Calculating CVaR and bPOE for common probability distributions with application to portfolio optimization and density estimation

Conditional value-at-risk (CVaR) and value-at-risk, also called the superquantile and quantile, are frequently used to characterize the tails of probability distributions and are popular measures of risk in applications where the distribution represents the magnitude of a potential loss. buffered pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of operations research Jg. 299; H. 1-2; S. 1281 - 1315
Hauptverfasser: Norton, Matthew, Khokhlov, Valentyn, Uryasev, Stan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.04.2021
Springer
Springer Nature B.V
Schlagworte:
ISSN:0254-5330, 1572-9338
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Conditional value-at-risk (CVaR) and value-at-risk, also called the superquantile and quantile, are frequently used to characterize the tails of probability distributions and are popular measures of risk in applications where the distribution represents the magnitude of a potential loss. buffered probability of exceedance (bPOE) is a recently introduced characterization of the tail which is the inverse of CVaR, much like the CDF is the inverse of the quantile. These quantities can prove very useful as the basis for a variety of risk-averse parametric engineering approaches. Their use, however, is often made difficult by the lack of well-known closed-form equations for calculating these quantities for commonly used probability distributions. In this paper, we derive formulas for the superquantile and bPOE for a variety of common univariate probability distributions. Besides providing a useful collection within a single reference, we use these formulas to incorporate the superquantile and bPOE into parametric procedures. In particular, we consider two: portfolio optimization and density estimation. First, when portfolio returns are assumed to follow particular distribution families, we show that finding the optimal portfolio via minimization of bPOE has advantages over superquantile minimization. We show that, given a fixed threshold, a single portfolio is the minimal bPOE portfolio for an entire class of distributions simultaneously. Second, we apply our formulas to parametric density estimation and propose the method of superquantiles (MOS), a simple variation of the method of moments where moments are replaced by superquantiles at different confidence levels. With the freedom to select various combinations of confidence levels, MOS allows the user to focus the fitting procedure on different portions of the distribution, such as the tail when fitting heavy-tailed asymmetric data.
AbstractList Conditional value-at-risk (CVaR) and value-at-risk, also called the superquantile and quantile, are frequently used to characterize the tails of probability distributions and are popular measures of risk in applications where the distribution represents the magnitude of a potential loss. buffered probability of exceedance (bPOE) is a recently introduced characterization of the tail which is the inverse of CVaR, much like the CDF is the inverse of the quantile. These quantities can prove very useful as the basis for a variety of risk-averse parametric engineering approaches. Their use, however, is often made difficult by the lack of well-known closed-form equations for calculating these quantities for commonly used probability distributions. In this paper, we derive formulas for the superquantile and bPOE for a variety of common univariate probability distributions. Besides providing a useful collection within a single reference, we use these formulas to incorporate the superquantile and bPOE into parametric procedures. In particular, we consider two: portfolio optimization and density estimation. First, when portfolio returns are assumed to follow particular distribution families, we show that finding the optimal portfolio via minimization of bPOE has advantages over superquantile minimization. We show that, given a fixed threshold, a single portfolio is the minimal bPOE portfolio for an entire class of distributions simultaneously. Second, we apply our formulas to parametric density estimation and propose the method of superquantiles (MOS), a simple variation of the method of moments where moments are replaced by superquantiles at different confidence levels. With the freedom to select various combinations of confidence levels, MOS allows the user to focus the fitting procedure on different portions of the distribution, such as the tail when fitting heavy-tailed asymmetric data.
