raq.12716 – volume: 578 year: 2024 ident: CR157 article-title: Deep learning to obtain high-throughput morphological phenotypes and its genetic correlation with swimming performance in juvenile large yellow croaker publication-title: Aquaculture doi: 10.1016/j.aquaculture.2023.740051 – volume: 11 year: 2020 ident: CR4 article-title: Genetic variation, GWAS and accuracy of prediction for host resistance to in farmed gilthead sea bream ( ) publication-title: Front Genet doi: 10.3389/fgene.2020.594770 – volume: 54 start-page: 613 year: 2022 end-page: 624 ident: CR28 article-title: DeepSTARR predicts enhancer activity from DNA sequence and enables the de novo design of synthetic enhancers publication-title: Nat Genet doi: 10.1038/s41588-022-01048-5 – volume: 91 start-page: 3522 year: 2013 end-page: 3531 ident: CR109 article-title: Technical note: an R package for fitting Bayesian regularized neural networks with applications in animal breeding publication-title: J Anim Sci doi: 10.2527/jas.2012-6162 – volume: 96 start-page: 2016 year: 2018 end-page: 2026 ident: CR143 article-title: Technical note: an R package for fitting sparse neural networks with application in animal breeding publication-title: J Anim Sci doi: 10.1093/jas/sky071 – volume: 20 start-page: 1269 year: 2023 end-page: 1270 ident: CR33 article-title: Convolutional neural networks publication-title: Nat Methods doi: 10.1038/s41592-023-01973-1 – volume: 82 start-page: 801 year: 2021 end-page: 811 ident: CR62 article-title: Next-generation sequencing technologies: an overview publication-title: Hum Immunol doi: 10.1016/j.humimm.2021.02.012 – volume: 83 start-page: 107 year: 2018 end-page: 116 ident: CR119 article-title: Comprehensive assessment of genotype imputation performance publication-title: Hum Hered doi: 10.1159/000489758 – volume: 363 start-page: 557 year: 2008 end-page: 572 ident: CR20 article-title: Marker-assisted selection: an approach for precision plant breeding in the twenty-first century publication-title: Philos Trans R Soc Lond B Biol Sci doi: 10.1098/rstb.2007.2170 – volume: 61 start-page: 699 year: 2018 end-page: 710 ident: CR162 article-title: Semi-supervised learning-based live fish identification in aquaculture using modified deep convolutional generative adversarial networks publication-title: T ASABE doi: 10.13031/trans.12684 – volume: 2 start-page: 359 year: 1989 end-page: 366 ident: CR61 article-title: Multilayer feedforward networks are universal approximators publication-title: Neural Netw doi: 10.1016/0893-6080(89)90020-8 – volume: 10 start-page: 1259722 year: 2023 ident: CR65 article-title: Editorial: the transmission and prevention of infectious diseases in aquatic animals publication-title: Front Mar Sci doi: 10.3389/fmars.2023.1259722 – volume: 479 start-page: 742 year: 2017 end-page: 749 ident: CR57 article-title: Estimates of genetic variability and inbreeding in experimentally selected populations of European sea bass publication-title: Aquaculture doi: 10.1016/j.aquaculture.2017.07.012 – year: 2023 ident: CR50 article-title: High performance imputation of structural and single nucleotide variants in Atlantic salmon using low-coverage whole genome sequencing publication-title: bioRxiv doi: 10.1101/2023.03.05.531147 – volume: 11 start-page: e75600 year: 2022 ident: CR35 article-title: Rapid, reference-free human genotype imputation with denoising autoencoders publication-title: Elife doi: 10.7554/eLife.75600 – volume: 44 start-page: 4419 year: 2022 end-page: 4431 ident: CR138 article-title: Transformer for 3D point clouds publication-title: IEEE Trans Pattern Anal Mach Intell – volume: 242 start-page: 3 year: 2016 end-page: 13 ident: CR7 article-title: Next generation breeding publication-title: Plant Sci doi: 10.1016/j.plantsci.2015.07.010 – volume: 7 start-page: 221 year: 2016 ident: CR13 article-title: Genomic selection in the era of next generation sequencing for complex traits in plant breeding publication-title: Front Genet doi: 10.3389/fgene.2016.00221 – volume: 9 start-page: 601 year: 2019 end-page: 618 ident: CR96 article-title: A benchmarking between deep learning, support vector machine and Bayesian threshold best linear unbiased prediction for predicting ordinal traits in plant breeding publication-title: G3 doi: 10.1534/g3.118.200998 – volume: 9 year: 2022 ident: CR137 article-title: Selection signatures of pacific white shrimp revealed by whole-genome