Deep learning for genomic selection of aquatic animals

Genomic selection (GS) applied to the breeding of aquatic animals has been of great interest in recent years due to its higher accuracy and faster genetic progress than pedigree-based methods. The genetic analysis of complex traits in GS does not escape the current excitement around artificial intel...

Full description

Saved in:
Bibliographic Details
Published in:Marine life science & technology Vol. 6; no. 4; pp. 631 - 650
Main Authors: Wang, Yangfan, Ni, Ping, Sturrock, Marc, Zeng, Qifan, Wang, Bo, Bao, Zhenmin, Hu, Jingjie
Format: Journal Article
Language:English
Published: Singapore Springer Nature Singapore 01.11.2024
Subjects:
ISSN:2662-1746, 2662-1746
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Genomic selection (GS) applied to the breeding of aquatic animals has been of great interest in recent years due to its higher accuracy and faster genetic progress than pedigree-based methods. The genetic analysis of complex traits in GS does not escape the current excitement around artificial intelligence, including a renewed interest in deep learning (DL), such as deep neural networks (DNNs), convolutional neural networks (CNNs), and autoencoders. This article reviews the current status and potential of DL applications in phenotyping, genotyping and genomic estimated breeding value (GEBV) prediction of GS. It can be seen from this article that CNNs obtain phenotype data of aquatic animals efficiently, and without injury; DNNs as single nucleotide polymorphism (SNP) variant callers are critical to have shown higher accuracy in assessments of genotyping for the next-generation sequencing (NGS); autoencoder-based genotype imputation approaches are capable of highly accurate genotype imputation by encoding complex genotype relationships in easily portable inference models; sparse DNNs capture nonlinear relationships among genes to improve the accuracy of GEBV prediction for aquatic animals. Furthermore, future directions of DL in aquaculture are also discussed, which should expand the application to more aquaculture species. We believe that DL will be applied increasingly to molecular breeding of aquatic animals in the future.
AbstractList Genomic selection (GS) applied to the breeding of aquatic animals has been of great interest in recent years due to its higher accuracy and faster genetic progress than pedigree-based methods. The genetic analysis of complex traits in GS does not escape the current excitement around artificial intelligence, including a renewed interest in deep learning (DL), such as deep neural networks (DNNs), convolutional neural networks (CNNs), and autoencoders. This article reviews the current status and potential of DL applications in phenotyping, genotyping and genomic estimated breeding value (GEBV) prediction of GS. It can be seen from this article that CNNs obtain phenotype data of aquatic animals efficiently, and without injury; DNNs as single nucleotide polymorphism (SNP) variant callers are critical to have shown higher accuracy in assessments of genotyping for the next-generation sequencing (NGS); autoencoder-based genotype imputation approaches are capable of highly accurate genotype imputation by encoding complex genotype relationships in easily portable inference models; sparse DNNs capture nonlinear relationships among genes to improve the accuracy of GEBV prediction for aquatic animals. Furthermore, future directions of DL in aquaculture are also discussed, which should expand the application to more aquaculture species. We believe that DL will be applied increasingly to molecular breeding of aquatic animals in the future. The online version contains supplementary material available at 10.1007/s42995-024-00252-y.
Genomic selection (GS) applied to the breeding of aquatic animals has been of great interest in recent years due to its higher accuracy and faster genetic progress than pedigree-based methods. The genetic analysis of complex traits in GS does not escape the current excitement around artificial intelligence, including a renewed interest in deep learning (DL), such as deep neural networks (DNNs), convolutional neural networks (CNNs), and autoencoders. This article reviews the current status and potential of DL applications in phenotyping, genotyping and genomic estimated breeding value (GEBV) prediction of GS. It can be seen from this article that CNNs obtain phenotype data of aquatic animals efficiently, and without injury; DNNs as single nucleotide polymorphism (SNP) variant callers are critical to have shown higher accuracy in assessments of genotyping for the next-generation sequencing (NGS); autoencoder-based genotype imputation approaches are capable of highly accurate genotype imputation by encoding complex genotype relationships in easily portable inference models; sparse DNNs capture nonlinear relationships among genes to improve the accuracy of GEBV prediction for aquatic animals. Furthermore, future directions of DL in aquaculture are also discussed, which should expand the application to more aquaculture species. We believe that DL will be applied increasingly to molecular breeding of aquatic animals in the future.
Genomic selection (GS) applied to the breeding of aquatic animals has been of great interest in recent years due to its higher accuracy and faster genetic progress than pedigree-based methods. The genetic analysis of complex traits in GS does not escape the current excitement around artificial intelligence, including a renewed interest in deep learning (DL), such as deep neural networks (DNNs), convolutional neural networks (CNNs), and autoencoders. This article reviews the current status and potential of DL applications in phenotyping, genotyping and genomic estimated breeding value (GEBV) prediction of GS. It can be seen from this article that CNNs obtain phenotype data of aquatic animals efficiently, and without injury; DNNs as single nucleotide polymorphism (SNP) variant callers are critical to have shown higher accuracy in assessments of genotyping for the next-generation sequencing (NGS); autoencoder-based genotype imputation approaches are capable of highly accurate genotype imputation by encoding complex genotype relationships in easily portable inference models; sparse DNNs capture nonlinear relationships among genes to improve the accuracy of GEBV prediction for aquatic animals. Furthermore, future directions of DL in aquaculture are also discussed, which should expand the application to more aquaculture species. We believe that DL will be applied increasingly to molecular breeding of aquatic animals in the future.Genomic selection (GS) applied to the breeding of aquatic animals has been of great interest in recent years due to its higher accuracy and faster genetic progress than pedigree-based methods. The genetic analysis of complex traits in GS does not escape the current excitement around artificial intelligence, including a renewed interest in deep learning (DL), such as deep neural networks (DNNs), convolutional neural networks (CNNs), and autoencoders. This article reviews the current status and potential of DL applications in phenotyping, genotyping and genomic estimated breeding value (GEBV) prediction of GS. It can be seen from this article that CNNs obtain phenotype data of aquatic animals efficiently, and without injury; DNNs as single nucleotide polymorphism (SNP) variant callers are critical to have shown higher accuracy in assessments of genotyping for the next-generation sequencing (NGS); autoencoder-based genotype imputation approaches are capable of highly accurate genotype imputation by encoding complex genotype relationships in easily portable inference models; sparse DNNs capture nonlinear relationships among genes to improve the accuracy of GEBV prediction for aquatic animals. Furthermore, future directions of DL in aquaculture are also discussed, which should expand the application to more aquaculture species. We believe that DL will be applied increasingly to molecular breeding of aquatic animals in the future.The online version contains supplementary material available at 10.1007/s42995-024-00252-y.Supplementary InformationThe online version contains supplementary material available at 10.1007/s42995-024-00252-y.
Author Wang, Bo
Zeng, Qifan
Sturrock, Marc
Bao, Zhenmin
Ni, Ping
Hu, Jingjie
Wang, Yangfan
Author_xml – sequence: 1
  givenname: Yangfan
  surname: Wang
  fullname: Wang, Yangfan
  organization: MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China
– sequence: 2
  givenname: Ping
  surname: Ni
  fullname: Ni, Ping
  organization: MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China
– sequence: 3
  givenname: Marc
  surname: Sturrock
  fullname: Sturrock, Marc
  organization: Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland
– sequence: 4
  givenname: Qifan
  surname: Zeng
  fullname: Zeng, Qifan
  organization: MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China
– sequence: 5
  givenname: Bo
  surname: Wang
  fullname: Wang, Bo
  email: wb@ouc.edu.cn
  organization: MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China
– sequence: 6
  givenname: Zhenmin
  surname: Bao
  fullname: Bao, Zhenmin
  organization: MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Southern Marine Science and Engineer Guangdong Laboratory
– sequence: 7
  givenname: Jingjie
  surname: Hu
  fullname: Hu, Jingjie
  email: hujingjie@ouc.edu.cn
  organization: MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Southern Marine Science and Engineer Guangdong Laboratory
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39620094$$D View this record in MEDLINE/PubMed
BookMark eNp9kD1PwzAURS1UREvpH2BAGVkC_k4yovIpVWKB2XKS5ypVYrd2MvTf45JWQgyd3pN17pXfuUYT6ywgdEvwA8E4ewycFoVIMeUpxlTQdH-BZlRKmpKMy8mffYoWIWzwgSJECn6FpqyQFOOCz5B8BtgmLWhvG7tOjPPJGqzrmioJ0ELVN84mziR6N-g-PmrbdLoNN-jSxAGL45yj79eXr-V7uvp8-1g-rdKKU9anWgqGOZFMAOesZITkRjNOccEol4abnNdCmFxDQeoCMkYyUUJdUlPnFc9KNkf3Y-_Wu90AoVddEypoW23BDUExwnER6_IsondHdCg7qNXWx5_6vTrdGoF8BCrvQvBgVNX0-nBg73XTKoLVwawazapoVv2aVfsYpf-ip_azITaGQoTtGrzauMHbqOtc6gfQqol9
CitedBy_id crossref_primary_10_1016_j_aquaculture_2025_742260
crossref_primary_10_1016_j_aiia_2025_01_012
crossref_primary_10_1016_j_aquaculture_2024_741895
crossref_primary_10_1080_23308249_2025_2497273
crossref_primary_10_1016_j_aquaculture_2025_742576
crossref_primary_10_1016_j_aquaculture_2025_743079
Cites_doi 10.1016/j.aquaculture.2020.735421
10.1093/genetics/157.4.1819
10.1534/g3.119.300585
10.1146/annurev-genet-120116-024846
10.1017/S0021859618000436
10.1016/j.aquaculture.2021.737715
10.1016/j.cub.2019.02.034
10.5751/ES-05971-180430
10.1186/s12711-021-00629-y
10.1534/g3.119.400116
10.1038/nbt.4235
10.1186/s12859-019-3299-y
10.1038/ng.3656
10.3389/fgene.2018.00082
10.1016/j.aquaculture.2019.02.055
10.1186/1471-2164-15-478
10.1038/s41559-020-1166-x
10.1016/j.ygeno.2021.04.038
10.1534/genetics.118.301298
10.3389/fgene.2018.00391
10.1016/j.aqrep.2021.100660
10.1093/nar/gkac424
10.2983/035.038.0202
10.1016/j.heliyon.2022.e12006
10.1016/j.jfoodeng.2019.109698
10.1186/s12863-018-0631-x
10.1016/j.cell.2019.01.033
10.1534/genetics.107.084285
10.1007/s10126-019-09925-7
10.1186/s13073-019-0689-8
10.3390/md15060182
10.1890/12-0021.1
10.3354/meps11643
10.1038/s41598-019-43336-x
10.1016/j.aquaculture.2021.737171
10.1016/j.ajhg.2018.07.015
10.1177/1177932219899051
10.1186/1297-9686-45-34
10.1038/s41592-023-01799-x
10.1534/g3.119.400800
10.1016/j.aquaculture.2020.736323
10.1016/j.jmir.2019.09.005
10.1038/s41576-022-00532-2
10.1186/s12864-018-4493-4
10.1007/s00343-017-6038-0
10.1038/nature14539
10.1007/978-1-0716-2205-6_17
10.1016/j.scitotenv.2019.134794
10.1111/2041-210X.13282
10.3390/genes11080841
10.1017/S0016672310000157
10.1093/bib/bbaa177
10.1016/j.aqrep.2021.100661