Audience Academic
Author Khokhlov, Valentyn
Norton, Matthew
Uryasev, Stan
Author_xml – sequence: 1
  givenname: Matthew
  surname: Norton
  fullname: Norton, Matthew
  email: mnorton@nps.edu
  organization: Operations Research Department, Naval Postgraduate School
– sequence: 2
  givenname: Valentyn
  surname: Khokhlov
  fullname: Khokhlov, Valentyn
  organization: CFA Society
– sequence: 3
  givenname: Stan
  surname: Uryasev
  fullname: Uryasev, Stan
  organization: Department of Industrial and Systems Engineering, Risk Management and Financial Engineering Laboratory, University of Florida
BookMark eNp9UU1r3DAUFCWBbtL-gZ4EvdapZMlr6xiW9AMCKSXpVcj6cF6wJVeSKcmpP73adWmbEoJ4Erw3Mw_NnKAjH7xF6A0lZ5SQ9n2ihLeiIrQUYy2r6Au0oU1bV4Kx7ghtSN3wqmGMvEQnKd0RQijtmg36uVOjXkaVwQ949019xcob3H-5usAuRKzDNAWP5xh61cMI-R4bSDlCv2QIPuEfkG-xmucRtNp3cA54DjG7MELAYc4wwcM62Qsb69NexKYyOLRfoWOnxmRf_35P0c2Hi-vdp-ry6uPn3fllpXnNctWpmgvhTGOcNY4YrmzXcdW1WgshaFurLafW9ExTq4RumRYNd4zbLXFbaww7RW9X3fKX70vZL-_CEn1ZKeuGdKRmpNQf1KBGK8G7kKPSEyQtz7fFzoYRxgvq7AlUOcZOoEsyDkr_EeHdP4R-SeBtKleC4TanQS0pPYZ3K1zHkFK0TmrIB7fKHhglJXKfulxTlyV1eUhd0kKt_6POsTgd758nsZWUCtgPNv715hnWLwwSwxY
CitedBy_id crossref_primary_10_11648_j_ajist_20250902_15
crossref_primary_10_3390_math13091410
crossref_primary_10_1007_s10696_024_09562_w
crossref_primary_10_1016_j_jmaa_2024_128987
crossref_primary_10_2139_ssrn_3777921
crossref_primary_10_1016_j_cam_2021_113678
crossref_primary_10_1016_j_ijnonlinmec_2024_104670
crossref_primary_10_1088_1361_6587_ac89b0
crossref_primary_10_1137_22M1538946
crossref_primary_10_3390_axioms14050391
crossref_primary_10_1016_j_insmatheco_2025_103150
crossref_primary_10_1007_s10100_023_00847_3
crossref_primary_10_1007_s11009_022_09951_4
crossref_primary_10_1142_S021962202350058X
crossref_primary_10_1109_LCSYS_2022_3186269
crossref_primary_10_1016_j_csda_2023_107892
crossref_primary_10_3390_jrfm16100450
crossref_primary_10_1007_s11750_025_00702_5
crossref_primary_10_1080_02331934_2023_2231483
crossref_primary_10_2514_1_J060539
crossref_primary_10_1109_LCOMM_2024_3381989
crossref_primary_10_1007_s10287_023_00450_6
crossref_primary_10_1016_j_infsof_2023_107215
crossref_primary_10_1007_s00158_022_03477_6
crossref_primary_10_1109_TCST_2024_3427910
crossref_primary_10_3390_su131810201
crossref_primary_10_3390_sym12101698
crossref_primary_10_1016_j_segan_2024_101541
crossref_primary_10_1109_TVT_2023_3300275
crossref_primary_10_3390_e25030541
crossref_primary_10_1007_s10661_023_12140_6
crossref_primary_10_3390_sym13020263
crossref_primary_10_3390_math10163018
crossref_primary_10_1109_TASE_2024_3431530
crossref_primary_10_1287_moor_2023_0202
crossref_primary_10_1109_LWC_2022_3146389
Cites_doi 10.1016/j.ress.2010.01.001
10.1007/s11069-016-2324-y
10.1137/15M1042644
10.21314/JOR.2000.038
10.1016/S0378-4266(02)00271-6
10.1080/01621459.2014.929522
10.1111/1467-9965.00068
10.1080/10920277.2003.10596118
10.1007/s10107-014-0801-1
10.1007/s10479-016-2354-6
10.1016/j.ejor.2018.01.021
10.1080/03610919908813579
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2019
COPYRIGHT 2021 Springer
Springer Science+Business Media, LLC, part of Springer Nature 2019.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019
– notice: COPYRIGHT 2021 Springer
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2019.
DBID AAYXX
CITATION
N95
3V.