resequencing analysis publication-title: Front Mar Sci doi: 10.3389/fmars.2022.844597 – volume: 10 start-page: 1145083 year: 2023 ident: CR45 article-title: Epidemiology of turbot bacterial diseases in China between October 2016 and December 2019 publication-title: Front Mar Sci doi: 10.3389/fmars.2023.1145083 – volume: 10 start-page: 998 year: 2019 ident: CR90 article-title: A multi-task convolutional deep neural network for variant calling in single molecule sequencing publication-title: Nat Commun doi: 10.1038/s41467-019-09025-z – volume: 91 start-page: 4414 year: 2008 end-page: 4423 ident: CR134 article-title: Efficient methods to compute genomic predictions publication-title: J Dairy Sci doi: 10.3168/jds.2007-0980 – volume: 9 start-page: 2913 year: 2019 end-page: 2924 ident: CR24 article-title: Deep kernel for genomic and near infrared predictions in multi-environment breeding trials publication-title: G3-Genes Genom Genet doi: 10.1534/g3.119.400493 – volume: 6 start-page: 19244 year: 2016 ident: CR38 article-title: Evaluation of the 2b-RAD method for genomic selection in scallop breeding publication-title: Sci Rep doi: 10.1038/srep19244 – volume: 7 start-page: 389 year: 2021 end-page: 415 ident: CR113 article-title: Binocular vision and stereopsis across the animal kingdom publication-title: Annu Rev vis Sci doi: 10.1146/annurev-vision-093019-113212 – volume: 114 year: 2022 ident: CR93 article-title: Development of a high-throughput SNP array for sea cucumber ( ) and its application in genomic selection with MCP regularized deep neural networks publication-title: Genomics doi: 10.1016/j.ygeno.2022.110426 – volume: 9 start-page: 1107 year: 2012 end-page: 1112 ident: CR41 article-title: DNA template strand sequencing of single-cells maps genomic rearrangements at high resolution publication-title: Nat Methods doi: 10.1038/nmeth.2206 – volume: 581 year: 2024 ident: CR91 article-title: Evaluation of machine learning method in genomic selection for growth traits of Pacific white shrimp publication-title: Aquaculture doi: 10.1016/j.aquaculture.2023.740376 – volume: 49 start-page: 1165 year: 2009 end-page: 1176 ident: CR110 article-title: Ridge regression and extensions for genomewide selection in maize publication-title: Crop Sci doi: 10.2135/cropsci2008.10.0595 – volume: 22 start-page: bbab326 year: 2021 ident: CR118 article-title: RefRGim: an intelligent reference panel reconstruction method for genotype imputation with convolutional neural networks publication-title: Brief Bioinform doi: 10.1093/bib/bbab326 – volume: 346 start-page: 1712 year: 1995 ident: CR130 article-title: Neural networks publication-title: Lancet doi: 10.1016/S0140-6736(95)92880-4 – volume: 26 start-page: 990 year: 2016 end-page: 999 ident: CR71 article-title: Basset: learning the regulatory code of the accessible genome with deep convolutional neural networks publication-title: Genome Res doi: 10.1101/gr.200535.115 – volume: 22 start-page: 7603 year: 2022 ident: CR17 article-title: A two-mode underwater smart sensor object for precision aquaculture based on AIoT technology publication-title: Sensors doi: 10.3390/s22197603 – volume: 77 start-page: 1330 year: 2020 end-page: 1339 ident: CR2 article-title: Image-based, unsupervised estimation of fish size from commercial landings using deep learning publication-title: ICES J Mar Sci doi: 10.1093/icesjms/fsz216 – volume: 69 year: 2020 ident: CR10 article-title: Autoencoders for unsupervised anomaly segmentation in brain MR images: a comparative study publication-title: Med Image Anal doi: 10.1016/j.media.2020.101952 – volume: 12 start-page: 931 year: 2015 end-page: 934 ident: CR163 article-title: Predicting effects of noncoding variants with deep learning-based sequence model publication-title: Nat Methods doi: 10.1038/nmeth.3547 – volume: 24 start-page: 1686 year: 2020 end-page: 1694 ident: CR6 article-title: GoogLeNet-based ensemble FCNet classifier for focal liver lesion diagnosis publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2019.2942774 – ident: CR98 – volume: 9 start-page: 1093623 year: 2022 ident: CR146 article-title: A new non-invasive tagging method for leopard coral grouper ( ) using deep convolutional neural networks with PDE-based image decomposition publication-title: Front Mar Sci doi: 10.3389/fmars.2022.1093623 – volume: 17 start-page: 460 year: 2016 ident: CR37 article-title: Comparative analysis of the