10.1111/j.2041-210X.2012.00212.x
10.1038/s41588-019-0481-0
10.3389/fgene.2021.665920
10.1016/j.molp.2020.01.008
10.1038/nbt.1740
10.1016/j.aquaculture.2023.739682
10.3389/fgene.2020.00108
10.1038/nrg2986
10.1016/j.aquaculture.2019.734767
10.1109/TIP.2021.3051767
10.1109/TPAMI.2022.3215307
10.1016/j.aquaculture.2022.738844
10.1016/j.aquaculture.2022.738090
10.1002/cpmb.59
10.1038/s41576-019-0180-9
10.1111/j.1748-7692.2004.tb01171.x
10.1198/016214501753382273
10.1007/978-1-62703-447-0_6
10.1186/s12711-017-0293-6
10.1111/jbg.12516
10.1038/nrg3404
10.1126/science.1181369
10.1038/s41588-020-00756-0
10.1002/ece3.2789
10.3389/fncom.2022.1001803
10.1109/TVCG.2019.2930691
10.1534/g3.117.300499
10.1186/s12863-017-0507-5
10.1111/j.1748-7692.2000.tb00971.x
10.1186/s12711-017-0291-8
10.3390/genes13122247
10.1186/s12711-015-0097-5
10.3389/fgene.2018.00693
10.1186/s13059-019-1720-5
10.1016/j.neucom.2017.09.044
10.1016/j.aquaculture.2021.736515
10.3389/fmars.2023.1104436
10.1109/TNNLS.2020.2966319
10.1109/TCYB.2020.2973450
10.1007/s11032-018-0865-3
10.1007/s10126-018-9847-z
10.1186/s12711-022-00724-8
10.1145/3465055
10.3389/fgene.2016.00096
10.1038/s41467-020-18972-x
10.24272/j.issn.2095-8137.2021.141
10.1007/s10709-010-9478-4
10.1093/bioinformatics/bts330
10.1007/978-1-62703-447-0_13
10.1111/raq.12716
10.1016/j.aquaculture.2023.740051
10.3389/fgene.2020.594770
10.1038/s41588-022-01048-5
10.2527/jas.2012-6162
10.1093/jas/sky071
10.1038/s41592-023-01973-1
10.1016/j.humimm.2021.02.012
10.1159/000489758
10.1098/rstb.2007.2170
10.13031/trans.12684
10.1016/0893-6080(89)90020-8
10.3389/fmars.2023.1259722
10.1016/j.aquaculture.2017.07.012
10.1101/2023.03.05.531147
10.7554/eLife.75600
10.1016/j.plantsci.2015.07.010
10.3389/fgene.2016.00221
10.1534/g3.118.200998
10.3389/fmars.2022.844597
10.3389/fmars.2023.1145083
10.1038/s41467-019-09025-z
10.3168/jds.2007-0980
10.1534/g3.119.400493
10.1038/srep19244
10.1146/annurev-vision-093019-113212
10.1016/j.ygeno.2022.110426
10.1038/nmeth.2206
10.1016/j.aquaculture.2023.740376
10.2135/cropsci2008.10.0595
10.1093/bib/bbab326
10.1016/S0140-6736(95)92880-4
10.1101/gr.200535.115
10.3390/s22197603
10.1093/icesjms/fsz216
10.1016/j.media.2020.101952
10.1038/nmeth.3547
10.1109/JBHI.2019.2942774
10.3389/fmars.2022.1093623
10.1186/s12864-016-2756-5
10.3390/s20061693
10.1109/TIP.2023.3286263
10.3389/fgene.2019.00543
10.1111/age.12909
10.1186/s40317-015-0086-z
10.3389/fgene.2021.656137
10.1016/j.aquaculture.2020.735415
10.1038/d41586-020-03446-3
10.1007/978-3-030-59354-4_9
10.1146/annurev.genom.9.081307.164242
10.1109/ACCESS.2019.2962823
10.1534/g3.116.035220
10.1016/j.aquaculture.2022.738320
10.1111/eva.13560
10.1038/s43588-023-00548-6
10.7554/eLife.59780
10.1214/09-AOS729
10.1186/1471-2164-12-87
10.1007/978-3-319-46484-8_29
ContentType Journal Article
Copyright Ocean University of China 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: Ocean University of China 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1007/s42995-024-00252-y
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 2662-1746
EndPage 650
ExternalDocumentID 39620094
10_1007_s42995_024_00252_y
Genre Journal Article
Review
GroupedDBID 0R~
406
AACDK
AAHNG
AAJBT
AASML
AATNV
AAUYE
ABAKF
ABECU
ABJNI
ABMQK
ABTEG
ABTKH
ACAOD
ACDTI
ACHSB
ACOKC
ACPIV
ACZOJ
ADKNI
ADTPH
ADYFF
AEFQL
AEMSY
AESKC
AFBBN
AFQWF
AGMZJ
AGQEE
AIGIU
AILAN
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMXSW
AMYLF
BAPOH
DPUIP
EBLON
EBS
EJD
FIGPU
FNLPD
GGCAI
IAO
IGS
IKXTQ
ITC
IWAJR
JZLTJ
LLZTM
NPVJJ
NQJWS
PT4
ROL
RPM
RSV
SJYHP
SNE
SNPRN
SOHCF
SOJ
SRMVM
SSLCW
UOJIU
UTJUX
ZMTXR
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
KOV
TGP
NPM
7X8
ID FETCH-LOGICAL-c423t-a653041635e443b3118fa342093246f4f84d55f8ae91d9e73175bedb2fd8c47b3
IEDL.DBID RSV
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001321669900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2662-1746
IngestDate Thu Jul 10 22:01:15 EDT 2025
Mon Sep 29 02:31:56 EDT 2025
Sat Nov 29 02:26:54 EST 2025
Tue Nov 18 22:40:13 EST 2025
Fri Feb 21 02:38:27 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Deep learning
Breeding
Genomic selection
Future direction
Aquaculture
Aquatic animals
Language English
License Ocean University of China 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c423t-a653041635e443b3118fa342093246f4f84d55f8ae91d9e73175bedb2fd8c47b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
PMID 39620094
PQID 3140920987
PQPubID 23479
PageCount 20
ParticipantIDs proquest_miscellaneous_3140920987
pubmed_primary_39620094
crossref_citationtrail_10_1007_s42995_024_00252_y
crossref_primary_10_1007_s42995_024_00252_y
springer_journals_10_1007_s42995_024_00252_y
PublicationCentury 2000
PublicationDate 2024-11-01
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
PublicationTitle Marine life science & technology
PublicationTitleAbbrev Mar Life Sci Technol
PublicationTitleAlternate Mar Life Sci Technol
PublicationYear 2024
Publisher Springer Nature Singapore
Publisher_xml – name: Springer Nature Singapore
References Bhat, Ali, Salgotra, Mir, Dutta, Jadon, Tyagi, Mushtaq, Jain, Singh, Singh, Prabhu (CR13) 2016; 7
Dias, Evans, Chen, Chen, Loguercio, Chan, Torkamani (CR35) 2022; 11
Lieberman-Aiden, van Berkum, Williams, Imakaev, Ragoczy, Telling, Amit, Lajoie, Sabo, Dorschner, Sandstrom, Bernstein, Bender, Groudine, Gnirke, Stamatoyannopoulos, Mirny, Lander, Dekker (CR84) 2009; 326
Wan, Chen, Li, Li (CR136) 2020; 20
Nielsen, Paul, Albrechtsen, Song (CR100) 2011; 12
Correa, Bangera, Figueroa, Lhorente, Yáñez (CR22) 2017; 49
Ehret, Hochstuhl, Gianola, Thaller (CR40) 2015; 47
Yoshida, Lhorente, Correa, Soto, Salas, Yáñez (CR154) 2019; 9
Gianola, Wu, Manfredi, Simianer (CR48) 2010; 138
Read (CR113) 2021; 7
Derry, Krzywinski, Altman (CR33) 2023; 20
Monkman, Hyder, Kaiser, Vidal (CR95) 2019; 10
Montesinos-López, Martín-Vallejo, Crossa, Gianola, Hernández-Suárez, Montesinos-López, Juliana, Singh (CR96) 2019; 9
Wang, Teng, Liu, Zhao, Wang, Hu, Bao, Zeng (CR137) 2022; 9
Joshi, Skaarud, Alvarez, Moen, Ødegård (CR67) 2021; 53
Das, Forer, Schönherr, Sidore, Locke, Kwong, Vrieze, Chew, Levy, McGue, Schlessinger, Stambolian, Loh, Iacono, Swaroop, Scott, Cucca, Kronenberg, Boehnke, Abecasis (CR27) 2016; 48
Defeo, Castrejon, Ortega, Kuhn, Gutierrez, Castilla (CR31) 2013; 18
Chang, Ubina, Cheng, Lan, Chen, Huang (CR17) 2022; 22
Segebarth, Griebel, Stein, von Collenberg, Martin, Fiedler, Comeras, Sah, Schoeffler, Lüffe, Dürr, Gupta, Sasi, Lillesaar, Lange, Tasan, Singewald, Pape, Flath, Blum (CR117) 2020; 9
DeWeerdt (CR34) 2020; 588
Zeng, Zhao, Wang, Wang, Teng, Hu, Bao, Wang (CR158) 2022; 50
Lehner (CR80) 2013; 14
Montesinos-López, Martín-Vallejo, Crossa, Gianola, Hernández-Suárez, Montesinos-López, Juliana, Singh (CR97) 2019; 9
Popic, Rohlicek, Cunial, Hajirasouliha, Meleshko, Garimella, Maheshwari (CR111) 2023; 20
Guo, Lu, Zuo, Zhang, Chen (CR51) 2021; 30
Honari, Constantin, Rhodin, Salzmann, Fua (CR59) 2023; 45
Luo, Sedlazeck, Lam, Schatz (CR90) 2019; 10
Aslam, Carraro, Sonesson, Meuwissen, Tsigenopoulos, Rigos, Bargelloni, Tzokas (CR4) 2020; 11
Shi, Qian, Yu, Wang, Wang, Zeng, Du, Xiao (CR118) 2021; 22
Álvarez-Ellacuría, Palmer, Catalán, Lisani (CR2) 2020; 77
Zhou, Yuan, Zhang, Zhang, Zhou, Ji, Wu, Zhao, Zhang, Liu, Jiang, Wang, Fang (CR164) 2023; 574
Wang, Sun, Zeng, Chen, Hu, Li, Wang, Bao (CR145) 2018; 20
de Moraes, dos Santos, de Lima, Aguiar, Missiaggia, da Costa, Rezende, Gonçalves, Acosta, Kirst, Resende, Muñoz (CR30) 2018; 38
Kamilaris, Prenafeta-Boldú (CR69) 2018; 156
Luo, Yu, Bao, Li (CR91) 2024; 581
Gutierrez, Symonds, King, Steiner, Bean, Houston (CR53) 2020; 51
Wolc, Dekkers (CR148) 2022; 54
Kosugi, Momozawa, Liu, Terao, Kubo, Kamatani (CR75) 2019; 20
Li, Willer, Sanna, Abecasis (CR82) 2009; 10
Falconer, Hills, Naumann, Poon, Chavez, Sanders, Zhao, Hirst, Lansdorp (CR41) 2012; 9
Palaiokostas, Vesely, Kocour, Prchal, Pokorova, Piackova, Pojezdal, Houston (CR107) 2019; 10
Wang, Mi, Rosa, Chen, Lin, Wang, Bao (CR143) 2018; 96
Zannella, Mosca, Mariani, Franci, Folliero, Galdiero, Tiscar, Galdiero (CR156) 2017; 15
Hayes (CR55) 2013; 1019
Yang, Feng, Zhang, Zhang, Doonan, Batchelor, Xiong, Yan (CR152) 2020; 13
Palaiokostas, Ferraresso, Franch, Houston, Bargelloni (CR105) 2016; 6
Zhang (CR160) 2010; 38
Costanzo, Kuzmin, van Leeuwen, Mair, Moffat, Boone, Andrews (CR23) 2019; 177
Zeng, Feng, Deng, Jiang, Bai, Wang, Qu, Liu, Jiang, He, Wang, Xu (CR157) 2024; 578
Jepsen, Thorstad, Havn, Lucas (CR64) 2015; 3
de Almeida, Reiter, Pagani, Stark (CR28) 2022; 54
Xing, Wei, Chen, Wang, Lu, Wang, Zhang, Bao (CR150) 2017; 7
Subramanian, Verma, Kumar, Jere, Anamika (CR125) 2020; 14
Wallace, Rodgers-Melnick, Buckler (CR135) 2018; 52
Langtimm, Beck, Edwards, Fick-Child, Ackerman, Barton, Hartley (CR77) 2004; 20
Peñaloza, Manousaki, Franch, Tsakogiannis, Sonesson, Aslam, Allal, Bargelloni, Houston, Tsigenopoulos (CR108) 2021; 113
Hillen, Coscia, Vandeputte, Herten, Hellemans, Maroso, Vergnet, Allal, Maes, Volckaert (CR57) 2017; 479
Lv, Wang, Ni, Lin, Hou, Ding, Chang, Hu, Wang, Bao (CR93) 2022; 114
Bertolotti, Layer, Gundappa, Gallagher, Pehlivanoglu, Nome, Robledo, Kent, Røsæg, Holen, Mulugeta, Ashton, Hindar, Sægrov, Florø-Larsen, Erkinaro, Primmer, Bernatchez, Martin, Johnston (CR12) 2020; 11
Ortega, Celentano, Delgado, Defeo (CR103) 2016; 545
Palaiokostas, Kocour, Prchal, Houston (CR106) 2018; 9
Vallejo, Leeds, Gao, Parsons, Martin, Evenhuis, Fragomeni, Wiens, Palti (CR133) 2017; 49
Poplin, Chang, Alexander, Schwartz, Colthurst, Ku, Newburger, Dijamco, Nguyen, Afshar, Gross, Dorfman, McLean, DePristo (CR112) 2018; 36
Watanabe, Stringer, Frei, Umićević Mirkov, de Leeuw, Polderman, van der Sluis, Andreassen, Neale, Posthuma (CR147) 2019; 51
Yuan, Wang, Yan, Zhang, Xue, Chen, Lin, Zhang, Shen, Chen (CR155) 2021; 12
Gutierrez, Matika, Bean, Houston (CR52) 2018; 9
Tan, Zheng (CR128) 2020; 701
Soon, Ransangan (CR123) 2019; 38
Zhou, Troyanskaya (CR163) 2015; 12
Joshi, Almeida, da Costa, Skaarud, de Pádua, Knutsen, Moen, Alvarez (CR66) 2021; 537
Currie, Hawk, Rohren, Vial, Klein (CR25) 2019; 50
Griot, Allal, Phocas, Brard-Fudulea, Morvezen, Haffray, François, Morin, Bestin, Bruant, Cariou, Peyrou, Brunier, Vandeputte (CR49) 2021; 12
LeCun, Bengio, Hinton (CR78) 2015; 521
Wang, Xin, Zhu, Wang, Wang, Ni, Song, Liu, Wang, Bao, Hu (CR146) 2022; 9
Fan, Li (CR42) 2001; 96
Zhu, Ni, Xing, Wang, Huang, Hu, Hu, Wu, Bao (CR165) 2021; 545
Sato, Hosoya, Yoshikawa, Ohki, Kobayashi, Itou, Kikuchi (CR116) 2019; 9
Gao, Wang, Liu, Ma, Jin, Liu, Wang, Yan, Li (CR45) 2023; 10
Gianola, Okut, Weigel, Rosa (CR46) 2011; 12
Cai, Gao, J (CR16) 2019; 20
Cong, Yang, Zhang, Li, Guo, Huang, Kwong (CR21) 2023; 32
Khan, Khan, Ullah, Alam, Bangash, Suud (CR72) 2022; 16
Gundappa, Robledo, Hamilton, Houston, Prendergast, Macqueen (CR50) 2023
Zhao, Li, Zhang, Zhu, Liu, Lu, Ye (CR162) 2018; 61
Luo, Yu, Bao, Xiang, Li (CR92) 2022; 557
Song, Dong, Yan, Wang, Tian, Hu (CR121) 2023; 1
Bolger, Morrison, Vance, Lee, Farid (CR14) 2012; 3
Du, Stöck, Kneitz, Klopp, Woltering, Adolfi, Feron, Prokopov, Makunin, Kichigin, Schmidt, Fischer, Kuhl, Wuertz, Gessner, Kloas, Cabau, Iampietro, Parrinello, Tomlinson (CR39) 2020; 4
Ayub, Zhao, Meloy, Sullivan, Pfefferbaum, Adeli, Pohl (CR5) 2020; 12329
Barría, Peñaloza, Papadopoulou, Mahmuddin, Doeschl-Wilson, Benzie, Houston, Wiener (CR9) 2023; 16
Guzelbulut, Suzuki, Shimono (CR54) 2022; 8
Bellot, de Los, Pérez-Enciso (CR11) 2018; 210
Meuwissen, Hayes, Goddard (CR94) 2001; 157
Zhang, Li, Liu, Gu, Ye, Zhang, Li, Jiang, Wang, Fang (CR161) 2021; 534
Slatko, Gardner, Ausubel (CR120) 2018; 122
Baur, Denner, Wiestler, Albarqouni, Navab (CR10) 2020; 69
Kjetså, Ødegård, Meuwissen (CR74) 2020; 526
Nguyen, Premachandra, Kilian, Knibb (CR99) 2018; 19
Shi, Yuan, Yang, Du, Wang, Sheng, Wu, Xiao (CR119) 2018; 83
Jiang, Li, Dong, Soowannayan (CR65) 2023; 10