7TA
7TB
7WY
7WZ
7XB
87Z
88I
8AL
8AO
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FR3
FRNLG
F~G
GNUQQ
HCIFZ
JG9
JQ2
K60
K6~
K7-
KR7
L.-
L6V
M0C
M0N
M2P
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1007/s10479-019-03373-1
DatabaseName CrossRef
Gale Business: Insights
ProQuest Central (Corporate)
Materials Business File
Mechanical & Transportation Engineering Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Database‎ (1962 - current)
ProQuest Central Essentials - QC
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
Civil Engineering Abstracts
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ABI/INFORM Global
Computing Database
Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
ProQuest Central Basic
DatabaseTitle CrossRef
Materials Research Database
ProQuest Business Collection (Alumni Edition)
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
Materials Business File
ProQuest One Applied & Life Sciences
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
ABI/INFORM Complete (Alumni Edition)
Civil Engineering Abstracts
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList

Materials Research Database
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Business
EISSN 1572-9338
EndPage 1315
ExternalDocumentID A657253034
10_1007_s10479_019_03373_1
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: Naval Postgraduate School
  grantid: B64C3
  funderid: http://dx.doi.org/10.13039/100009910
GroupedDBID -4X
-57
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
23M
28-
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
7WY
88I
8AO
8FE
8FG
8FL
8TC
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHQJS
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYQZM
AZFZN
AZQEC
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EBLON
EBO
EBS
EBU
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAO
IEA
IHE
IJ-
IKXTQ
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M0N
M2P
M4Y
M7S
MA-
N2Q
N95
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9M
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
QWB
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZD
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SBE
SCF
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z88
Z8N
Z8U
Z92
ZL0
ZMTXR
ZYFGU
~8M
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
ICD
PHGZM
PHGZT
PQGLB
7TA
7TB
7XB
8AL
8FD
8FK
FR3
JG9
JQ2
KR7
L.-
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c423t-8a2499fd5dfedf0d4ae884a87cc999172a641edb3c1ea9c73c954f34e60f6edd3
IEDL.DBID K7-
ISICitedReferencesCount 48
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000492567900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0254-5330
IngestDate Wed Nov 05 14:53:24 EST 2025
Sat Nov 29 13:09:32 EST 2025
Sat Nov 29 10:21:32 EST 2025
Sat Nov 29 08:28:07 EST 2025
Sat Nov 29 02:36:39 EST 2025
Tue Nov 18 22:27:37 EST 2025
Fri Feb 21 02:49:22 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1-2
Keywords Buffered probability of exceedance
Portfolio optimization
Conditional value-at-risk
Density estimation
Superquantile
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c423t-8a2499fd5dfedf0d4ae884a87cc999172a641edb3c1ea9c73c954f34e60f6edd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2508023002
PQPubID 25585
PageCount 35
ParticipantIDs proquest_journals_2508023002
gale_infotracmisc_A657253034
gale_infotracacademiconefile_A657253034
gale_businessinsightsgauss_A657253034
crossref_citationtrail_10_1007_s10479_019_03373_1
crossref_primary_10_1007_s10479_019_03373_1
springer_journals_10_1007_s10479_019_03373_1
PublicationCentury 2000
PublicationDate 20210400
2021-04-00
20210401
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 4
  year: 2021
  text: 20210400
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Annals of operations research
PublicationTitleAbbrev Ann Oper Res
PublicationYear 2021
Publisher Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
References RockafellarRTRoysetJORandom variables, monotone relations, and convex analysisMathematical Programming20141481–229733110.1007/s10107-014-0801-1
ArtznerPDelbaenFEberJMHeathDCoherent measures of riskMathematical Finance1999920322810.1111/1467-9965.00068
LandsmanZMValdezEATail conditional expectation for elliptical distributionsNorth American Actuarial Journal200374557110.1080/10920277.2003.10596118
Norton, M., & Uryasev, S. (2016). Maximization of AUC and buffered AUC in binary classification. Mathematical Programming, 174(1–2), 575–612.
RockafellarRRoysetJOn buffered failure probability in design and optimization of structuresReliability Engineering & System Safety20109549951010.1016/j.ress.2010.01.001
NortonMMafusalovAUryasevSSoft margin support vector classification as buffered probability minimizationThe Journal of Machine Learning Research201718122852327
Andreev, A., Kanto, A., & Malo, P. (2005). On closed-form calculation of CVaR. Helsinki School of Economics working paper W-389.