GBLUP, emBayesB, and GWAS algorithms to predict genetic values in large yellow croaker ( ) publication-title: BMC Genom doi: 10.1186/s12864-016-2756-5 – volume: 20 start-page: 1693 year: 2020 ident: CR136 article-title: Rolling-element bearing fault diagnosis using improved LeNet-5 network publication-title: Sensors doi: 10.3390/s20061693 – volume: 1 year: 2023 ident: CR121 article-title: Using Bayesian threshold model and machine learning method to improve the accuracy of genomic prediction for ordered categorical traits in fish publication-title: Agric Commun – volume: 32 start-page: 4472 year: 2023 end-page: 4485 ident: CR21 article-title: PUGAN: physical model-guided underwater image enhancement using GAN with dual-discriminators publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2023.3286263 – volume: 10 start-page: 543 year: 2019 ident: CR107 article-title: Optimizing genomic prediction of host resistance to Koi Herpesvirus disease in carp publication-title: Front Genet doi: 10.3389/fgene.2019.00543 – volume: 51 start-page: 249 year: 2020 end-page: 257 ident: CR53 article-title: Potential of genomic selection for improvement of resistance to ostreid herpesvirus in pacific oyster ( ) publication-title: Anim Genet doi: 10.1111/age.12909 – volume: 3 start-page: 49 year: 2015 ident: CR64 article-title: The use of external electronic tags on fish: an evaluation of tag retention and tagging effects publication-title: Anim Biotelem doi: 10.1186/s40317-015-0086-z – volume: 12 start-page: 656137 year: 2021 ident: CR155 article-title: Single-molecule real-time and Illumina-based RNA sequencing data identified vernalization-responsive candidate genes in faba bean ( L.) publication-title: Front Genet doi: 10.3389/fgene.2021.656137 – volume: 526 year: 2020 ident: CR74 article-title: Accuracy of genomic prediction of host resistance to salmon lice in Atlantic salmon ( ) using imputed high-density genotypes publication-title: Aquaculture doi: 10.1016/j.aquaculture.2020.735415 – volume: 588 start-page: S60 year: 2020 end-page: S62 ident: CR34 article-title: Can aquaculture overcome its sustainability challenges? publication-title: Nature doi: 10.1038/d41586-020-03446-3 – volume: 12329 start-page: 91 year: 2020 end-page: 100 ident: CR5 article-title: Inpainting cropped diffusion MRI using deep generative models publication-title: Predict Intell Med doi: 10.1007/978-3-030-59354-4_9 – volume: 10 start-page: 387 year: 2009 end-page: 406 ident: CR82 article-title: Genotype imputation publication-title: Annu Rev Genom Hum Genet doi: 10.1146/annurev.genom.9.081307.164242 – volume: 8 start-page: 18832 year: 2020 end-page: 18840 ident: CR81 article-title: Detection and analysis of behavior trajectory for sea cucumbers based on deep learning publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2962823 – volume: 6 start-page: 3693 year: 2016 end-page: 3700 ident: CR105 article-title: Genomic prediction of resistance to pasteurellosis in gilthead sea bream ( ) using 2b-RAD sequencing publication-title: G3 doi: 10.1534/g3.116.035220 – volume: 557 year: 2022 ident: CR92 article-title: Evaluation of genomic selection for high salinity tolerance traits in Pacific white shrimp publication-title: Aquaculture doi: 10.1016/j.aquaculture.2022.738320 – volume: 16 start-page: 1220 year: 2023 end-page: 1235 ident: CR9 article-title: Genetic differentiation following recent domestication events: a study of farmed Nile tilapia ( ) populations publication-title: Evol Appl doi: 10.1111/eva.13560 – volume: 3 start-page: 922 year: 2023 end-page: 933 ident: CR63 article-title: Designing molecules with autoencoder networks publication-title: Nat Comput Sci doi: 10.1038/s43588-023-00548-6 – volume: 9 start-page: e59780 year: 2020 ident: CR117 article-title: On the objectivity, reliability, and validity of deep learning enabled bioimage analyses publication-title: Elife doi: 10.7554/eLife.59780 – volume: 38 start-page: 894 year: 2010 end-page: 942 ident: CR160 article-title: Nearly unbiased variable selection under minimax concave penalty publication-title: Ann Stat doi: 10.1214/09-AOS729 – volume: 553 year: 2022 ident: 252_CR70 publication-title: Aquaculture doi: 10.1016/j.aquaculture.2022.738090 – volume: 242 start-page: 3 year: 2016 ident: 252_CR7 publication-title: Plant Sci doi: 10.1016/j.plantsci.2015.07.010 – volume: 178 start-page: 2289 year: 2008 ident: 252_CR47 publication-title: Genetics doi: 10.1534/genetics.107.084285 – volume: 537 year: 2021 ident: 252_CR66 publication-title: Aquaculture doi: 10.1016/j.aquaculture.2021.736515 – volume: 9 start-page: e59780 year: 2020 ident: 252_CR117 publication-title: Elife doi: 10.7554/eLife.59780 – volume: 588 start-page: S60 year: 2020 ident: 252_CR34 publication-title: Nature doi: 10.1038/d41586-020-03446-3 – volume: 9 start-page: 1545 year: 2019 ident: 252_CR97 publication-title: G3 doi: 10.1534/g3.119.300585 – volume: 52 start-page: 287 year: 2022 ident: 252_CR149 publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2020.2973450 – volume: 545 year: 2021 ident: 252_CR165 publication-title: Aquaculture doi: 10.1016/j.aquaculture.2021.737171 – volume: 12 start-page: 443 year: 2011 ident: 252_CR100 publication-title: Nat Rev Genet doi: 10.1038/nrg2986 – volume: 53 start-page: 120 year: 2021 ident: 252_CR114 publication-title: Nat Genet doi: 10.1038/s41588-020-00756-0 – volume: 9 start-page: 2913 year: 2019 ident: 252_CR24 publication-title: G3-Genes Genom Genet doi: 10.1534/g3.119.400493 – volume: 48 start-page: 1284 year: 2016 ident: 252_CR27 publication-title: Nat Genet doi: 10.1038/ng.3656 – volume: 11 start-page: e75600 year: 2022 ident: 252_CR35 publication-title: Elife doi: 10.7554/eLife.75600 – volume: 3 start-page: 813 year: 2012 ident: 252_CR14 publication-title: Methods Ecol Evol doi: 10.1111/j.2041-210X.2012.00212.x – volume: 53 start-page: 37 year: 2021 ident: 252_CR67 publication-title: Genet Sel Evol doi: 10.1186/s12711-021-00629-y – volume: 12 start-page: 1 year: 2021 ident: 252_CR18 publication-title: ACM Trans Intell Syst Technol doi: 10.1145/3465055 – volume: 12 start-page: 87 year: 2011 ident: 252_CR46 publication-title: BMC Genom doi: 10.1186/1471-2164-12-87 – volume: 28 start-page: 2097 year: 2012 ident: 252_CR79 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts330 – volume: 27 start-page: 68 year: 2021 ident: 252_CR151 publication-title: IEEE Trans vis Comput Graph doi: 10.1109/TVCG.2019.2930691 – volume: 20 year: 2021 ident: 252_CR8 publication-title: Aquac Rep doi: 10.1016/j.aqrep.2021.100661 – volume: 1019 start-page: 149 year: 2013 ident: 252_CR55 publication-title: Methods Mol Biol doi: 10.1007/978-1-62703-447-0_6 – volume: 38 start-page: 115 year: 2018 ident: 252_CR30 publication-title: Mol Breed doi: 10.1007/s11032-018-0865-3 – volume: 15 start-page: 478 year: 2014 ident: 252_CR115 publication-title: BMC Genom doi: 10.1186/1471-2164-15-478 – volume: 138 start-page: 959 year: 2010 ident: 252_CR48 publication-title: Genetica doi: 10.1007/s10709-010-9478-4 – volume: 44 start-page: 4419 year: 2022 ident: 252_CR138 publication-title: IEEE Trans Pattern Anal Mach Intell – volume: 20 start-page: 117 year: 2019 ident: 252_CR75 publication-title: Genome Biol doi: 10.1186/s13059-019-1720-5 – volume: 20 year: 2021 ident: 252_CR104 publication-title: Aquac Rep doi: 10.1016/j.aqrep.2021.100660 – volume: 10 start-page: 581 year: 2020 ident: 252_CR131 publication-title: G3-Genes Genom Genet doi: 10.1534/g3.119.400800 – volume: 10 start-page: 543 year: 2019 ident: 252_CR107 publication-title: Front Genet doi: 10.3389/fgene.2019.00543 – volume: 9 start-page: 1107 year: 2012 ident: 252_CR41 publication-title: Nat Methods doi: 10.1038/nmeth.2206 – volume: 9 start-page: 1093623 year: 2022 ident: 252_CR146 publication-title: Front Mar Sci doi: 10.3389/fmars.2022.1093623 – volume: 26 start-page: 990 year: 2016 ident: 252_CR71 publication-title: Genome Res doi: 10.1101/gr.200535.115 – volume: 30 start-page: 2669 year: 2021 ident: 252_CR51 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2021.3051767 – volume: 10 start-page: 1145083 year: 2023 ident: 252_CR45 publication-title: Front Mar Sci doi: 10.3389/fmars.2023.1145083 – volume: 8 year: 2022 ident: 252_CR54 publication-title: Heliyon doi: 10.1016/j.heliyon.2022.e12006 – volume: 3 start-page: 49 year: 2015 ident: 252_CR64 publication-title: Anim Biotelem doi: 10.1186/s40317-015-0086-z – volume: 45 start-page: 34 year: 2013 ident: 252_CR102 publication-title: Genet Sel Evol doi: 10.1186/1297-9686-45-34 – volume: 52 start-page: 421 year: 2018 ident: 252_CR135 publication-title: Annu Rev Genet doi: 10.1146/annurev-genet-120116-024846 – volume: 363 start-page: 557 year: 2008 ident: 252_CR20 publication-title: Philos Trans R Soc Lond B Biol Sci doi: 10.1098/rstb.2007.2170 – volume: 114 year: 2022 ident: 252_CR93 publication-title: Genomics doi: 10.1016/j.ygeno.2022.110426 – volume: 51 start-page: 249 year: 2020 ident: 252_CR53 publication-title: Anim Genet doi: 10.1111/age.12909 – volume: 557 year: 2022 ident: 252_CR92 publication-title: Aquaculture doi: 10.1016/j.aquaculture.2022.738320 – volume: 9 start-page: 82 year: 2018 ident: 252_CR106 publication-title: Front Genet doi: 10.3389/fgene.2018.00082 – volume: 7 start-page: 1616 year: 2017 ident: 252_CR150 publication-title: Ecol Evol doi: 10.1002/ece3.2789 – volume: 156 start-page: 312 year: 2018 ident: 252_CR69 publication-title: J Agric Sci doi: 10.1017/S0021859618000436 – volume: 235 start-page: 1 year: 2015 ident: 252_CR129 publication-title: Rev Environ Contam Toxicol – ident: 252_CR98 doi: 10.1007/978-3-319-46484-8_29 – volume: 9 start-page: 693 year: 2019 ident: 252_CR159 publication-title: Front Genet doi: 10.3389/fgene.2018.00693 – volume: 526 year: 2020 ident: 252_CR74 publication-title: Aquaculture doi: 10.1016/j.aquaculture.2020.735415 – volume: 54 start-page: 31 year: 2022 ident: 252_CR148 publication-title: Genet Sel Evol doi: 10.1186/s12711-022-00724-8 – volume: 266 year: 2020 ident: 252_CR88 publication-title: J Food Eng doi: 10.1016/j.jfoodeng.2019.109698 – volume: 36 start-page: 983 year: 2018 ident: 252_CR112 publication-title: Nat Biotechnol doi: 10.1038/nbt.4235 – volume: 50 start-page: 66 year: 2022 ident: 252_CR158 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkac424 – volume: 7 start-page: 221 year: 2016 ident: 252_CR13 publication-title: Front Genet doi: 10.3389/fgene.2016.00221 – volume: 20 start-page: 1269 year: 2023 ident: 252_CR33 publication-title: Nat Methods doi: 10.1038/s41592-023-01973-1 – volume: 22 start-page: 7603 year: 2022 ident: 252_CR17 publication-title: Sensors doi: 10.3390/s22197603 – volume: 10 start-page: 1259722 year: 2023 ident: 252_CR65 publication-title: Front Mar Sci doi: 10.3389/fmars.2023.1259722 – volume: 22 start-page: 1689 year: 2012 ident: 252_CR43 publication-title: Ecol Appl doi: 10.1890/12-0021.1 – volume: 21 start-page: 171 year: 2020 ident: 252_CR58 publication-title: Nat Rev Genet doi: 10.1038/s41576-019-0180-9 – volume: 19 start-page: 43 year: 2018 ident: 252_CR3 publication-title: BMC Genet doi: 10.1186/s12863-018-0631-x – volume: 534 year: 2021 ident: 252_CR161 publication-title: Aquaculture doi: 10.1016/j.aquaculture.2020.736323 – volume: 54 start-page: 613 year: 2022 ident: 252_CR28 publication-title: Nat Genet doi: 10.1038/s41588-022-01048-5 – volume: 49 start-page: 1165 year: 2009 ident: 252_CR110 publication-title: Crop Sci doi: 10.2135/cropsci2008.10.0595 – volume: 21 start-page: 806 year: 2019 ident: 252_CR86 publication-title: Mar Biotechnol doi: 10.1007/s10126-019-09925-7 – volume: 83 start-page: 107 year: 2018 ident: 252_CR119 publication-title: Hum Hered doi: 10.1159/000489758 – volume: 103 start-page: 338 year: 2018 ident: 252_CR15 publication-title: Am J Hum Genet doi: 10.1016/j.ajhg.2018.07.015 – volume: 32 start-page: 4472 year: 2023 ident: 252_CR21 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2023.3286263 – volume: 326 start-page: 289 issue: 5950 year: 2009 ident: 252_CR84 publication-title: Science doi: 10.1126/science.1181369 – volume: 2467 start-page: 469 year: 2022 ident: 252_CR1 publication-title: Methods Mol Biol doi: 10.1007/978-1-0716-2205-6_17 – volume: 12 year: 2021 ident: 252_CR49 publication-title: Front Genet doi: 10.3389/fgene.2021.665920 – volume: 11 year: 2020 ident: 252_CR4 publication-title: Front Genet doi: 10.3389/fgene.2020.594770 – volume: 6 start-page: 19244 year: 2016 ident: 252_CR38 publication-title: Sci Rep doi: 10.1038/srep19244 – volume: 177 start-page: 85 year: 2019 ident: 252_CR23 publication-title: Cell doi: 10.1016/j.cell.2019.01.033 – volume: 9 start-page: 6904 year: 2019 ident: 252_CR116 publication-title: Sci Rep doi: 10.1038/s41598-019-43336-x – volume: 10 start-page: 387 year: 2009 ident: 252_CR82 publication-title: Annu Rev Genom Hum Genet doi: 10.1146/annurev.genom.9.081307.164242 – volume: 157 start-page: 1819 year: 2001 ident: 252_CR94 publication-title: Genetics doi: 10.1093/genetics/157.4.1819 – volume: 49 start-page: 15 year: 2017 ident: 252_CR22 publication-title: Genet Sel Evol doi: 10.1186/s12711-017-0291-8 – volume: 578 year: 2024 ident: 252_CR157 publication-title: Aquaculture doi: 10.1016/j.aquaculture.2023.740051 – volume: 122 year: 2018 ident: 252_CR120 publication-title: Curr Protoc Mol Biol doi: 10.1002/cpmb.59 – volume: 15 start-page: 274 year: 2022 ident: 252_CR122 publication-title: Rev Aquac doi: 10.1111/raq.12716 – volume: 8 start-page: 719 year: 2018 ident: 252_CR153 publication-title: G3 doi: 10.1534/g3.117.300499 – volume: 24 start-page: 1686 year: 2020 ident: 252_CR6 publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2019.2942774 – volume: 69 year: 2020 ident: 252_CR10 publication-title: Med Image Anal doi: 10.1016/j.media.2020.101952 – volume: 11 start-page: 108 year: 2020 ident: 252_CR87 publication-title: Front Genet doi: 10.3389/fgene.2020.00108 – volume: 51 start-page: 1339 year: 2019 ident: 252_CR147 publication-title: Nat Genet doi: 10.1038/s41588-019-0481-0 – volume: 96 start-page: 1348 year: 2001 ident: 252_CR42 publication-title: J Am Stat Assoc doi: 10.1198/016214501753382273 – volume: 92 start-page: 209 year: 2010 ident: 252_CR89 publication-title: Genet Res doi: 10.1017/S0016672310000157 – volume: 7 start-page: 96 year: 2016 ident: 252_CR132 publication-title: Front Genet doi: 10.3389/fgene.2016.00096 – volume: 47 start-page: 22 year: 2015 ident: 252_CR40 publication-title: Genet Sel Evol doi: 10.1186/s12711-015-0097-5 – volume: 20 start-page: 769 year: 2018 ident: 252_CR145 publication-title: Mar Biotechnol doi: 10.1007/s10126-018-9847-z – volume: 1019 start-page: 321 year: 2013 ident: 252_CR19 publication-title: Methods Mol Biol doi: 10.1007/978-1-62703-447-0_13 – volume: 562 year: 2023 ident: 252_CR32 publication-title: Aquaculture doi: 10.1016/j.aquaculture.2022.738844 – volume: 16 start-page: 767 year: 2000 ident: 252_CR44 publication-title: Mar Mamm Sci doi: 10.1111/j.1748-7692.2000.tb00971.x – year: 2023 ident: 252_CR50 publication-title: bioRxiv doi: 10.1101/2023.03.05.531147 – volume: 20 start-page: 559 year: 2023 ident: 252_CR111 publication-title: Nat Methods doi: 10.1038/s41592-023-01799-x – volume: 96 start-page: 2016 year: 2018 ident: 252_CR143 publication-title: J Anim Sci doi: 10.1093/jas/sky071 – volume: 82 start-page: 801 year: 2021 ident: 252_CR62 publication-title: Hum Immunol doi: 10.1016/j.humimm.2021.02.012 – volume: 61 start-page: 699 year: 2018 ident: 252_CR162 publication-title: T ASABE doi: 10.13031/trans.12684 – volume: 8 start-page: 18832 year: 2020 ident: 252_CR81 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2962823 – volume: 275 start-page: 897 year: 2018 ident: 252_CR126 publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.09.044 – volume: 13 start-page: 187 year: 2020 ident: 252_CR152 publication-title: Mol Plant doi: 10.1016/j.molp.2020.01.008 – volume: 3 start-page: 922 year: 2023 ident: 252_CR63 publication-title: Nat Comput Sci doi: 10.1038/s43588-023-00548-6 – volume: 13 start-page: 2247 year: 2022 ident: 252_CR139 publication-title: Genes doi: 10.3390/genes13122247 – volume: 7 start-page: 389 year: 2021 ident: 252_CR113 publication-title: Annu Rev vis Sci doi: 10.1146/annurev-vision-093019-113212 – volume: 20 start-page: 665 year: 2019 ident: 252_CR16 publication-title: BMC Bioinform doi: 10.1186/s12859-019-3299-y – volume: 574 year: 2023 ident: 252_CR164 publication-title: Aquaculture doi: 10.1016/j.aquaculture.2023.739682 – volume: 19 start-page: 107 year: 2018 ident: 252_CR99 publication-title: BMC Genom doi: 10.1186/s12864-018-4493-4 – volume: 14 start-page: 117793221989905 year: 2020 ident: 252_CR125 publication-title: Bioinform Biol Insights doi: 10.1177/1177932219899051 – volume: 42 start-page: 492 year: 2021 ident: 252_CR83 publication-title: Zool Res doi: 10.24272/j.issn.2095-8137.2021.141 – volume: 10 start-page: 1104436 year: 2023 ident: 252_CR124 publication-title: Front Mar Sci doi: 10.3389/fmars.2023.1104436 – volume: 35 start-page: 1221 year: 2017 ident: 252_CR140 publication-title: Chin J Oceanol Limnol doi: 10.1007/s00343-017-6038-0 – volume: 16 start-page: 1001803 year: 2022 ident: 252_CR72 publication-title: Front Comput Neurosci doi: 10.3389/fncom.2022.1001803 – volume: 10 start-page: 998 year: 2019 ident: 252_CR90 publication-title: Nat Commun doi: 10.1038/s41467-019-09025-z – volume: 11 start-page: 841 year: 2020 ident: 252_CR29 publication-title: Genes doi: 10.3390/genes11080841 – volume: 49 start-page: 17 year: 2017 ident: 252_CR133 publication-title: Genet Sel Evol doi: 10.1186/s12711-017-0293-6 – volume: 20 start-page: 1693 year: 2020 ident: 252_CR136 publication-title: Sensors doi: 10.3390/s20061693 – volume: 20 