Ilnicka, Schneider (CR63) 2023; 3
Tarassenko (CR130) 1995; 346
Dou, Li, Fu, Jiao, Li, Li, Wang, Hu, Wang, Bao (CR38) 2016; 6
Ke, Wang, Bai, Zhao, Gong, Deng, Qu, Suo, Chen, Zhou, Xu (CR70) 2022; 553
Kitzman, Mackenzie, Adey, Hiatt, Patwardhan, Sudmant, Ng, Alkan, Qiu, Eichler, Shendure (CR73) 2011; 29
Chaudhari, Mithal, Polatkan, Ramanath (CR18) 2021; 12
Sun, Shi, Liu, Dong, Plant, Wang, Zhou (CR126) 2018; 275
He, Liu, Tao (CR56) 2020; 31
Gianola, van Kaam (CR47) 2008; 178
CR85
Xiao, Liang, Liu (CR149) 2022; 52
Wang, Ren, Zhao, Li, Kong, Xu, Hu, Hu, Bao (CR144) 2022; 549
Dai, Kong, Liu, Lu, Sui, Meng, Luan (CR26) 2020; 527
Li, Xu, Jiang, Xiao, Deng, Han (CR81) 2020; 8
Kelley, Snoek, Rinn (CR71) 2016; 26
Piepho (CR110) 2009; 49
Vallejo, Leeds, Fragomeni, Gao, Hernandez, Misztal, Welch, Wiens, Palti (CR132) 2016; 7
Hu, Chitnis, Monos, Dinh (CR62) 2021; 82
Tsairidou, Hamilton, Robledo, Bron, Houston (CR131) 2020; 10
Xu, Cheng, Guo, Han, Liu, Fang (CR151) 2021; 27
Hornik, Stinchcombe, White (CR61) 1989; 2
Tan, Ransangan (CR129) 2015; 235
Palaiokostas (CR104) 2021; 20
Forcada, Aguilar (CR44) 2000; 16
Ho, Urban, Mills (CR58) 2020; 21
Sargolzaei, Chesnais, Schenkel (CR115) 2014; 15
Novakovsky, Dexter, Libbrecht, Wasserman, Mostafavi (CR101) 2023; 24
Song, Dong, Yan, Wang, Tian, Sun, Dong, Zhu, Hu (CR122) 2022; 15
Wang, Chakraborty, Yu (CR138) 2022; 44
Kriegeskorte, Golan (CR76) 2019; 29
CR98
Wang, Yu, Li, Zhang, Xiang (CR140) 2017; 35
Clark, van der Werf (CR19) 2013; 1019
Horn, Meuwissen, Moghadam, Hillestad, Sonesson (CR60) 2020; 519
Okut, Wu, Rosa, Bauck, Woodward, Schnabel, Taylor, Gianola (CR102) 2013; 45
Liao, Zhou, Liu, Jin, Li, Liu, Fan, Zou, Mu, Shen, Liu, Xiao, Yuan, Liu (CR83) 2021; 42
Yoshida, Bangera, Carvalheiro, Correa, Figueroa, Lhorente, Yáñez (CR153) 2018; 8
de Los, Brunner, Hadlich, Rebl, Kühn, Wittenburg, Goldammer, Verleih (CR29) 2020; 11
Wang, Yang, Li, Liu (CR139) 2022; 13
Talukder, Barham, Li, Hu (CR127) 2021; 22
Balagourouchetty, Pragatheeswaran, Pottakkat, Ramkumar (CR6) 2020; 24
Dias, Torkamani (CR36) 2019; 11
VanRaden (CR134) 2008; 91
Stokowski, Sobiegraj, Kulczykowska (CR124) 2023; 10
Dong, Xiao, Wang, Wang (CR37) 2016; 17
Browning, Zhou, Browning (CR15) 2018; 103
Long, Gianola, Rosa, Weigel, Kranis, González-Recio (CR89) 2010; 92
Pérez-Rodríguez, Gianola, Weigel, Rosa, Crossa (CR109) 2013; 91
Zenger, Khatkar, Jones, Khalilisamani, Jerry, Raadsma (CR159) 2019; 9
Collard, Mackill (CR20) 2008; 363
Joshi, Skaaurd, Tola Alvarez (CR68) 2021; 138
Lee, Schatz (CR79) 2012; 28
Allal, Nguyen (CR1) 2022; 2467
Liu, Luo, Ma, Wang, Shu, Su, Qu (CR87) 2020; 11
Delomas, Hollenbeck, Matt, Thompson (CR32) 2023; 562
Wang, Yu, Yuan, Zhang, Huang, Li, Xiang (CR141) 2017; 18
Aslam, Carraro, Bestin, Cariou, Sonesson, Bruant, Haffray, Bargelloni, Meuwissen (CR3) 2018; 19
Cuevas, Montesinos-López, Juliana, Guzmán, Pérez-Rodríguez, González-Bucio, Burgueño, Montesinos-López, Crossa (CR24) 2019; 9
Barabaschi, Tondelli, Desiderio, Volante, Vaccino, Valè, Cattivelli (CR7) 2016; 242
Bargelloni, Tassiello, Babbucci, Ferraresso, Franch, Montanucci, Carnier (CR8) 2021; 20
Liu, Dong, Gu, Han, Zhang, Fang, Wang (CR86) 2019; 21
Rubinacci, Ribeiro, Hofmeister, Delaneau (CR114) 2021; 53
Liu (CR88) 2020; 266
Wang, Yu, Zhang, Zhang, Huang, Xiang, Li (CR142) 2019; 505
Fearnbach, Durban, Parsons, Cla
GG Monkman (252_CR95) 2019; 10
N Kriegeskorte (252_CR76) 2019; 29
E Lieberman-Aiden (252_CR84) 2009; 326
Q Wang (252_CR141) 2017; 18
J Zhou (252_CR163) 2015; 12
A Barría (252_CR9) 2023; 16
H Lee (252_CR79) 2012; 28
S Kosugi (252_CR75) 2019; 20
TK Soon (252_CR123) 2019; 38
DT Bolger (252_CR14) 2012; 3
H Song (252_CR122) 2022; 15
HP Piepho (252_CR110) 2009; 49
D Gianola (252_CR48) 2010; 138
L Tarassenko (252_CR130) 1995; 346
R Cong (252_CR21) 2023; 32
Y Gao (252_CR45) 2023; 10
Y Wang (252_CR146) 2022; 9
K Watanabe (252_CR147) 2019; 51
RL Vallejo (252_CR132) 2016; 7
J Lv (252_CR93) 2022; 114
M Costanzo (252_CR23) 2019; 177
K Hornik (252_CR61) 1989; 2
OA Montesinos-López (252_CR97) 2019; 9
N Long (252_CR89) 2010; 92
K Du (252_CR39) 2020; 4
H Jiang (252_CR65) 2023; 10
MH Kjetså (252_CR74) 2020; 526
O Defeo (252_CR31) 2013; 18
JO Kitzman (252_CR73) 2011; 29
JA Bhat (252_CR13) 2016; 7
A Wolc (252_CR148) 2022; 54
CA Langtimm (252_CR77) 2004; 20
R Joshi (252_CR66) 2021; 537
A Álvarez-Ellacuría (252_CR2) 2020; 77
T Hu (252_CR62) 2021; 82
X Yuan (252_CR155) 2021; 12
AC Bertolotti (252_CR12) 2020; 11
AP Gutierrez (252_CR53) 2020; 51
S Das (252_CR27) 2016; 48
M Sargolzaei (252_CR115) 2014; 15
K Wang (252_CR139) 2022; 13
BL Browning (252_CR15) 2018; 103
S DeWeerdt (252_CR34) 2020; 588
H Song (252_CR121) 2023; 1
J Wang (252_CR138) 2022; 44
C-H Zhang (252_CR160) 2010; 38
GM Yoshida (252_CR153) 2018; 8
Y LeCun (252_CR78) 2015; 521
R Nielsen (252_CR100) 2011; 12
S Shi (252_CR118) 2021; 22
S Tsairidou (252_CR131) 2020; 10
Y Li (252_CR82) 2009; 10
JCA Read (252_CR113) 2021; 7
S Chaudhari (252_CR18) 2021; 12
H Okut (252_CR102) 2013; 45
H Fearnbach (252_CR43) 2012; 22
L Bargelloni (252_CR8) 2021; 20
S Honari (252_CR59) 2023; 45
R Joshi (252_CR68) 2021; 138
X Sun (252_CR126) 2018; 275
TA Delomas (252_CR32) 2023; 562
AP Gutierrez (252_CR52) 2018; 9
R Poplin (252_CR112) 2018; 36
R Luo (252_CR90) 2019; 10
M Stokowski (252_CR124) 2023; 10
L Ortega (252_CR103) 2016; 545
L Dong (252_CR37) 2016; 17
L Balagourouchetty (252_CR6) 2020; 24
P Dai (252_CR26) 2020; 527
T Liu (252_CR87) 2020; 11
KS Tan (252_CR129) 2015; 235
R Ayub (252_CR5) 2020; 12329
A Talukder (252_CR127) 2021; 22
ML Aslam (252_CR3) 2018; 19
D Gianola (252_CR47) 2008; 178
B Lehner (252_CR80) 2013; 14
W Zhang (252_CR161) 2021; 534
J Cuevas (252_CR24) 2019; 9
J Fan (252_CR42) 2001; 96
C Zannella (252_CR156) 2017; 15
MK Gundappa (252_CR50) 2023
S Shi (252_CR119) 2018; 83
A Khan (252_CR72) 2022; 16
Y Wang (252_CR145) 2018; 20
S Rubinacci (252_CR114) 2021; 53
L Wan (252_CR136) 2020; 20
L Cai (252_CR16) 2019; 20
A Kamilaris (252_CR69) 2018; 156
G Novakovsky (252_CR101) 2023; 24
Q Xing (252_CR150) 2017; 7
J Zeng (252_CR157) 2024; 578
H Wang (252_CR137) 2022; 9
Y Guo (252_CR51) 2021; 30
W Yang (252_CR152) 2020; 13
SS Ho (252_CR58) 2020; 21
GM Yoshida (252_CR154) 2019; 9
X Zhu (252_CR165) 2021; 545
BC Collard (252_CR20) 2008; 363
YH Liao (252_CR83) 2021; 42
Y Wang (252_CR143) 2018; 96
V Popic (252_CR111) 2023; 20
C Baur (252_CR10) 2020; 69
SA Clark (252_CR19) 2013; 1019
M Zhou (252_CR164) 2023; 574
I Subramanian (252_CR125) 2020; 14
DR Kelley (252_CR71) 2016; 26
D Segebarth (252_CR117) 2020; 9
R Dias (252_CR35) 2022; 11
G Liu (252_CR86) 2019; 21
JG Wallace (252_CR135) 2018; 52
G Currie (252_CR25) 2019; 50
A Ilnicka (252_CR63) 2023; 3
C Palaiokostas (252_CR106) 2018; 9
SS Horn (252_CR60) 2020; 519
C Peñaloza (252_CR108) 2021; 113
K Correa (252_CR22) 2017; 49
P Pérez-Rodríguez (252_CR109) 2013; 91
CC Chang (252_CR17) 2022; 22
K Tan (252_CR128) 2020; 701
P Bellot (252_CR11) 2018; 210
R Joshi (252_CR67) 2021; 53
OA Montesinos-López (252_CR96) 2019; 9
A Derry (252_CR33) 2023; 20
NH Nguyen (252_CR99) 2018; 19
Y Xiao (252_CR149) 2022; 52
BFX de Moraes (252_CR30) 2018; 38
D Gianola (252_CR46) 2011; 12
J Forcada (252_CR44) 2000; 16
L Xu (252_CR151) 2021; 27
PM VanRaden (252_CR134) 2008; 91
R-Pérez L de Los (252_CR29) 2020; 11
BP de Almeida (252_CR28) 2022; 54
B Hayes (252_CR55) 2013; 1019
252_CR85
C Palaiokostas (252_CR104) 2021; 20
Z Luo (252_CR92) 2022; 557
RL Vallejo (252_CR133) 2017; 49
F Allal (252_CR1) 2022; 2467
Q Ke (252_CR70) 2022; 553
JEJ Hillen (252_CR57) 2017; 479
KR Zenger (252_CR159) 2019; 9
A Ehret (252_CR40) 2015; 47
J Dou (252_CR38) 2016; 6
Z Luo (252_CR91) 2024; 581
Q Zeng (252_CR158) 2022; 50
C Palaiokostas (252_CR105) 2016; 6
R Griot (252_CR49) 2021; 12
C Palaiokostas (252_CR107) 2019; 10
F He (252_CR56) 2020; 31
BE Slatko (252_CR120) 2018; 122
E Falconer (252_CR41) 2012; 9
D Barabaschi (252_CR7) 2016; 242
N Jepsen (252_CR64) 2015; 3
Q Wang (252_CR140) 2017; 35
252_CR98
TH Meuwissen (252_CR94) 2001; 157
J Zhao (252_CR162) 2018; 61
ML Aslam (252_CR4) 2020; 11
Q Wang (252_CR142) 2019; 505
Y Wang (252_CR144) 2022; 549
M Sato (252_CR116) 2019; 9
R Dias (252_CR36) 2019; 11
C Guzelbulut (252_CR54) 2022; 8
Z Liu (252_CR88) 2020; 266
J Li (252_CR81) 2020; 8
References_xml – volume: 527
  year: 2020
  ident: CR26
  article-title: Evaluation of the utility of genomic information to improve genetic evaluation of feed efficiency traits of the pacific white shrimp
  publication-title: Aquaculture
  doi: 10.1016/j.aquaculture.2020.735421
– volume: 157
  start-page: 1819
  year: 2001
  end-page: 1829
  ident: CR94
  article-title: Prediction of total genetic value using genome-wide dense marker maps
  publication-title: Genetics
  doi: 10.1093/genetics/157.4.1819
– volume: 9
  start-page: 1545
  year: 2019
  end-page: 1556
  ident: CR97
  article-title: New deep learning genomic-based prediction model for multiple traits with binary, ordinal, and continuous phenotypes
  publication-title: G3
  doi: 10.1534/g3.119.300585
– volume: 52
  start-page: 421
  year: 2018
  end-page: 444
  ident: CR135
  article-title: On the road to breeding 4.0: unraveling the good, the bad, and the boring of crop quantitative genomics
  publication-title: Annu Rev Genet
  doi: 10.1146/annurev-genet-120116-024846
– volume: 156
  start-page: 312
  year: 2018
  end-page: 322
  ident: CR69
  article-title: A review of the use of convolutional neural networks in agriculture
  publication-title: J Agric Sci
  doi: 10.1017/S0021859618000436
– volume: 549
  year: 2022
  ident: CR144
  article-title: Estimating genetic parameters of muscle imaging trait with 2b-RAD SNP markers in Zhikong scallop ( )
  publication-title: Aquaculture
  doi: 10.1016/j.aquaculture.2021.737715
– volume: 29
  start-page: R231
  year: 2019
  end-page: R236
  ident: CR76
  article-title: Neural network models and deep learning
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2019.02.034
– volume: 18
  start-page: 30
  year: 2013
  ident: CR31
  article-title: Impacts of climate variability on Latin American small-scale fisheries
  publication-title: Ecol Soc
  doi: 10.5751/ES-05971-180430
– volume: 53
  start-page: 37
  year: 2021
  ident: CR67
  article-title: Bayesian genomic models boost prediction accuracy for survival to infection in Nile tilapia ( )
  publication-title: Genet Sel Evol
  doi: 10.1186/s12711-021-00629-y
– volume: 9
  start-page: 2597
  year: 2019
  end-page: 2607
  ident: CR154
  article-title: Genome-wide association study and cost-efficient genomic predictions for growth and fillet yield in Nile tilapia ( )
  publication-title: G3
  doi: 10.1534/g3.119.400116
– volume: 36
  start-page: 983
  year: 2018
  end-page: 987
  ident: CR112
  article-title: A universal SNP and small-indel variant caller using deep neural networks
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.4235
– volume: 20
  start-page: 665
  year: 2019
  ident: CR16
  article-title: DeepSV: accurate calling of genomic deletions from high-throughput sequencing data using deep convolutional neural network
  publication-title: BMC Bioinform
  doi: 10.1186/s12859-019-3299-y
– volume: 48
  start-page: 1284
  year: 2016
  end-page: 1287
  ident: CR27
  article-title: Next-generation genotype imputation service and methods
  publication-title: Nat Genet
  doi: 10.1038/ng.3656
– volume: 9
  start-page: 82
  year: 2018
  ident: CR106
  article-title: Accuracy of genomic evaluations of juvenile growth rate in common carp ( ) using genotyping by sequencing
  publication-title: Front Genet
  doi: 10.3389/fgene.2018.00082
– volume: 505
  start-page: 212
  year: 2019
  end-page: 216
  ident: CR142
  article-title: Evaluation on the genomic selection in for the resistance against
  publication-title: Aquaculture
  doi: 10.1016/j.aquaculture.2019.02.055
– volume: 15
  start-page: 478
  year: 2014
  ident: CR115