RockafellarRUryasevSOptimization of conditional value-at-riskThe Journal of Risk200023214110.21314/JOR.2000.038
DavisJRUryasevSAnalysis of tropical storm damage using buffered probability of exceedanceNatural Hazards201683146548310.1007/s11069-016-2324-y
RockafellarRTUryasevSConditional value-at-risk for general loss distributionsJournal of Banking & Finance20022671443147110.1016/S0378-4266(02)00271-6
MafusalovAShapiroAUryasevSEstimation and asymptotics for buffered probability of exceedanceEuropean Journal of Operational Research2018270382683610.1016/j.ejor.2018.01.021
MafusalovAUryasevSBuffered probability of exceedance: Mathematical properties and optimizationSIAM Journal on Optimization20182821077110310.1137/15M1042644
Uryasev, S. (2014). Buffered probability of exceedance and buffered service level: Definitions and properties. Department of Industrial and Systems Engineering, University of Florida, research report 3.
EverittBSThe Cambridge dictionary of statistics2006CambridgeCambridge University Press
KarianZADudewiczEJFitting the generalized lambda distribution to data: A method based on percentilesCommunications in Statistics: Simulation and Computation199928379381910.1080/03610919908813579
SgouropoulosNYaoQYastremizCMatching a distribution by matching quantiles estimationJournal of the American Statistical Association201511051074275910.1080/01621459.2014.929522
ShangDKuzmenkoVUryasevSCash flow matching with risks controlled by buffered probability of exceedance and conditional value-at-riskAnnals of Operations Research20182601–250151410.1007/s10479-016-2354-6
A Mafusalov (3373_CR8) 2018; 28
ZA Karian (3373_CR5) 1999; 28
JR Davis (3373_CR3) 2016; 83
3373_CR10
RT Rockafellar (3373_CR14) 2002; 26
BS Everitt (3373_CR4) 2006
D Shang (3373_CR16) 2018; 260
P Artzner (3373_CR2) 1999; 9
3373_CR17
ZM Landsman (3373_CR6) 2003; 7
3373_CR1
M Norton (3373_CR9) 2017; 18
N Sgouropoulos (3373_CR15) 2015; 110
R Rockafellar (3373_CR11) 2010; 95
RT Rockafellar (3373_CR13) 2014; 148
R Rockafellar (3373_CR12) 2000; 2
A Mafusalov (3373_CR7) 2018; 270
References_xml – reference: RockafellarRUryasevSOptimization of conditional value-at-riskThe Journal of Risk200023214110.21314/JOR.2000.038
– reference: RockafellarRTUryasevSConditional value-at-risk for general loss distributionsJournal of Banking & Finance20022671443147110.1016/S0378-4266(02)00271-6
– reference: Andreev, A., Kanto, A., & Malo, P. (2005). On closed-form calculation of CVaR. Helsinki School of Economics working paper W-389.
– reference: ShangDKuzmenkoVUryasevSCash flow matching with risks controlled by buffered probability of exceedance and conditional value-at-riskAnnals of Operations Research20182601–250151410.1007/s10479-016-2354-6
– reference: KarianZADudewiczEJFitting the generalized lambda distribution to data: A method based on percentilesCommunications in Statistics: Simulation and Computation199928379381910.1080/03610919908813579
– reference: SgouropoulosNYaoQYastremizCMatching a distribution by matching quantiles estimationJournal of the American Statistical Association201511051074275910.1080/01621459.2014.929522
– reference: DavisJRUryasevSAnalysis of tropical storm damage using buffered probability of exceedanceNatural Hazards201683146548310.1007/s11069-016-2324-y
– reference: RockafellarRRoysetJOn buffered failure probability in design and optimization of structuresReliability Engineering & System Safety20109549951010.1016/j.ress.2010.01.001
– reference: Norton, M., & Uryasev, S. (2016). Maximization of AUC and buffered AUC in binary classification. Mathematical Programming, 174(1–2), 575–612.