start-page: 438 year: 2004 ident: 252_CR77 publication-title: Mar Mamm Sci doi: 10.1111/j.1748-7692.2004.tb01171.x – volume: 701 year: 2020 ident: 252_CR128 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2019.134794 – volume: 521 start-page: 436 year: 2015 ident: 252_CR78 publication-title: Nature doi: 10.1038/nature14539 – volume: 31 start-page: 5349 year: 2020 ident: 252_CR56 publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2020.2966319 – volume: 581 year: 2024 ident: 252_CR91 publication-title: Aquaculture doi: 10.1016/j.aquaculture.2023.740376 – volume: 10 start-page: 2045 year: 2019 ident: 252_CR95 publication-title: Methods Ecol Evol doi: 10.1111/2041-210X.13282 – volume: 527 year: 2020 ident: 252_CR26 publication-title: Aquaculture doi: 10.1016/j.aquaculture.2020.735421 – volume: 38 start-page: 894 year: 2010 ident: 252_CR160 publication-title: Ann Stat doi: 10.1214/09-AOS729 – volume: 16 start-page: 1220 year: 2023 ident: 252_CR9 publication-title: Evol Appl doi: 10.1111/eva.13560 – volume: 9 start-page: 391 year: 2018 ident: 252_CR52 publication-title: Front Genet doi: 10.3389/fgene.2018.00391 – volume: 1 year: 2023 ident: 252_CR121 publication-title: Agric Commun – volume: 38 start-page: 223 year: 2019 ident: 252_CR123 publication-title: J Shellfish Res doi: 10.2983/035.038.0202 – volume: 4 start-page: 841 year: 2020 ident: 252_CR39 publication-title: Nat Ecol Evol doi: 10.1038/s41559-020-1166-x – volume: 9 start-page: 2597 year: 2019 ident: 252_CR154 publication-title: G3 doi: 10.1534/g3.119.400116 – volume: 17 start-page: 460 year: 2016 ident: 252_CR37 publication-title: BMC Genom doi: 10.1186/s12864-016-2756-5 – volume: 29 start-page: R231 year: 2019 ident: 252_CR76 publication-title: Curr Biol doi: 10.1016/j.cub.2019.02.034 – volume: 549 year: 2022 ident: 252_CR144 publication-title: Aquaculture doi: 10.1016/j.aquaculture.2021.737715 – volume: 18 start-page: 45 year: 2017 ident: 252_CR141 publication-title: BMC Genet doi: 10.1186/s12863-017-0507-5 – volume: 519 year: 2020 ident: 252_CR60 publication-title: Aquaculture doi: 10.1016/j.aquaculture.2019.734767 – volume: 22 start-page: bbab326 year: 2021 ident: 252_CR118 publication-title: Brief Bioinform doi: 10.1093/bib/bbab326 – volume: 2 start-page: 359 year: 1989 ident: 252_CR61 publication-title: Neural Netw doi: 10.1016/0893-6080(89)90020-8 – volume: 12 start-page: 656137 year: 2021 ident: 252_CR155 publication-title: Front Genet doi: 10.3389/fgene.2021.656137 – volume: 22 start-page: bbaa177 year: 2021 ident: 252_CR127 publication-title: Brief Bioinform doi: 10.1093/bib/bbaa177 – volume: 15 start-page: 182 year: 2017 ident: 252_CR156 publication-title: Mar Drugs doi: 10.3390/md15060182 – volume: 12329 start-page: 91 year: 2020 ident: 252_CR5 publication-title: Predict Intell Med doi: 10.1007/978-3-030-59354-4_9 – volume: 113 start-page: 2096 year: 2021 ident: 252_CR108 publication-title: Genomics doi: 10.1016/j.ygeno.2021.04.038 – volume: 50 start-page: 477 year: 2019 ident: 252_CR25 publication-title: J Med Imaging Radiat Sci doi: 10.1016/j.jmir.2019.09.005 – volume: 24 start-page: 125 year: 2023 ident: 252_CR101 publication-title: Nat Rev Genet doi: 10.1038/s41576-022-00532-2 – volume: 9 year: 2022 ident: 252_CR137 publication-title: Front Mar Sci doi: 10.3389/fmars.2022.844597 – volume: 6 start-page: 3693 year: 2016 ident: 252_CR105 publication-title: G3 doi: 10.1534/g3.116.035220 – volume: 45 start-page: 6415 year: 2023 ident: 252_CR59 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2022.3215307 – volume: 91 start-page: 4414 year: 2008 ident: 252_CR134 publication-title: J Dairy Sci doi: 10.3168/jds.2007-0980 – volume: 505 start-page: 212 year: 2019 ident: 252_CR142 publication-title: Aquaculture doi: 10.1016/j.aquaculture.2019.02.055 – volume: 14 start-page: 168 year: 2013 ident: 252_CR80 publication-title: Nat Rev Genet doi: 10.1038/nrg3404 – volume: 138 start-page: 338 year: 2021 ident: 252_CR68 publication-title: J Anim Breed Genet doi: 10.1111/jbg.12516 – volume: 545 start-page: 203 year: 2016 ident: 252_CR103 publication-title: Mar Ecol Prog Ser doi: 10.3354/meps11643 – volume: 11 start-page: 70 year: 2019 ident: 252_CR36 publication-title: Genome Med doi: 10.1186/s13073-019-0689-8 – ident: 252_CR85 – volume: 210 start-page: 809 year: 2018 ident: 252_CR11 publication-title: Genetics doi: 10.1534/genetics.118.301298 – volume: 18 start-page: 30 year: 2013 ident: 