  article-title: A new approach for efficient genotype imputation using information from relatives
  publication-title: BMC Genom
  doi: 10.1186/1471-2164-15-478
– volume: 4
  start-page: 841
  year: 2020
  end-page: 852
  ident: CR39
  article-title: The sterlet sturgeon genome sequence and the mechanisms of segmental rediploidization
  publication-title: Nat Ecol Evol
  doi: 10.1038/s41559-020-1166-x
– volume: 113
  start-page: 2096
  year: 2021
  end-page: 2107
  ident: CR108
  article-title: Development and testing of a combined species SNP array for the European seabass ( ) and gilthead seabream ( )
  publication-title: Genomics
  doi: 10.1016/j.ygeno.2021.04.038
– volume: 210
  start-page: 809
  year: 2018
  end-page: 819
  ident: CR11
  article-title: Can deep learning improve genomic prediction of complex human traits?
  publication-title: Genetics
  doi: 10.1534/genetics.118.301298
– volume: 9
  start-page: 391
  year: 2018
  ident: CR52
  article-title: Genomic selection for growth traits in pacific oyster ( ): potential of low-density marker panels for breeding value prediction
  publication-title: Front Genet
  doi: 10.3389/fgene.2018.00391
– volume: 20
  year: 2021
  ident: CR104
  article-title: Predicting for disease resistance in aquaculture species using machine learning models
  publication-title: Aquac Rep
  doi: 10.1016/j.aqrep.2021.100660
– volume: 50
  start-page: 66
  year: 2022
  end-page: 74
  ident: CR158
  article-title: Aquaculture Molecular Breeding Platform (AMBP): a comprehensive web server for genotype imputation and genetic analysis in aquaculture
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkac424
– volume: 38
  start-page: 223
  year: 2019
  end-page: 232
  ident: CR123
  article-title: Extrinsic factors and marine bivalve mass mortalities: an overview
  publication-title: J Shellfish Res
  doi: 10.2983/035.038.0202
– volume: 8
  year: 2022
  ident: CR54
  article-title: Singular value decomposition-based gait characterization
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2022.e12006
– volume: 266
  year: 2020
  ident: CR88
  article-title: Soft-shell shrimp recognition based on an improved AlexNet for quality evaluations
  publication-title: J Food Eng
  doi: 10.1016/j.jfoodeng.2019.109698
– volume: 19
  start-page: 43
  year: 2018
  ident: CR3
  article-title: Genetics of resistance to photobacteriosis in gilthead sea bream ( ) using 2b-RAD sequencing
  publication-title: BMC Genet
  doi: 10.1186/s12863-018-0631-x
– volume: 177
  start-page: 85
  year: 2019
  end-page: 100
  ident: CR23
  article-title: Global genetic networks and the genotype-to-phenotype relationship
  publication-title: Cell
  doi: 10.1016/j.cell.2019.01.033
– volume: 178
  start-page: 2289
  year: 2008
  end-page: 2303
  ident: CR47
  article-title: Reproducing kernel Hilbert spaces regression methods for genomic assisted prediction of quantitative traits
  publication-title: Genetics
  doi: 10.1534/genetics.107.084285
– volume: 21
  start-page: 806
  year: 2019
  end-page: 812
  ident: CR86
  article-title: Evaluation of genomic selection for seven economic traits in yellow drum ( )
  publication-title: Mar Biotechnol
  doi: 10.1007/s10126-019-09925-7
– volume: 11
  start-page: 70
  year: 2019
  ident: CR36
  article-title: Artificial intelligence in clinical and genomic diagnostics
  publication-title: Genome Med
  doi: 10.1186/s13073-019-0689-8
– volume: 15
  start-page: 182
  year: 2017
  ident: CR156
  article-title: Microbial diseases of bivalve mollusks: infections, immunology and antimicrobial defense
  publication-title: Mar Drugs
  doi: 10.3390/md15060182
– ident: CR85
– volume: 22
  start-page: 1689
  year: 2012
  end-page: 1700
  ident: CR43
  article-title: Photographic mark-recapture analysis of local dynamics within an open population of dolphins
  publication-title: Ecol Appl
  doi: 10.1890/12-0021.1
– volume: 545
  start-page: 203
  year: 2016
  end-page: 213
  ident: CR103
  article-title: Climate change influences on abundance, individual size and body abnormalities in a sandy beach clam
  publication-title: Mar Ecol Prog Ser
  doi: 10.3354/meps11643
– volume: 9
  start-page: 6904
  year: 2019
  ident: CR116
  article-title: A highly flexible and repeatable genotyping method for aquaculture studies based on target amplicon sequencing using next-generation sequencing technology
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-43336-x
– volume: 545
  year: 2021
  ident: CR165
  article-title: Genomic prediction of growth traits in scallops using convolutional neural networks
  publication-title: Aquaculture
  doi: 10.1016/j.aquaculture.2021.737171
– volume: 235
  start-page: 1
  year: 2015
  end-page: 25
  ident: CR129
  article-title: Factors influencing the toxicity, detoxification and biotransformation of paralytic shellfish toxins
  publication-title: Rev Environ Contam Toxicol
– volume: 103
  start-page: 338
  year: 2018
  end-page: 348
  ident: CR15
  article-title: A one-penny imputed genome from next-generation reference panels
  publication-title: Am J Hum Genet
  doi: 10.1016/j.ajhg.2018.07.015
– volume: 14
  start-page: 1177932219899051
  year: 2020
  ident: CR125
  article-title: Multi-omics data integration, interpretation, and its application
  publication-title: Bioinform Biol Insights
  doi: 10.1177/1177932219899051
– volume: 45
  start-page: 34
  year: 2013
  ident: CR102
  article-title: Predicting expected progeny difference for marbling score in Angus cattle using artificial neural networks and Bayesian regression models
  publication-title: Genet Sel Evol
  doi: 10.1186/1297-9686-45-34
– volume: 20
  start-page: 559
  year: 2023
  end-page: 568
  ident: CR111
  article-title: Cue: a deep-learning framework for structural variant discovery and genotyping
  publication-title: Nat Methods
  doi: 10.1038/s41592-023-01799-x
– volume: 10
  start-page: 581
  year: 2020
  end-page: 590
  ident: CR131
  article-title: Optimizing low-cost genotyping and imputation strategies for genomic selection in Atlantic salmon
  publication-title: G3-Genes Genom Genet
  doi: 10.1534/g3.119.400800
– volume: 534
  year: 2021
  ident: CR161
  article-title: Evaluation for the effect of low-coverage sequencing on genomic selection in large yellow croaker
  publication-title: Aquaculture
  doi: 10.1016/j.aquaculture.2020.736323
– volume: 50
  start-page: 477
  year: 2019
  end-page: 487
  ident: CR25
  article-title: Machine learning and deep learning in medical imaging: intelligent imaging
  publication-title: J Med Imaging Radiat Sci
  doi: 10.1016/j.jmir.2019.09.005
– volume: 24
  start-page: 125
  year: 2023
  end-page: 137
  ident: CR101
  article-title: Obtaining genetics insights from deep learning via explainable artificial intelligence
  publication-title: Nat Rev Genet
  doi: 10.1038/s41576-022-00532-2
– volume: 19
  start-page: 107
  year: 2018
  ident: CR99
  article-title: Genomic prediction using DArT-Seq technology for yellowtail kingfish
  publication-title: BMC Genom
  doi: 10.1186/s12864-018-4493-4
– volume: 35
  start-page: 1221
  year: 2017
  end-page: 1229
  ident: CR140
  article-title: Predictive ability of genomic selection models for breeding value estimation on growth traits of Pacific white shrimp
  publication-title: Chin J Oceanol Limnol
  doi: 10.1007/s00343-017-6038-0
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: CR78
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 2467
  start-page: 469
  year: 2022
  end-page: 491
  ident: CR1
  article-title: Genomic selection in aquaculture species
  publication-title: Methods Mol Biol
  doi: 10.1007/978-1-0716-2205-6_17
– volume: 701
  year: 2020
  ident: CR128
  article-title: Ocean acidification and adaptive bivalve farming
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2019.134794
– volume: 10
  start-page: 2045
  year: 2019
  end-page: 2056
  ident: CR95
  article-title: Using machine vision to estimate fish length from images using regional convolutional neural networks
  publication-title: Methods Ecol Evol
  doi: 10.1111/2041-210X.13282
– volume: 11
  start-page: 841
  year: 2020
  ident: CR29
  article-title: Comparative analysis of the transcriptome and distribution of putative SNPs in two rainbow trout ( ) breeding strains by using next-generation sequencing
  publication-title: Genes
  doi: 10.3390/genes11080841
– volume: 92
  start-page: 209
  year: 2010
  end-page: 225
  ident: CR89
  article-title: Radial basis function regression methods for predicting quantitative traits using SNP markers
  publication-title: Genet Res
  doi: 10.1017/S0016672310000157
– volume: 22
  start-page: bbaa177
  year: 2021
  ident: CR127
  article-title: Interpretation of deep learning in genomics and epigenomics
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbaa177
– volume: 20
  year: 2021
  ident: CR8
  article-title: Data imputation and machine learning improve association analysis and genomic prediction for resistance to fish photobacteriosis in the gilthead sea bream
  publication-title: Aquac Rep
  doi: 10.1016/j.aqrep.2021.100661
– volume: 3
  start-page: 813
  year: 2012
  end-page: 822
  ident: CR14
  article-title: A computer-assisted system for photographic mark–recapture analysis
  publication-title: Methods Ecol Evol
  doi: 10.1111/j.2041-210X.2012.00212.x
– volume: 51
  start-page: 1339
  year: 2019
  end-page: 1348
  ident: CR147
  article-title: A global overview of pleiotropy and genetic architecture in complex traits
  publication-title: Nat Genet
  doi: 10.1038/s41588-019-0481-0
– volume: 12
  year: 2021
  ident: CR49
  article-title: Optimization of genomic selection to improve disease resistance in two marine fishes, the European sea bass ( ) and the gilthead sea bream ( )
  publication-title: Front Genet
  doi: 10.3389/fgene.2021.665920
– volume: 12
  start-page: 87
  year: 2011
  ident: CR46
  article-title: Predicting complex quantitative traits with Bayesian neural networks: a case study with Jersey cows and wheat
  publication-title: BMC Genom
– volume: 13
  start-page: 187
  year: 2020
  end-page: 214
  ident: CR152
  article-title: Crop phenomics and high-throughput phenotyping: past decades, current challenges, and future perspectives
  publication-title: Mol Plant
  doi: 10.1016/j.molp.2020.01.008
– volume: 29
  start-page: 59
  year: 2011
  end-page: 63
  ident: CR73
  article-title: Haplotype-resolved genome sequencing of a Gujarati Indian individual
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.1740
– volume: 574
  year: 2023
  ident: CR164
  article-title: The study of the genomic selection of white gill disease resistance in large yellow croaker ( )
  publication-title: Aquaculture
  doi: 10.1016/j.aquaculture.2023.739682
– volume: 11
  start-page: 108
  year: 2020
  ident: CR87
  article-title: High-throughput sequencing with the preselection of markers is a good alternative to SNP chips for genomic prediction in broilers
  publication-title: Front Genet
  doi: 10.3389/fgene.2020.00108
– volume: 12
  start-page: 443
  year: 2011
  end-page: 451
  ident: CR100
  article-title: Genotype and SNP calling from next-generation sequencing data
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg2986
– volume: 519
  year: 2020
  ident: CR60
  article-title: Accuracy of selection for omega-3 fatty acid content in Atlantic salmon fillets
  publication-title: Aquaculture
  doi: 10.1016/j.aquaculture.2019.734767
– volume: 30
  start-page: 2669
  year: 2021
  end-page: 2681
  ident: CR51
  article-title: Deep likelihood network for image restoration with multiple degradation levels
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2021.3051767
– volume: 45
  start-page: 6415
  year: 2023
  end-page: 6427
  ident: CR59
  article-title: Temporal representation learning on monocular videos for 3D human pose estimation