– reference: MafusalovAUryasevSBuffered probability of exceedance: Mathematical properties and optimizationSIAM Journal on Optimization20182821077110310.1137/15M1042644
– reference: RockafellarRTRoysetJORandom variables, monotone relations, and convex analysisMathematical Programming20141481–229733110.1007/s10107-014-0801-1
– reference: Uryasev, S. (2014). Buffered probability of exceedance and buffered service level: Definitions and properties. Department of Industrial and Systems Engineering, University of Florida, research report 3.
– reference: EverittBSThe Cambridge dictionary of statistics2006CambridgeCambridge University Press
– reference: LandsmanZMValdezEATail conditional expectation for elliptical distributionsNorth American Actuarial Journal200374557110.1080/10920277.2003.10596118
– reference: MafusalovAShapiroAUryasevSEstimation and asymptotics for buffered probability of exceedanceEuropean Journal of Operational Research2018270382683610.1016/j.ejor.2018.01.021
– reference: NortonMMafusalovAUryasevSSoft margin support vector classification as buffered probability minimizationThe Journal of Machine Learning Research201718122852327
– reference: ArtznerPDelbaenFEberJMHeathDCoherent measures of riskMathematical Finance1999920322810.1111/1467-9965.00068
– volume-title: The Cambridge dictionary of statistics
  year: 2006
  ident: 3373_CR4
– volume: 95
  start-page: 499
  year: 2010
  ident: 3373_CR11
  publication-title: Reliability Engineering & System Safety
  doi: 10.1016/j.ress.2010.01.001
– ident: 3373_CR1
– volume: 18
  start-page: 2285
  issue: 1
  year: 2017
  ident: 3373_CR9
  publication-title: The Journal of Machine Learning Research
– volume: 83
  start-page: 465
  issue: 1
  year: 2016
  ident: 3373_CR3
  publication-title: Natural Hazards
  doi: 10.1007/s11069-016-2324-y
– volume: 28
  start-page: 1077
  issue: 2
  year: 2018
  ident: 3373_CR8
  publication-title: SIAM Journal on Optimization
  doi: 10.1137/15M1042644
– volume: 2
  start-page: 21
  issue: 3
  year: 2000
  ident: 3373_CR12
  publication-title: The Journal of Risk
  doi: 10.21314/JOR.2000.038
– volume: 26
  start-page: 1443
  issue: 7
  year: 2002
  ident: 3373_CR14
  publication-title: Journal of Banking & Finance
  doi: 10.1016/S0378-4266(02)00271-6
– ident: 3373_CR10
– ident: 3373_CR17
– volume: 110
  start-page: 742
  issue: 510
  year: 2015
  ident: 3373_CR15
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.2014.929522
– volume: 9
  start-page: 203
  year: 1999
  ident: 3373_CR2
  publication-title: Mathematical Finance
  doi: 10.1111/1467-9965.00068
– volume: 7
  start-page: 55
  issue: 4
  year: 2003
  ident: 3373_CR6
  publication-title: North American Actuarial Journal
  doi: 10.1080/10920277.2003.10596118
– volume: 148
  start-page: 297
  issue: 1–2
  year: 2014