252_CR31 publication-title: Ecol Soc doi: 10.5751/ES-05971-180430 – volume: 29 start-page: 59 year: 2011 ident: 252_CR73 publication-title: Nat Biotechnol doi: 10.1038/nbt.1740 – volume: 91 start-page: 3522 year: 2013 ident: 252_CR109 publication-title: J Anim Sci doi: 10.2527/jas.2012-6162 – volume: 77 start-page: 1330 year: 2020 ident: 252_CR2 publication-title: ICES J Mar Sci doi: 10.1093/icesjms/fsz216 – volume: 9 start-page: 601 year: 2019 ident: 252_CR96 publication-title: G3 doi: 10.1534/g3.118.200998 – volume: 346 start-page: 1712 year: 1995 ident: 252_CR130 publication-title: Lancet doi: 10.1016/S0140-6736(95)92880-4 – volume: 479 start-page: 742 year: 2017 ident: 252_CR57 publication-title: Aquaculture doi: 10.1016/j.aquaculture.2017.07.012 – volume: 11 start-page: 5176 year: 2020 ident: 252_CR12 publication-title: Nat Commun doi: 10.1038/s41467-020-18972-x – volume: 12 start-page: 931 year: 2015 ident: 252_CR163 publication-title: Nat Methods doi: 10.1038/nmeth.3547 |
| SSID | ssj0002511654 |
| Score | 2.312898 |
| SecondaryResourceType | review_article |
| Snippet | Genomic selection (GS) applied to the breeding of aquatic animals has been of great interest in recent years due to its higher accuracy and faster genetic... |
| SourceID | proquest pubmed crossref springer |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 631 |
| SubjectTerms | Biodiversity Biological Techniques Biomedical and Life Sciences Fish & Wildlife Biology & Management Food Microbiology Freshwater & Marine Ecology Life Sciences Review |
| Title | Deep learning for genomic selection of aquatic animals |
| URI | https://link.springer.com/article/10.1007/s42995-024-00252-y https://www.ncbi.nlm.nih.gov/pubmed/39620094 https://www.proquest.com/docview/3140920987 |
| Volume | 6 |
| WOSCitedRecordID | wos001321669900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 2662-1746 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002511654 issn: 2662-1746 databaseCode: RSV dateStart: 20191101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLbY4MCFh3iVxxQkbhCpa9I2PSIe4jQhXtotapMUTWLdWDek_XvirK2EhibBPWlT24k_1_FngAsmAt2NfU6t99aUa5XSROWcYs5G-UESxCJzzSbiXk_0-8ljVRRW1rfd65SkO6mbYjc8ObGamFN01AGdt2DdujuB2_Hp-a35s4KgOQp5VSHz-9SfXmgJWi6lRZ23ud_-3zp3YKtCl-R6YQ67sGaKPYhujRmTqj3EO7EolSAz63CgSOm64FjVkFFO0k-k_VYkLQZDa5T78Hp_93LzQKt2CVRZTDSlaRQyH_FVaDhnGbOhQ54yHvgWovEo57ngOgxzkZqkqxMTI3LIjM6CXAvF44wdQLsYFeYICBcWGEZIfmajP8M45gKNtsERT5SKusqDbi0-qSoucWxp8SEbFmQnBWmlIJ0U5NyDy2bOeMGksXL0ea0VaQ0esxhpYUazUjKk6LIfJWIPDhfqap5nF43ZHu7BVa0bWe3JcsXLjv82_AQ2A1Svq0g8hfZ0MjNnsKG-poNy0oFW3BcdZ5LfQEHYBA |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60Cnrxga_4XMGbLjTJ5HUUtVSsRbRKb0uy2UjBprVphf57d9IkIJWC3nezm5nJzjeZnW8ALmzfik2vjlx775hjLEMeyAQ55Wxk3Qosz4_yZhNeu-13u8FTURSWlbfdy5RkflJXxW50clI1MXJy1BafLsMKao9FF_meX96qPysEml0HiwqZ36f-9EJz0HIuLZp7m8bm__a5BRsFumTXM3PYhiWV7oB7q9SQFe0h3plGqYyYWfs9ybK8C45WDRskLPwk2m_JwrTX10a5C6-Nu85NkxftErjUmGjMQ9ex64SvHIVoR7YOHZLQRquuIRq6CSY-xo6T-KEKzDhQHiGHSMWRlcS-RC-y96CWDlJ1AAx9DQxdIj_T0Z-ykXKBKtbBEQZSuqY0wCzFJ2TBJU4tLT5ExYKcS0FoKYhcCmJqwGU1Zzhj0lg4-rzUitAGT1mMMFWDSSZsoujSL-V7BuzP1FU9T2-asj1owFWpG1F8k9mCxQ7_NvwM1pqdx5Zo3bcfjmDdIlXn1YnHUBuPJuoEVuXXuJeNTnPD_AZSwtoA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8NAEB60ivjigVc9V_BNlzbJ5HoUa1GUUvCgb0uyu5GCTWsPof_enSQNSqUgvu8mm5ndzDf5Mt8AXDiBrSy_jtxEb8VRyYiHMkFOnI2s26HtB3HWbMJvtYJOJ2x_q-LP_nafUZJ5TQOpNKXj2kAltbLwjd6iVFmMnIK2zafLsILUNIjy9afX8isLAWjPxaJa5vepPyPSHMyco0izyNPc_P-at2CjQJ3sOt8m27Ck0x3wGloPWNE24o0Z9MpIsbXXlWyUdccxLmP9hEUfJAcuWZR2e2az7sJL8_b55o4XbRS4NFhpzCPPdeqEu1yN6MSOSSmSyEG7bqAbegkmASrXTYJIh5YKtU-IItYqthMVSPRjZw8qaT_VB8AwMIDRI1E0kxVqB4kj1MokTRhK6VmyCtbMlEIWGuPU6uJdlOrImRWEsYLIrCCmVbgs5wxyhY2Fo89nHhLmIBC7EaW6PxkJh6S7zEMFfhX2c9eV1zOLJhYIq3A185Mozupowc0O_zb8DNbajaZ4vG89HMG6TZ7OihaPoTIeTvQJrMrPcXc0PM326BdK2OLk |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning+for+genomic+selection+of+aquatic+animals&rft.jtitle=Marine+life+science+%26+technology&rft.au=Wang%2C+Yangfan&rft.au=Ni%2C+Ping&rft.au=Sturrock%2C+Marc&rft.au=Zeng%2C+Qifan&rft.date=2024-11-01&rft.eissn=2662-1746&rft.volume=6&rft.issue=4&rft.spage=631&rft_id=info:doi/10.1007%2Fs42995-024-00252-y&rft_id=info%3Apmid%2F39620094&rft.externalDocID=39620094 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2662-1746&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2662-1746&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2662-1746&client=summon |