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2022.3215307
– volume: 562
  year: 2023
  ident: CR32
  article-title: Evaluating cost-effective genotyping strategies for genomic selection in oysters
  publication-title: Aquaculture
  doi: 10.1016/j.aquaculture.2022.738844
– volume: 553
  year: 2022
  ident: CR70
  article-title: GWAS and genomic prediction revealed potential for genetic improvement of large yellow croaker adapting to high plant protein diet
  publication-title: Aquaculture
  doi: 10.1016/j.aquaculture.2022.738090
– volume: 122
  year: 2018
  ident: CR120
  article-title: Overview of next-generation sequencing technologies
  publication-title: Curr Protoc Mol Biol
  doi: 10.1002/cpmb.59
– volume: 21
  start-page: 171
  year: 2020
  end-page: 189
  ident: CR58
  article-title: Structural variation in the sequencing era
  publication-title: Nat Rev Genet
  doi: 10.1038/s41576-019-0180-9
– volume: 20
  start-page: 438
  year: 2004
  end-page: 463
  ident: CR77
  article-title: Survival estimates for Florida manatees from the photo-identification of individuals
  publication-title: Mar Mamm Sci
  doi: 10.1111/j.1748-7692.2004.tb01171.x
– volume: 96
  start-page: 1348
  year: 2001
  end-page: 1360
  ident: CR42
  article-title: Variable selection via nonconcave penalized likelihood and its oracle properties
  publication-title: J Am Stat Assoc
  doi: 10.1198/016214501753382273
– volume: 1019
  start-page: 149
  year: 2013
  end-page: 169
  ident: CR55
  article-title: Overview of statistical methods for genome-wide association studies (GWAS)
  publication-title: Methods Mol Biol
  doi: 10.1007/978-1-62703-447-0_6
– volume: 49
  start-page: 17
  year: 2017
  ident: CR133
  article-title: Genomic selection models double the accuracy of predicted breeding values for bacterial cold water disease resistance compared to a traditional pedigree-based model in rainbow trout aquaculture
  publication-title: Genet Sel Evol
  doi: 10.1186/s12711-017-0293-6
– volume: 138
  start-page: 338
  year: 2021
  end-page: 348
  ident: CR68
  article-title: Experimental validation of genetic selection for resistance against via different routes of infection in the commercial Nile tilapia breeding programme
  publication-title: J Anim Breed Genet
  doi: 10.1111/jbg.12516
– volume: 14
  start-page: 168
  year: 2013
  end-page: 178
  ident: CR80
  article-title: Genotype to phenotype: lessons from model organisms for human genetics
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg3404
– volume: 326
  start-page: 289
  issue: 5950
  year: 2009
  end-page: 293
  ident: CR84
  article-title: Comprehensive mapping of long-range interactions reveals folding principles of the human genome
  publication-title: Science
  doi: 10.1126/science.1181369
– volume: 53
  start-page: 120
  year: 2021
  end-page: 126
  ident: CR114
  article-title: Efficient phasing and imputation of low-coverage sequencing data using large reference panels
  publication-title: Nat Genet
  doi: 10.1038/s41588-020-00756-0
– volume: 7
  start-page: 1616
  year: 2017
  end-page: 1626
  ident: CR150
  article-title: Using a multiscale image processing method to characterize the periodic growth patterns on scallop shells
  publication-title: Ecol Evol
  doi: 10.1002/ece3.2789
– volume: 16
  start-page: 1001803
  year: 2022
  ident: CR72
  article-title: A computational classification method of breast cancer images using the VGGNet model
  publication-title: Front Comput Neurosci
  doi: 10.3389/fncom.2022.1001803
– volume: 27
  start-page: 68
  year: 2021
  end-page: 82
  ident: CR151
  article-title: FlyFusion: realtime dynamic scene reconstruction using a flying depth camera
  publication-title: IEEE Trans vis Comput Graph
  doi: 10.1109/TVCG.2019.2930691
– volume: 8
  start-page: 719
  year: 2018
  end-page: 726
  ident: CR153
  article-title: Genomic prediction accuracy for resistance against in farmed rainbow trout
  publication-title: G3
  doi: 10.1534/g3.117.300499
– volume: 18
  start-page: 45
  year: 2017
  ident: CR141
  article-title: Effects of marker density and population structure on the genomic prediction accuracy for growth trait in Pacific white shrimp
  publication-title: BMC Genet
  doi: 10.1186/s12863-017-0507-5
– volume: 16
  start-page: 767
  year: 2000
  end-page: 793
  ident: CR44
  article-title: Use of photographic identification in capture-recapture studies of mediterranean monk seals
  publication-title: Mar Mamm Sci
  doi: 10.1111/j.1748-7692.2000.tb00971.x
– volume: 49
  start-page: 15
  year: 2017
  ident: CR22
  article-title: The use of genomic information increases the accuracy of breeding value predictions for sea louse ( ) resistance in Atlantic salmon ( )
  publication-title: Genet Sel Evol
  doi: 10.1186/s12711-017-0291-8
– volume: 13
  start-page: 2247
  year: 2022
  ident: CR139
  article-title: Systematic evaluation of genomic prediction algorithms for genomic prediction and breeding of aquatic animals
  publication-title: Genes
  doi: 10.3390/genes13122247
– volume: 47
  start-page: 22
  year: 2015
  ident: CR40
  article-title: Application of neural networks with back-propagation to genome-enabled prediction of complex traits in Holstein-Friesian and German Fleckvieh cattle
  publication-title: Genet Sel Evol
  doi: 10.1186/s12711-015-0097-5
– volume: 9
  start-page: 693
  year: 2019
  ident: CR159
  article-title: Genomic selection in aquaculture: application, limitations and opportunities with special reference to marine shrimp and pearl oysters
  publication-title: Front Genet
  doi: 10.3389/fgene.2018.00693
– volume: 20
  start-page: 117
  year: 2019
  ident: CR75
  article-title: Comprehensive evaluation of structural variation detection algorithms for whole genome sequencing
  publication-title: Genome Biol
  doi: 10.1186/s13059-019-1720-5
– volume: 275
  start-page: 897
  year: 2018
  end-page: 908
  ident: CR126
  article-title: Transferring deep knowledge for object recognition in Low-quality underwater videos
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.09.044
– volume: 537
  year: 2021
  ident: CR66
  article-title: Genomic selection for resistance to Francisellosis in commercial Nile tilapia population: genetic and genomic parameters, correlation with growth rate and predictive ability
  publication-title: Aquaculture
  doi: 10.1016/j.aquaculture.2021.736515
– volume: 10
  start-page: 1104436
  year: 2023
  ident: CR124
  article-title: Potential role of climate change on the spread of salmonid skin condition: the biogeochemical hypothesis on ulcerative dermal necrosis on the Słupia River - Poland
  publication-title: Front Mar Sci
  doi: 10.3389/fmars.2023.1104436
– volume: 31
  start-page: 5349
  year: 2020
  end-page: 5362
  ident: CR56
  article-title: Why ResNet works? Residuals generalize
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2020.2966319
– volume: 52
  start-page: 287
  year: 2022
  end-page: 300
  ident: CR149
  article-title: A transfer learning-based multi-instance learning method with weak labels
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2020.2973450
– volume: 38
  start-page: 115
  year: 2018
  ident: CR30
  article-title: Genomic selection prediction models comparing sequence capture and SNP array genotyping methods
  publication-title: Mol Breed
  doi: 10.1007/s11032-018-0865-3
– volume: 20
  start-page: 769
  year: 2018
  end-page: 779
  ident: CR145
  article-title: Predicting growth traits with genomic selection methods in Zhikong scallop ( )
  publication-title: Mar Biotechnol
  doi: 10.1007/s10126-018-9847-z
– volume: 54
  start-page: 31
  year: 2022
  ident: CR148
  article-title: Application of Bayesian genomic prediction methods to genome-wide association analyses
  publication-title: Genet Sel Evol
  doi: 10.1186/s12711-022-00724-8
– volume: 12
  start-page: 1
  year: 2021
  end-page: 32
  ident: CR18
  article-title: An attentive survey of attention models
  publication-title: ACM Trans Intell Syst Technol
  doi: 10.1145/3465055
– volume: 7
  start-page: 96
  year: 2016
  ident: CR132
  article-title: Evaluation of genome-enabled selection for bacterial cold water disease resistance using progeny performance data in rainbow trout: insights on genotyping methods and genomic prediction models
  publication-title: Front Genet
  doi: 10.3389/fgene.2016.00096
– volume: 11
  start-page: 5176
  year: 2020
  ident: CR12
  article-title: The structural variation landscape in 492 Atlantic salmon genomes
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-18972-x
– volume: 42
  start-page: 492
  year: 2021
  end-page: 501
  ident: CR83
  article-title: 3DPhenoFish: application for two- and three-dimensional fish morphological phenotype extraction from point cloud analysis
  publication-title: Zool Res
  doi: 10.24272/j.issn.2095-8137.2021.141
– volume: 138
  start-page: 959
  year: 2010
  end-page: 977
  ident: CR48
  article-title: A non-parametric mixture model for genome-enabled prediction of genetic value for a quantitative trait
  publication-title: Genetica
  doi: 10.1007/s10709-010-9478-4
– volume: 28
  start-page: 2097
  year: 2012
  end-page: 2105
  ident: CR79
  article-title: Genomic dark matter: the reliability of short read mapping illustrated by the genome mappability score
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts330
– volume: 1019
  start-page: 321
  year: 2013
  end-page: 330
  ident: CR19
  article-title: Genomic best linear unbiased prediction (gBLUP) for the estimation of genomic breeding values
  publication-title: Methods Mol Biol
  doi: 10.1007/978-1-62703-447-0_13
– volume: 15
  start-page: 274
  year: 2022
  end-page: 291
  ident: CR122
  article-title: Genomic selection and its research progress in aquaculture breeding
  publication-title: Rev Aquac
  doi: 10.1111/raq.12716
– volume: 578
  year: 2024
  ident: CR157
  article-title: Deep learning to obtain high-throughput morphological phenotypes and its genetic correlation with swimming performance in juvenile large yellow croaker
  publication-title: Aquaculture
  doi: 10.1016/j.aquaculture.2023.740051
– volume: 11
  year: 2020
  ident: CR4
  article-title: Genetic variation, GWAS and accuracy of prediction for host resistance to in farmed gilthead sea bream ( )
  publication-title: Front Genet
  doi: 10.3389/fgene.2020.594770
– volume: 54
  start-page: 613
  year: 2022
  end-page: 624
  ident: CR28
  article-title: DeepSTARR predicts enhancer activity from DNA sequence and enables the de novo design of synthetic enhancers
  publication-title: Nat Genet
  doi: 10.1038/s41588-022-01048-5
– volume: 91
  start-page: 3522
  year: 2013
  end-page: 3531
  ident: CR109
  article-title: Technical note: an R package for fitting Bayesian regularized neural networks with applications in animal breeding
  publication-title: J Anim Sci
  doi: 10.2527/jas.2012-6162
– volume: 96
  start-page: 2016
  year: 2018
  end-page: 2026
  ident: CR143
  article-title: Technical note: an R package for fitting sparse neural networks with application in animal breeding
  publication-title: J Anim Sci
  doi: 10.1093/jas/sky071
– volume: 20
  start-page: 1269
  year: 2023
  end-page: 1270
  ident: CR33
  article-title: Convolutional neural networks
  publication-title: Nat Methods
  doi: 10.1038/s41592-023-01973-1
– volume: 82
  start-page: 801
  year: 2021
  end-page: 811
  ident: CR62
  article-title: Next-generation sequencing technologies: an overview
  publication-title: Hum Immunol
  doi: 10.1016/j.humimm.2021.02.012
– volume: 83
  start-page: 107
  year: 2018
  end-page: 116
  ident: CR119
  article-title: Comprehensive assessment of genotype imputation performance
  publication-title: Hum Hered
  doi: 10.1159/000489758
– volume: 363
  start-page: 557
  year: 2008