  ident: 3373_CR13
  publication-title: Mathematical Programming
  doi: 10.1007/s10107-014-0801-1
– volume: 260
  start-page: 501
  issue: 1–2
  year: 2018
  ident: 3373_CR16
  publication-title: Annals of Operations Research
  doi: 10.1007/s10479-016-2354-6
– volume: 270
  start-page: 826
  issue: 3
  year: 2018
  ident: 3373_CR7
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2018.01.021
– volume: 28
  start-page: 793
  issue: 3
  year: 1999
  ident: 3373_CR5
  publication-title: Communications in Statistics: Simulation and Computation
  doi: 10.1080/03610919908813579
SSID ssj0001185
Score 2.5407364
Snippet Conditional value-at-risk (CVaR) and value-at-risk, also called the superquantile and quantile, are frequently used to characterize the tails of probability...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1281
SubjectTerms Business and Management
Combinatorics
Confidence intervals
Convex analysis
Density
Distribution (Probability theory)
Engineering
Financial risk
Functions, Inverse
Linear programming
Logistics
Mathematical analysis
Measurement
Method of moments
Methods
Operations research
Operations Research/Decision Theory
Optimization
Portfolio management
Quantiles
Random variables
Risk
S.I.: Recent Developments in Financial Modeling and Risk Management
Statistical analysis
Theory of Computation
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6hghA9UFhALBTkA4gDRNrETuIcq1UrTqUqUPVmOWO7qrQkqNlW4sZPZ8brtLu8JDgkF48txxnPw575BuAVBu0rxDJrW_J0FEqX8fVd1lR5kIEB3Csbi03Uh4f69LQ5SklhwxjtPl5JRkm9luymao7toUfKWmbk89wmdad5Ox5_PLmWv2Qyx8BFcn0yjp1MqTK_H2NDHf0slH-5HY1K52Dn_6b7AO4nI1PsrbjiIdzy3QTujjHuE9gZazmItLUnsL0GTPgIvs_tAmNhr-5MzE_ssbCdE-3Rh31BRq6gGRD3Ci5Gs4L5_iYcA_Cm2lmD4NNdsXY3Lpa9YEM_9IvzXvQkpr6k_M84sOMoehqEET9WqZSP4fPB_qf5-yzVasiQDLJlpi35cU1wpQvehZlT1mutrK4R2QStC1up3LtWYu5tg7XEplRBKl_NQuWdk09gq-s7_xRE0YaWvNoitKVUBeq2Dho5g9jnM6T-U8jHX2YwAZlzPY2FuYFg5rU3tPYmrr2hPm-v-3xdwXj8lfo1c4JJdUDpNfBJyXBmL4fB7FVlXZSk-tUU3kQ6lgU0A7QppYG-g1G1Nih3NyhpD-Nm88hzJsmQwZBxyuh8pLKm8G7ksZvmP0__2b-RP4d7BQfqxHCkXdhaXlz6F3AHr5bnw8XLuLd-AFhZHtQ
  priority: 102
  providerName: Springer Nature
Title Calculating CVaR and bPOE for common probability distributions with application to portfolio optimization and density estimation
URI https://link.springer.com/article/10.1007/s10479-019-03373-1
https://www.proquest.com/docview/2508023002
Volume 299
WOSCitedRecordID wos000492567900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1572-9338
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001185
  issn: 0254-5330