  end-page: 572
  ident: CR20
  article-title: Marker-assisted selection: an approach for precision plant breeding in the twenty-first century
  publication-title: Philos Trans R Soc Lond B Biol Sci
  doi: 10.1098/rstb.2007.2170
– volume: 61
  start-page: 699
  year: 2018
  end-page: 710
  ident: CR162
  article-title: Semi-supervised learning-based live fish identification in aquaculture using modified deep convolutional generative adversarial networks
  publication-title: T ASABE
  doi: 10.13031/trans.12684
– volume: 2
  start-page: 359
  year: 1989
  end-page: 366
  ident: CR61
  article-title: Multilayer feedforward networks are universal approximators
  publication-title: Neural Netw
  doi: 10.1016/0893-6080(89)90020-8
– volume: 10
  start-page: 1259722
  year: 2023
  ident: CR65
  article-title: Editorial: the transmission and prevention of infectious diseases in aquatic animals
  publication-title: Front Mar Sci
  doi: 10.3389/fmars.2023.1259722
– volume: 479
  start-page: 742
  year: 2017
  end-page: 749
  ident: CR57
  article-title: Estimates of genetic variability and inbreeding in experimentally selected populations of European sea bass
  publication-title: Aquaculture
  doi: 10.1016/j.aquaculture.2017.07.012
– year: 2023
  ident: CR50
  article-title: High performance imputation of structural and single nucleotide variants in Atlantic salmon using low-coverage whole genome sequencing
  publication-title: bioRxiv
  doi: 10.1101/2023.03.05.531147
– volume: 11
  start-page: e75600
  year: 2022
  ident: CR35
  article-title: Rapid, reference-free human genotype imputation with denoising autoencoders
  publication-title: Elife
  doi: 10.7554/eLife.75600
– volume: 44
  start-page: 4419
  year: 2022
  end-page: 4431
  ident: CR138
  article-title: Transformer for 3D point clouds
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 242
  start-page: 3
  year: 2016
  end-page: 13
  ident: CR7
  article-title: Next generation breeding
  publication-title: Plant Sci
  doi: 10.1016/j.plantsci.2015.07.010
– volume: 7
  start-page: 221
  year: 2016
  ident: CR13
  article-title: Genomic selection in the era of next generation sequencing for complex traits in plant breeding
  publication-title: Front Genet
  doi: 10.3389/fgene.2016.00221
– volume: 9
  start-page: 601
  year: 2019
  end-page: 618
  ident: CR96
  article-title: A benchmarking between deep learning, support vector machine and Bayesian threshold best linear unbiased prediction for predicting ordinal traits in plant breeding
  publication-title: G3
  doi: 10.1534/g3.118.200998
– volume: 9
  year: 2022
  ident: CR137
  article-title: Selection signatures of pacific white shrimp revealed by whole-genome resequencing analysis
  publication-title: Front Mar Sci
  doi: 10.3389/fmars.2022.844597
– volume: 10
  start-page: 1145083
  year: 2023
  ident: CR45
  article-title: Epidemiology of turbot bacterial diseases in China between October 2016 and December 2019
  publication-title: Front Mar Sci
  doi: 10.3389/fmars.2023.1145083
– volume: 10
  start-page: 998
  year: 2019
  ident: CR90
  article-title: A multi-task convolutional deep neural network for variant calling in single molecule sequencing
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-09025-z
– volume: 91
  start-page: 4414
  year: 2008
  end-page: 4423
  ident: CR134
  article-title: Efficient methods to compute genomic predictions
  publication-title: J Dairy Sci
  doi: 10.3168/jds.2007-0980
– volume: 9
  start-page: 2913
  year: 2019
  end-page: 2924
  ident: CR24
  article-title: Deep kernel for genomic and near infrared predictions in multi-environment breeding trials
  publication-title: G3-Genes Genom Genet
  doi: 10.1534/g3.119.400493
– volume: 6
  start-page: 19244
  year: 2016
  ident: CR38
  article-title: Evaluation of the 2b-RAD method for genomic selection in scallop breeding
  publication-title: Sci Rep
  doi: 10.1038/srep19244
– volume: 7
  start-page: 389
  year: 2021
  end-page: 415
  ident: CR113
  article-title: Binocular vision and stereopsis across the animal kingdom
  publication-title: Annu Rev vis Sci
  doi: 10.1146/annurev-vision-093019-113212
– volume: 114
  year: 2022
  ident: CR93
  article-title: Development of a high-throughput SNP array for sea cucumber ( ) and its application in genomic selection with MCP regularized deep neural networks
  publication-title: Genomics
  doi: 10.1016/j.ygeno.2022.110426
– volume: 9
  start-page: 1107
  year: 2012
  end-page: 1112
  ident: CR41
  article-title: DNA template strand sequencing of single-cells maps genomic rearrangements at high resolution
  publication-title: Nat Methods
  doi: 10.1038/nmeth.2206
– volume: 581
  year: 2024
  ident: CR91
  article-title: Evaluation of machine learning method in genomic selection for growth traits of Pacific white shrimp
  publication-title: Aquaculture
  doi: 10.1016/j.aquaculture.2023.740376
– volume: 49
  start-page: 1165
  year: 2009
  end-page: 1176
  ident: CR110
  article-title: Ridge regression and extensions for genomewide selection in maize
  publication-title: Crop Sci
  doi: 10.2135/cropsci2008.10.0595
– volume: 22
  start-page: bbab326
  year: 2021
  ident: CR118
  article-title: RefRGim: an intelligent reference panel reconstruction method for genotype imputation with convolutional neural networks
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbab326
– volume: 346
  start-page: 1712
  year: 1995
  ident: CR130
  article-title: Neural networks
  publication-title: Lancet
  doi: 10.1016/S0140-6736(95)92880-4
– volume: 26
  start-page: 990
  year: 2016
  end-page: 999
  ident: CR71
  article-title: Basset: learning the regulatory code of the accessible genome with deep convolutional neural networks
  publication-title: Genome Res
  doi: 10.1101/gr.200535.115
– volume: 22
  start-page: 7603
  year: 2022
  ident: CR17
  article-title: A two-mode underwater smart sensor object for precision aquaculture based on AIoT technology
  publication-title: Sensors
  doi: 10.3390/s22197603
– volume: 77
  start-page: 1330
  year: 2020
  end-page: 1339
  ident: CR2
  article-title: Image-based, unsupervised estimation of fish size from commercial landings using deep learning
  publication-title: ICES J Mar Sci
  doi: 10.1093/icesjms/fsz216
– volume: 69
  year: 2020
  ident: CR10
  article-title: Autoencoders for unsupervised anomaly segmentation in brain MR images: a comparative study
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2020.101952
– volume: 12
  start-page: 931
  year: 2015
  end-page: 934
  ident: CR163
  article-title: Predicting effects of noncoding variants with deep learning-based sequence model
  publication-title: Nat Methods
  doi: 10.1038/nmeth.3547
– volume: 24
  start-page: 1686
  year: 2020
  end-page: 1694
  ident: CR6
  article-title: GoogLeNet-based ensemble FCNet classifier for focal liver lesion diagnosis
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2019.2942774
– ident: CR98
– volume: 9
  start-page: 1093623
  year: 2022
  ident: CR146
  article-title: A new non-invasive tagging method for leopard coral grouper ( ) using deep convolutional neural networks with PDE-based image decomposition
  publication-title: Front Mar Sci
  doi: 10.3389/fmars.2022.1093623
– volume: 17
  start-page: 460
  year: 2016
  ident: CR37
  article-title: Comparative analysis of the GBLUP, emBayesB, and GWAS algorithms to predict genetic values in large yellow croaker ( )
  publication-title: BMC Genom
  doi: 10.1186/s12864-016-2756-5
– volume: 20
  start-page: 1693
  year: 2020
  ident: CR136
  article-title: Rolling-element bearing fault diagnosis using improved LeNet-5 network
  publication-title: Sensors
  doi: 10.3390/s20061693
– volume: 1
  year: 2023
  ident: CR121
  article-title: Using Bayesian threshold model and machine learning method to improve the accuracy of genomic prediction for ordered categorical traits in fish
  publication-title: Agric Commun
– volume: 32
  start-page: 4472
  year: 2023
  end-page: 4485
  ident: CR21
  article-title: PUGAN: physical model-guided underwater image enhancement using GAN with dual-discriminators
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2023.3286263
– volume: 10
  start-page: 543
  year: 2019
  ident: CR107
  article-title: Optimizing genomic prediction of host resistance to Koi Herpesvirus disease in carp
  publication-title: Front Genet
  doi: 10.3389/fgene.2019.00543
– volume: 51
  start-page: 249
  year: 2020
  end-page: 257
  ident: CR53
  article-title: Potential of genomic selection for improvement of resistance to ostreid herpesvirus in pacific oyster ( )
  publication-title: Anim Genet
  doi: 10.1111/age.12909
– volume: 3
  start-page: 49
  year: 2015
  ident: CR64
  article-title: The use of external electronic tags on fish: an evaluation of tag retention and tagging effects
  publication-title: Anim Biotelem
  doi: 10.1186/s40317-015-0086-z
– volume: 12
  start-page: 656137
  year: 2021
  ident: CR155
  article-title: Single-molecule real-time and Illumina-based RNA sequencing data identified vernalization-responsive candidate genes in faba bean ( L.)
  publication-title: Front Genet
  doi: 10.3389/fgene.2021.656137
– volume: 526
  year: 2020
  ident: CR74
  article-title: Accuracy of genomic prediction of host resistance to salmon lice in Atlantic salmon ( ) using imputed high-density genotypes
  publication-title: Aquaculture
  doi: 10.1016/j.aquaculture.2020.735415
– volume: 588
  start-page: S60
  year: 2020
  end-page: S62
  ident: CR34
  article-title: Can aquaculture overcome its sustainability challenges?
  publication-title: Nature
  doi: 10.1038/d41586-020-03446-3
– volume: 12329
  start-page: 91
  year: 2020
  end-page: 100
  ident: CR5
  article-title: Inpainting cropped diffusion MRI using deep generative models
  publication-title: Predict Intell Med
  doi: 10.1007/978-3-030-59354-4_9
– volume: 10
  start-page: 387
  year: 2009
  end-page: 406
  ident: CR82
  article-title: Genotype imputation
  publication-title: Annu Rev Genom Hum Genet
  doi: 10.1146/annurev.genom.9.081307.164242
– volume: 8
  start-page: 18832
  year: 2020
  end-page: 18840
  ident: CR81
  article-title: Detection and analysis of behavior trajectory for sea cucumbers based on deep learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2962823
– volume: 6
  start-page: 3693
  year: 2016
  end-page: 3700
  ident: CR105
  article-title: Genomic prediction of resistance to pasteurellosis in gilthead sea bream ( ) using 2b-RAD sequencing
  publication-title: G3
  doi: 10.1534/g3.116.035220
– volume: 557
  year: 2022
  ident: CR92
  article-title: Evaluation of genomic selection for high salinity tolerance traits in Pacific white shrimp
  publication-title: Aquaculture
  doi: 10.1016/j.aquaculture.2022.738320
– volume: 16
  start-page: 1220
  year: 2023
  end-page: 1235
  ident: CR9
  article-title: Genetic differentiation following recent domestication events: a study of farmed Nile tilapia ( ) populations
  publication-title: Evol Appl
  doi: 10.1111/eva.13560
– volume: 3
  start-page: 922
  year: 2023
  end-page: 933
  ident: CR63
  article-title: Designing molecules with autoencoder networks
  publication-title: Nat Comput Sci
  doi: 10.1038/s43588-023-00548-6
– volume: 9
  start-page: e59780
  year: 2020
  ident: CR117
  article-title: On the objectivity, reliability, and validity of deep learning enabled bioimage analyses
  publication-title: Elife
  doi: 10.7554/eLife.59780
– volume: 38
  start-page: 894
  year: 2010
  end-page: 942
  ident: CR160
  article-title: Nearly unbiased variable selection under minimax concave penalty
  publication-title: Ann Stat
  doi: 10.1214/09-AOS729
– volume: 553
  year: 2022
  ident: 252_CR70
  publication-title: Aquaculture
  doi: 10.1016/j.aquaculture.2022.738090
– volume: 242
  start-page: 3
  year: 2016
  ident: 252_CR7
  publication-title: Plant Sci
  doi: 10.1016/j.plantsci.2015.07.010
– volume: 178
  start-page: 2289
  year: 2008
  ident: 252_CR47
  publication-title: Genetics
  doi: 10.1534/genetics.107.084285
– volume: 537
  year: 2021
  ident: 252_CR66
  publication-title: Aquaculture
  doi: 10.1016/j.aquaculture.2021.736515
– volume: 9
  start-page: e59780
  year: 2020
  ident: 252_CR117
  publication-title: Elife
  doi: 10.7554/eLife.59780
– volume: 588
  start-page: S60
  year: 2020
  ident: 252_CR34
  publication-title: Nature
  doi: 10.1038/d41586-020-03446-3
– volume: 9
  start-page: 1545
  year: 2019
  ident: 252_CR97
  publication-title: G3
  doi: 10.1534/g3.119.300585
– volume: 52
  start-page: 287
  year: 2022
  ident: 252_CR149
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2020.2973450
– volume: 545
  year: 2021
  ident: 252_CR165
  publication-title: Aquaculture
  doi: 10.1016/j.aquaculture.2021.737171
– volume: 12
  start-page: 443
  year: 2011
  ident: 252_CR100
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg2986
– volume: 53
  start-page: 120
  year: 2021
  ident: 252_CR114
  publication-title: Nat Genet
  doi: 10.1038/s41588-020-00756-0
– volume: 9
  start-page: 2913
  year: 2019
  ident: 252_CR24
  publication-title: G3-Genes Genom Genet
  doi: 10.1534/g3.119.400493
– volume: 48
  start-page: 1284
  year: 2016
  ident: 252_CR27
  publication-title: Nat Genet
  doi: 10.1038/ng.3656
– volume: 11
  start-page: e75600
  year: 2022
  ident: 252_CR35
  publication-title: Elife
  doi: 10.7554/eLife.75600
– volume: 3
  start-page: 813
  year: 2012
  ident: 252_CR14
  publication-title: Methods Ecol Evol
  doi: 10.1111/j.2041-210X.2012.00212.x
– volume: 53
  start-page: 37
  year: 2021
  ident: 252_CR67
  publication-title: Genet Sel Evol
  doi: 10.1186/s12711-021-00629-y
– volume: 12
  start-page: 1
  year: 2021
  ident: 252_CR18
  publication-title: ACM Trans Intell Syst Technol
  doi: 10.1145/3465055
– volume: 12
  start-page: 87
  year: 2011
  ident: 252_CR46
  publication-title: BMC Genom
  doi: 10.1186/1471-2164-12-87
– volume: 28
  start-page: 2097
  year: 2012
  ident: 252_CR79
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts330
– volume: 27
  start-page: 68
  year: 2021
  ident: 252_CR151
  publication-title: IEEE Trans vis Comput Graph
  doi: 10.1109/TVCG.2019.2930691
– volume: 20
  year: 2021
  ident: 252_CR8
  publication-title: Aquac Rep
  doi: 10.1016/j.aqrep.2021.100661
– volume: 1019
  start-page: 149
  year: 2013
  ident: 252_CR55
  publication-title: Methods Mol Biol
  doi: 10.1007/978-1-62703-447-0_6
– volume: 38
  start-page: 115
  year: 2018
  ident: 252_CR30
  publication-title: Mol Breed
  doi: 10.1007/s11032-018-0865-3
– volume: 15
  start-page: 478
  year: 2014
  ident: 252_CR115
  publication-title: BMC Genom
  doi: 10.1186/1471-2164-15-478
– volume: 138
  start-page: 959
  year: 2010
  ident: 252_CR48
  publication-title: Genetica
  doi: 10.1007/s10709-010-9478-4
– volume: 44
  start-page: 4419
  year: 2022
  ident: 252_CR138
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 20
  start-page: 117
  year: 2019
  ident: 252_CR75
  publication-title: Genome Biol
  doi: 10.1186/s13059-019-1720-5
– volume: 20
  year: 2021
  ident: 252_CR104
  publication-title: Aquac Rep
  doi: 10.1016/j.aqrep.2021.100660
– volume: 10
  start-page: 581
  year: 2020
  ident: 252_CR131
  publication-title: G3-Genes Genom Genet
  doi: 10.1534/g3.119.400800
– volume: 10
  start-page: 543
  year: 2019
  ident: 252_CR107
  publication-title: Front Genet
  doi: 10.3389/fgene.2019.00543
– volume: 9
  start-page: 1107
  year: 2012
  ident: 252_CR41
  publication-title: Nat Methods
  doi: 10.1038/nmeth.2206
– volume: 9
  start-page: 1093623
  year: 2022
  ident: 252_CR146
  publication-title: Front Mar Sci
  doi: 10.3389/fmars.2022.1093623
– volume: 26
  start-page: 990
  year: 2016
  ident: 252_CR71
  publication-title: Genome Res
  doi: 10.1101/gr.200535.115
– volume: 30
  start-page: 2669
  year: 2021
  ident: 252_CR51
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2021.3051767
– volume: 10
  start-page: 1145083
  year: 2023
  ident: 252_CR45
  publication-title: Front Mar Sci
  doi: 10.3389/fmars.2023.1145083
– volume: 8
  year: 2022
  ident: 252_CR54
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2022.e12006
– volume: 3
  start-page: 49
  year: 2015
  ident: 252_CR64
  publication-title: Anim Biotelem
  doi: 10.1186/s40317-015-0086-z
– volume: 45
  start-page: 34
  year: 2013
  ident: 252_CR102
  publication-title: Genet Sel Evol
  doi: 10.1186/1297-9686-45-34
– volume: 52
  start-page: 421
  year: 2018
  ident: 252_CR135
  publication-title: Annu Rev Genet
  doi: 10.1146/annurev-genet-120116-024846
– volume: 363
  start-page: 557
  year: 2008
  ident: 252_CR20
  publication-title: Philos Trans R Soc Lond B Biol Sci
  doi: 10.1098/rstb.2007.2170
– volume: 114
  year: 2022
  ident: 252_CR93
  publication-title: Genomics
  doi: 10.1016/j.ygeno.2022.110426
– volume: 51
  start-page: 249
  year: 2020
  ident: 252_CR53
  publication-title: Anim Genet
  doi: 10.1111/age.12909
– volume: 557
  year: 2022
  ident: 252_CR92
  publication-title: Aquaculture
  doi: 10.1016/j.aquaculture.2022.738320
– volume: 9
  start-page: 82
  year: 2018
  ident: 252_CR106
  publication-title: Front Genet
  doi: 10.3389/fgene.2018.00082
– volume: 7
  start-page: 1616
  year: 2017
  ident: 252_CR150
  publication-title: Ecol Evol
  doi: 10.1002/ece3.2789
– volume: 156
  start-page: 312
  year: 2018
  ident: 252_CR69
  publication-title: J Agric Sci
  doi: 10.1017/S0021859618000436
– volume: 235
  start-page: 1
  year: 2015
  ident: 252_CR129
  publication-title: Rev Environ Contam Toxicol
– ident: 252_CR98
  doi: 10.1007/978-3-319-46484-8_29
– volume: 9
  start-page: 693
  year: 2019
  ident: 252_CR159
  publication-title: Front Genet
  doi: 10.3389/fgene.2018.00693
– volume: 526
  year: 2020
  ident: 252_CR74
  publication-title: Aquaculture
  doi: 10.1016/j.aquaculture.2020.735415
– volume: 54
  start-page: 31
  year: 2022
  ident: 252_CR148
  publication-title: Genet Sel Evol
  doi: 10.1186/s12711-022-00724-8
– volume: 266
  year: 2020
  ident: 252_CR88
  publication-title: J Food Eng
  doi: 10.1016/j.jfoodeng.2019.109698
– volume: 36
  start-page: 983
  year: 2018
  ident: 252_CR112
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.4235
– volume: 50
  start-page: 66
  year: 2022
  ident: 252_CR158
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkac424
– volume: 7
  start-page: 221
  year: 2016
  ident: 252_CR13
  publication-title: Front Genet
  doi: 10.3389/fgene.2016.00221
– volume: 20
  start-page: 1269
  year: 2023
  ident: 252_CR33
  publication-title: Nat Methods
  doi: 10.1038/s41592-023-01973-1
– volume: 22
  start-page: 7603
  year: 2022
  ident: 252_CR17
  publication-title: Sensors
  doi: 10.3390/s22197603
– volume: 10
  start-page: 1259722
  year: 2023
  ident: 252_CR65
  publication-title: Front Mar Sci
  doi: 10.3389/fmars.2023.1259722
– volume: 22
  start-page: 1689
  year: 2012
  ident: 252_CR43
  publication-title: Ecol Appl
  doi: 10.1890/12-0021.1
– volume: 21
  start-page: 171
  year: 2020
  ident: 252_CR58
  publication-title: Nat Rev Genet
  doi: 10.1038/s41576-019-0180-9
– volume: 19
  start-page: 43
  year: 2018
  ident: 252_CR3
  publication-title: BMC Genet
  doi: 10.1186/s12863-018-0631-x
– volume: 534
  year: 2021
  ident: 252_CR161
  publication-title: Aquaculture
  doi: 10.1016/j.aquaculture.2020.736323
– volume: 54
  start-page: 613
  year: 2022
  ident: 252_CR28
  publication-title: Nat Genet
  doi: 10.1038/s41588-022-01048-5
– volume: 49
  start-page: 1165
  year: 2009
  ident: 252_CR110
  publication-title: Crop Sci
  doi: 10.2135/cropsci2008.10.0595
– volume: 21
  start-page: 806
  year: 2019
  ident: 252_CR86
  publication-title: Mar Biotechnol
  doi: 10.1007/s10126-019-09925-7
– volume: 83
  start-page: 107
  year: 2018
  ident: 252_CR119
  publication-title: Hum Hered
  doi: 10.1159/000489758
– volume: 103
  start-page: 338
  year: 2018
  ident: 252_CR15
  publication-title: Am J Hum Genet
  doi: 10.1016/j.ajhg.2018.07.015
– volume: 32
  start-page: 4472
  year: 2023
  ident: 252_CR21
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2023.3286263
– volume: 326
  start-page: 289
  issue: 5950
  year: 2009
  ident: 252_CR84
  publication-title: Science
  doi: 10.1126/science.1181369
– volume: 2467
  start-page: 469
  year: 2022
  ident: 252_CR1
  publication-title: Methods Mol Biol
  doi: 10.1007/978-1-0716-2205-6_17
– volume: 12
  year: 2021
  ident: 252_CR49
  publication-title: Front Genet
  doi: 10.3389/fgene.2021.665920
– volume: 11
  year: 2020
  ident: 252_CR4
  publication-title: Front Genet
  doi: 10.3389/fgene.2020.594770
– volume: 6
  start-page: 19244
  year: 2016
  ident: 252_CR38
  publication-title: Sci Rep
  doi: 10.1038/srep19244
– volume: 177
  start-page: 85
  year: 2019
  ident: 252_CR23
  publication-title: Cell
  doi: 10.1016/j.cell.2019.01.033
– volume: 9
  start-page: 6904
  year: 2019
  ident: 252_CR116
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-43336-x
– volume: 10
  start-page: 387
  year: 2009
  ident: 252_CR82
  publication-title: Annu Rev Genom Hum Genet
  doi: 10.1146/annurev.genom.9.081307.164242
– volume: 157
  start-page: 1819
  year: 2001
  ident: 252_CR94
  publication-title: Genetics
  doi: 10.1093/genetics/157.4.1819
– volume: 49
  start-page: 15
  year: 2017
  ident: 252_CR22
  publication-title: Genet Sel Evol
  doi: 10.1186/s12711-017-0291-8
– volume: 578
  year: 2024
  ident: 252_CR157
  publication-title: Aquaculture
  doi: 10.1016/j.aquaculture.2023.740051
– volume: 122
  year: 2018
  ident: 252_CR120
  publication-title: Curr Protoc Mol Biol
  doi: 10.1002/cpmb.59
– volume: 15
  start-page: 274
  year: 2022
  ident: 252_CR122
  publication-title: Rev Aquac
  doi: 10.1111/raq.12716
– volume: 8
  start-page: 719
  year: 2018
  ident: 252_CR153
  publication-title: G3
  doi: 10.1534/g3.117.300499
– volume: 24
  start-page: 1686
  year: 2020
  ident: 252_CR6
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2019.2942774
– volume: 69
  year: 2020
  ident: 252_CR10
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2020.101952
– volume: 11
  start-page: 108
  year: 2020
  ident: 252_CR87
  publication-title: Front Genet
  doi: 10.3389/fgene.2020.00108
– volume: 51
  start-page: 1339
  year: 2019
  ident: 252_CR147
  publication-title: Nat Genet
  doi: 10.1038/s41588-019-0481-0
– volume: 96
  start-page: 1348
  year: 2001
  ident: 252_CR42
  publication-title: J Am Stat Assoc
  doi: 10.1198/016214501753382273
– volume: 92
  start-page: 209
  year: 2010
  ident: 252_CR89
  publication-title: Genet Res
  doi: 10.1017/S0016672310000157
– volume: 7
  start-page: 96
  year: 2016
  ident: 252_CR132
  publication-title: Front Genet
  doi: 10.3389/fgene.2016.00096
– volume: 47
  start-page: 22
  year: 2015
  ident: 252_CR40
  publication-title: Genet Sel Evol
  doi: 10.1186/s12711-015-0097-5
– volume: 20
  start-page: 769
  year: 2018
  ident: 252_CR145
  publication-title: Mar Biotechnol
  doi: 10.1007/s10126-018-9847-z
– volume: 1019
  start-page: 321
  year: 2013
  ident: 252_CR19
  publication-title: Methods Mol Biol
  doi: 10.1007/978-1-62703-447-0_13
– volume: 562
  year: 2023
  ident: 252_CR32
  publication-title: Aquaculture
  doi: 10.1016/j.aquaculture.2022.738844
– volume: 16
  start-page: 767
  year: 2000
  ident: 252_CR44
  publication-title: Mar Mamm Sci
  doi: 10.1111/j.1748-7692.2000.tb00971.x
– year: 2023
  ident: 252_CR50
  publication-title: bioRxiv
  doi: 10.1101/2023.03.05.531147
– volume: 20
  start-page: 559
  year: 2023
  ident: 252_CR111
  publication-title: Nat Methods
  doi: 10.1038/s41592-023-01799-x
– volume: 96
  start-page: 2016
  year: 2018
  ident: 252_CR143