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFH5iG0JwYFBAK4zKBxAHsGjiJE5OaFSdkBCl6mAMLpHjH9OkLhlLh8SNP533XGddQezCIe8S23Hk5-dn-73vA3imXW4zrVNeVbjTSbQwnK7veJFFTjgCcM-UJ5uQk0l-dFRMw4FbG8IqO5voDbVpNJ2Rv8almrDKcAK_OfvOiTWKblcDhcYGbEVxHJGev5f80hKj8-xDGHETxCmKMiTNhNS5RFKkED5CSMGjtYXpT_P81z2pX372t_-34_fgbnA82d5SU-7DDVv34FYX996D7Y7fgYXp3oM7V8AKH8CvkZprT_ZVH7PRoZoxVRtWTT-OGTq-DDuDX2JEULOE_v7JDIHyBj6tltGJL7tyX84WDSPn3zXzk4Y1aLpOQ06ob9hQZD02Qiggy_TKh_B5f_xp9I4H_gau0Ulb8Fzh3q5wJjXOGjc0ibJ5nqhcak1uqYxVlkTWVEJHVhVaCl2kiROJzYYus8aIR7BZN7XdARZXrsKdbuyqVCSxzivpck1ZxTYaaqzfh6gbvFIHcHPi2JiXK1hmGvASB7z0A15inZeXdc6W0B7Xln5OOlEGblAULZ2etMfqom3LvSyVcYruQNKHF74c2QfsgVYhzQH_g5C21krurpXEea3XX3f6VAa70pYrZerDq04jV6__3f3H17f2BG7HFKzjQ5J2YXNxfmGfwk39Y3HSng9gQ375OoCtt-PJdDbwcwzlh-GIZDwlKQ9QTtNvKGcHh78B3msvyw
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgigcKCxFLBTwgYoDRGxi53VAqFpatWpZKlRQb8bxo6q0JKXZgnrjF_EbmfE63S6I3nrgkFxiW3EyM56xZ74P4Ll2hc20TqOqwkhHaG4iOr6Lyix23BGAe6Y82UQ-GhUHB-XeAvzqamEorbKzid5Qm0bTHvlrXKoJqwwV-O3xt4hYo-h0taPQmIrFjj37gSFb-2b7Hf7ftSTZ3NgfbkWBVSDS6DpMokJhxFE6kxpnjRsYoWxRCFXkWpOzlCcqE7E1FdexVaXOuS5T4biw2cBl1hiO416D60KgOlCq4GB4bvnRWfcpkxh0RZS1GYp0QqmeyCkzCS_Ocx7Fcwvhn8vBX-eyfrnbXP7fPtRduBMca7Y-1YR7sGDrHtzs8vp7sNzxV7Bgznpw-wIY4334OVRj7cnM6kM2_Kw-MlUbVu192GDo2DOcPM6MEQHPFNr8jBkCHQ58YS2jHW12IR-ATRpGwY1rxkcNa9A0fw01r35gQ5UDOAihnEzLR1fg05V8oAewWDe1fQgsqVyFkXziqpSLRBdV7gpNVdM2Hmjs34e4ExapA3g7cYiM5Qx2mgRMooBJL2AS-7w873M8hS65tPUayaAM3Kd4a2l3qD1Up20r17M0T1J0d0QfXvh2ZP_wDbQKZRw4D0ISm2u5OtcS7Zaef9zJrwx2s5Uz4e3Dq04DZo___fqPLh_tGSxt7b_flbvbo53HcCuhxCSffrUKi5OTU_sEbujvk6P25KnXaAZfrlozfgMrbIgs
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6Vgio4UFhAXSjgAxUHiLqJ8zwgVG27oipaVghQxcV1_KgqLUnbbEG98bv4dcw4TrcLorceOCSX2FbizIxn7JnvA3ihbG5SpZKgLDHSiRXXAR3fBUUaWm4JwD2VjmwiG4_z_f1isgS_uloYSqvsbKIz1LpWtEe-iUs1YZWhAm9anxYx2R69PT4JiEGKTlo7Oo1WRPbM-Q8M35o3u9v4rzeiaLTzafgu8AwDgUI3YhbkEqOPwupEW6PtQMfS5Hks80wpcpyySKZxaHTJVWhkoTKuiiS2PDbpwKZGa47j3oCbGcaYFPhNkq8XqwA67i59EgOwgDI4fcGOL9uLM8pSwovzjAfhwqL459Lw1xmtW_pGq__zpN2Du97hZluthtyHJVP1YKXL9-_BasdrwbyZ68GdSyCND-DnUE6VIzmrDtnwi_zIZKVZOfmww9DhZzgR-GWMiHlayPNzpgmM2POINYx2utmlPAE2qxkFPbaeHtWsRpP9zdfCuoE1VRTgIIR-0paVPoTP1zJBj2C5qiuzBiwqbYkRfmTLhMeRysvM5oqqqU04UNi_D2EnOEJ5UHfiFpmKORw1CZtAYRNO2AT2eXXR57iFNLmy9QbJo_CcqHhraNeoOZRnTSO20iSLEnSD4j68dO3ILuIbKOnLO_A7CGFsoeX6Qku0Z2rxcSfLwtvTRswFuQ-vO22YP_736z--erTnsIIKId7vjveewO2I8pVcVtY6LM9Oz8xTuKW-z46a02dOuRkcXLdi_AZ57ZE9
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Calculating+CVaR+and+bPOE+for+common+probability+distributions+with+application+to+portfolio+optimization+and+density+estimation&rft.jtitle=Annals+of+operations+research&rft.au=Norton%2C+Matthew&rft.au=Khokhlov%2C+Valentyn&rft.au=Uryasev%2C+Stan&rft.date=2021-04-01&rft.pub=Springer&rft.issn=0254-5330&rft.volume=299&rft.issue=1-2&rft.spage=1281&rft_id=info:doi/10.1007%2Fs10479-019-03373-1&rft.externalDocID=A657253034
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0254-5330&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0254-5330&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0254-5330&client=summon