  publication-title: J Anim Sci
  doi: 10.1093/jas/sky071
– volume: 82
  start-page: 801
  year: 2021
  ident: 252_CR62
  publication-title: Hum Immunol
  doi: 10.1016/j.humimm.2021.02.012
– volume: 61
  start-page: 699
  year: 2018
  ident: 252_CR162
  publication-title: T ASABE
  doi: 10.13031/trans.12684
– volume: 8
  start-page: 18832
  year: 2020
  ident: 252_CR81
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2962823
– volume: 275
  start-page: 897
  year: 2018
  ident: 252_CR126
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.09.044
– volume: 13
  start-page: 187
  year: 2020
  ident: 252_CR152
  publication-title: Mol Plant
  doi: 10.1016/j.molp.2020.01.008
– volume: 3
  start-page: 922
  year: 2023
  ident: 252_CR63
  publication-title: Nat Comput Sci
  doi: 10.1038/s43588-023-00548-6
– volume: 13
  start-page: 2247
  year: 2022
  ident: 252_CR139
  publication-title: Genes
  doi: 10.3390/genes13122247
– volume: 7
  start-page: 389
  year: 2021
  ident: 252_CR113
  publication-title: Annu Rev vis Sci
  doi: 10.1146/annurev-vision-093019-113212
– volume: 20
  start-page: 665
  year: 2019
  ident: 252_CR16
  publication-title: BMC Bioinform
  doi: 10.1186/s12859-019-3299-y
– volume: 574
  year: 2023
  ident: 252_CR164
  publication-title: Aquaculture
  doi: 10.1016/j.aquaculture.2023.739682
– volume: 19
  start-page: 107
  year: 2018
  ident: 252_CR99
  publication-title: BMC Genom
  doi: 10.1186/s12864-018-4493-4
– volume: 14
  start-page: 117793221989905
  year: 2020
  ident: 252_CR125
  publication-title: Bioinform Biol Insights
  doi: 10.1177/1177932219899051
– volume: 42
  start-page: 492
  year: 2021
  ident: 252_CR83
  publication-title: Zool Res
  doi: 10.24272/j.issn.2095-8137.2021.141
– volume: 10
  start-page: 1104436
  year: 2023
  ident: 252_CR124
  publication-title: Front Mar Sci
  doi: 10.3389/fmars.2023.1104436
– volume: 35
  start-page: 1221
  year: 2017
  ident: 252_CR140
  publication-title: Chin J Oceanol Limnol
  doi: 10.1007/s00343-017-6038-0
– volume: 16
  start-page: 1001803
  year: 2022
  ident: 252_CR72
  publication-title: Front Comput Neurosci
  doi: 10.3389/fncom.2022.1001803
– volume: 10
  start-page: 998
  year: 2019
  ident: 252_CR90
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-09025-z
– volume: 11
  start-page: 841
  year: 2020
  ident: 252_CR29
  publication-title: Genes
  doi: 10.3390/genes11080841
– volume: 49
  start-page: 17
  year: 2017
  ident: 252_CR133
  publication-title: Genet Sel Evol
  doi: 10.1186/s12711-017-0293-6
– volume: 20
  start-page: 1693
  year: 2020
  ident: 252_CR136
  publication-title: Sensors
  doi: 10.3390/s20061693
– volume: 20
  start-page: 438
  year: 2004
  ident: 252_CR77
  publication-title: Mar Mamm Sci
  doi: 10.1111/j.1748-7692.2004.tb01171.x
– volume: 701
  year: 2020
  ident: 252_CR128
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2019.134794
– volume: 521
  start-page: 436
  year: 2015
  ident: 252_CR78
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 31
  start-page: 5349
  year: 2020
  ident: 252_CR56
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2020.2966319
– volume: 581
  year: 2024
  ident: 252_CR91
  publication-title: Aquaculture
  doi: 10.1016/j.aquaculture.2023.740376
– volume: 10
  start-page: 2045
  year: 2019
  ident: 252_CR95
  publication-title: Methods Ecol Evol
  doi: 10.1111/2041-210X.13282
– volume: 527
  year: 2020
  ident: 252_CR26
  publication-title: Aquaculture
  doi: 10.1016/j.aquaculture.2020.735421
– volume: 38
  start-page: 894
  year: 2010
  ident: 252_CR160
  publication-title: Ann Stat
  doi: 10.1214/09-AOS729
– volume: 16
  start-page: 1220
  year: 2023
  ident: 252_CR9
  publication-title: Evol Appl
  doi: 10.1111/eva.13560
– volume: 9
  start-page: 391
  year: 2018
  ident: 252_CR52
  publication-title: Front Genet
  doi: 10.3389/fgene.2018.00391
– volume: 1
  year: 2023
  ident: 252_CR121
  publication-title: Agric Commun
– volume: 38
  start-page: 223
  year: 2019
  ident: 252_CR123
  publication-title: J Shellfish Res
  doi: 10.2983/035.038.0202
– volume: 4
  start-page: 841
  year: 2020
  ident: 252_CR39
  publication-title: Nat Ecol Evol
  doi: 10.1038/s41559-020-1166-x
– volume: 9
  start-page: 2597
  year: 2019
  ident: 252_CR154
  publication-title: G3
  doi: 10.1534/g3.119.400116
– volume: 17
  start-page: 460
  year: 2016
  ident: 252_CR37
  publication-title: BMC Genom
  doi: 10.1186/s12864-016-2756-5
– volume: 29
  start-page: R231
  year: 2019
  ident: 252_CR76
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2019.02.034
– volume: 549
  year: 2022
  ident: 252_CR144
  publication-title: Aquaculture
  doi: 10.1016/j.aquaculture.2021.737715
– volume: 18
  start-page: 45
  year: 2017
  ident: 252_CR141
  publication-title: BMC Genet
  doi: 10.1186/s12863-017-0507-5
– volume: 519
  year: 2020
  ident: 252_CR60
  publication-title: Aquaculture
  doi: 10.1016/j.aquaculture.2019.734767
– volume: 22
  start-page: bbab326
  year: 2021
  ident: 252_CR118
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbab326
– volume: 2
  start-page: 359
  year: 1989
  ident: 252_CR61
  publication-title: Neural Netw
  doi: 10.1016/0893-6080(89)90020-8
– volume: 12
  start-page: 656137
  year: 2021
  ident: 252_CR155
  publication-title: Front Genet
  doi: 10.3389/fgene.2021.656137
– volume: 22
  start-page: bbaa177
  year: 2021
  ident: 252_CR127
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbaa177
– volume: 15
  start-page: 182
  year: 2017
  ident: 252_CR156
  publication-title: Mar Drugs
  doi: 10.3390/md15060182
– volume: 12329
  start-page: 91
  year: 2020
  ident: 252_CR5
  publication-title: Predict Intell Med
  doi: 10.1007/978-3-030-59354-4_9
– volume: 113
  start-page: 2096
  year: 2021
  ident: 252_CR108
  publication-title: Genomics
  doi: 10.1016/j.ygeno.2021.04.038
– volume: 50
  start-page: 477
  year: 2019
  ident: 252_CR25
  publication-title: J Med Imaging Radiat Sci
  doi: 10.1016/j.jmir.2019.09.005
– volume: 24
  start-page: 125
  year: 2023
  ident: 252_CR101
  publication-title: Nat Rev Genet
  doi: 10.1038/s41576-022-00532-2
– volume: 9
  year: 2022
  ident: 252_CR137
  publication-title: Front Mar Sci
  doi: 10.3389/fmars.2022.844597
– volume: 6
  start-page: 3693
  year: 2016
  ident: 252_CR105
  publication-title: G3
  doi: 10.1534/g3.116.035220
– volume: 45
  start-page: 6415
  year: 2023
  ident: 252_CR59
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2022.3215307
– volume: 91
  start-page: 4414
  year: 2008
  ident: 252_CR134
  publication-title: J Dairy Sci
  doi: 10.3168/jds.2007-0980
– volume: 505
  start-page: 212
  year: 2019
  ident: 252_CR142
  publication-title: Aquaculture
  doi: 10.1016/j.aquaculture.2019.02.055
– volume: 14
  start-page: 168
  year: 2013
  ident: 252_CR80
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg3404
– volume: 138
  start-page: 338
  year: 2021
  ident: 252_CR68
  publication-title: J Anim Breed Genet
  doi: 10.1111/jbg.12516
– volume: 545
  start-page: 203
  year: 2016
  ident: 252_CR103
  publication-title: Mar Ecol Prog Ser
  doi: 10.3354/meps11643
– volume: 11
  start-page: 70
  year: 2019
  ident: 252_CR36
  publication-title: Genome Med
  doi: 10.1186/s13073-019-0689-8
– ident: 252_CR85
– volume: 210
  start-page: 809
  year: 2018
  ident: 252_CR11
  publication-title: Genetics
  doi: 10.1534/genetics.118.301298
– volume: 18
  start-page: 30
  year: 2013
  ident: 252_CR31
  publication-title: Ecol Soc
  doi: 10.5751/ES-05971-180430
– volume: 29
  start-page: 59
  year: 2011
  ident: 252_CR73
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.1740
– volume: 91
  start-page: 3522
  year: 2013
  ident: 252_CR109
  publication-title: J Anim Sci
  doi: 10.2527/jas.2012-6162
– volume: 77
  start-page: 1330
  year: 2020
  ident: 252_CR2
  publication-title: ICES J Mar Sci
  doi: 10.1093/icesjms/fsz216
– volume: 9
  start-page: 601
  year: 2019
  ident: 252_CR96
  publication-title: G3
  doi: 10.1534/g3.118.200998
– volume: 346
  start-page: 1712
  year: 1995
  ident: 252_CR130
  publication-title: Lancet
  doi: 10.1016/S0140-6736(95)92880-4
– volume: 479
  start-page: 742
  year: 2017
  ident: 252_CR57
  publication-title: Aquaculture
  doi: 10.1016/j.aquaculture.2017.07.012
– volume: 11
  start-page: 5176
  year: 2020
  ident: 252_CR12
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-18972-x
– volume: 12
  start-page: 931
  year: 2015
  ident: 252_CR163
  publication-title: Nat Methods
  doi: 10.1038/nmeth.3547
SSID ssj0002511654
Score 2.312898
SecondaryResourceType review_article
Snippet Genomic selection (GS) applied to the breeding of aquatic animals has been of great interest in recent years due to its higher accuracy and faster genetic...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 631
SubjectTerms Biodiversity
Biological Techniques
Biomedical and Life Sciences
Fish & Wildlife Biology & Management
Food Microbiology
Freshwater & Marine Ecology
Life Sciences
Review
Title Deep learning for genomic selection of aquatic animals
URI https://link.springer.com/article/10.1007/s42995-024-00252-y
https://www.ncbi.nlm.nih.gov/pubmed/39620094
https://www.proquest.com/docview/3140920987
Volume 6
WOSCitedRecordID wos001321669900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 2662-1746
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002511654
  issn: 2662-1746
  databaseCode: RSV
  dateStart: 20191101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLbY4MCFh3iVxxQkbhCpa9I2PSIe4jQhXtotapMUTWLdWDek_XvirK2EhibBPWlT24k_1_FngAsmAt2NfU6t99aUa5XSROWcYs5G-UESxCJzzSbiXk_0-8ljVRRW1rfd65SkO6mbYjc8ObGamFN01AGdt2DdujuB2_Hp-a35s4KgOQp5VSHz-9SfXmgJWi6lRZ23ud_-3zp3YKtCl-R6YQ67sGaKPYhujRmTqj3EO7EolSAz63CgSOm64FjVkFFO0k-k_VYkLQZDa5T78Hp_93LzQKt2CVRZTDSlaRQyH_FVaDhnGbOhQ54yHvgWovEo57ngOgxzkZqkqxMTI3LIjM6CXAvF44wdQLsYFeYICBcWGEZIfmajP8M45gKNtsERT5SKusqDbi0-qSoucWxp8SEbFmQnBWmlIJ0U5NyDy2bOeMGksXL0ea0VaQ0esxhpYUazUjKk6LIfJWIPDhfqap5nF43ZHu7BVa0bWe3JcsXLjv82_AQ2A1Svq0g8hfZ0MjNnsKG-poNy0oFW3BcdZ5LfQEHYBA
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60Cnrxga_4XMGbLjTJ5HUUtVSsRbRKb0uy2UjBprVphf57d9IkIJWC3nezm5nJzjeZnW8ALmzfik2vjlx775hjLEMeyAQ55Wxk3Qosz4_yZhNeu-13u8FTURSWlbfdy5RkflJXxW50clI1MXJy1BafLsMKao9FF_meX96qPysEml0HiwqZ36f-9EJz0HIuLZp7m8bm__a5BRsFumTXM3PYhiWV7oB7q9SQFe0h3plGqYyYWfs9ybK8C45WDRskLPwk2m_JwrTX10a5C6-Nu85NkxftErjUmGjMQ9ex64SvHIVoR7YOHZLQRquuIRq6CSY-xo6T-KEKzDhQHiGHSMWRlcS-RC-y96CWDlJ1AAx9DQxdIj_T0Z-ykXKBKtbBEQZSuqY0wCzFJ2TBJU4tLT5ExYKcS0FoKYhcCmJqwGU1Zzhj0lg4-rzUitAGT1mMMFWDSSZsoujSL-V7BuzP1FU9T2-asj1owFWpG1F8k9mCxQ7_NvwM1pqdx5Zo3bcfjmDdIlXn1YnHUBuPJuoEVuXXuJeNTnPD_AZSwtoA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8NAEB60ivjigVc9V_BNlzbJ5HoUa1GUUvCgb0uyu5GCTWsPof_enSQNSqUgvu8mm5ndzDf5Mt8AXDiBrSy_jtxEb8VRyYiHMkFOnI2s26HtB3HWbMJvtYJOJ2x_q-LP_nafUZJ5TQOpNKXj2kAltbLwjd6iVFmMnIK2zafLsILUNIjy9afX8isLAWjPxaJa5vepPyPSHMyco0izyNPc_P-at2CjQJ3sOt8m27Ck0x3wGloPWNE24o0Z9MpIsbXXlWyUdccxLmP9hEUfJAcuWZR2e2az7sJL8_b55o4XbRS4NFhpzCPPdeqEu1yN6MSOSSmSyEG7bqAbegkmASrXTYJIh5YKtU-IItYqthMVSPRjZw8qaT_VB8AwMIDRI1E0kxVqB4kj1MokTRhK6VmyCtbMlEIWGuPU6uJdlOrImRWEsYLIrCCmVbgs5wxyhY2Fo89nHhLmIBC7EaW6PxkJh6S7zEMFfhX2c9eV1zOLJhYIq3A185Mozupowc0O_zb8DNbajaZ4vG89HMG6TZ7OihaPoTIeTvQJrMrPcXc0PM326BdK2OLk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning+for+genomic+selection+of+aquatic+animals&rft.jtitle=Marine+life+science+%26+technology&rft.au=Wang%2C+Yangfan&rft.au=Ni%2C+Ping&rft.au=Sturrock%2C+Marc&rft.au=Zeng%2C+Qifan&rft.date=2024-11-01&rft.eissn=2662-1746&rft.volume=6&rft.issue=4&rft.spage=631&rft_id=info:doi/10.1007%2Fs42995-024-00252-y&rft_id=info%3Apmid%2F39620094&rft.externalDocID=39620094
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2662-1746&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2662-1746&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2662-1746&client=summon