Calculating CVaR and bPOE for common probability distributions with application to portfolio optimization and density estimation
Conditional value-at-risk (CVaR) and value-at-risk, also called the superquantile and quantile, are frequently used to characterize the tails of probability distributions and are popular measures of risk in applications where the distribution represents the magnitude of a potential loss. buffered pr...
Gespeichert in:
| Veröffentlicht in: | Annals of operations research Jg. 299; H. 1-2; S. 1281 - 1315 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Springer US
01.04.2021
Springer Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 0254-5330, 1572-9338 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Conditional value-at-risk (CVaR) and value-at-risk, also called the superquantile and quantile, are frequently used to characterize the tails of probability distributions and are popular measures of risk in applications where the distribution represents the magnitude of a potential loss. buffered probability of exceedance (bPOE) is a recently introduced characterization of the tail which is the inverse of CVaR, much like the CDF is the inverse of the quantile. These quantities can prove very useful as the basis for a variety of risk-averse parametric engineering approaches. Their use, however, is often made difficult by the lack of well-known closed-form equations for calculating these quantities for commonly used probability distributions. In this paper, we derive formulas for the superquantile and bPOE for a variety of common univariate probability distributions. Besides providing a useful collection within a single reference, we use these formulas to incorporate the superquantile and bPOE into parametric procedures. In particular, we consider two: portfolio optimization and density estimation. First, when portfolio returns are assumed to follow particular distribution families, we show that finding the optimal portfolio via minimization of bPOE has advantages over superquantile minimization. We show that, given a fixed threshold, a single portfolio is the minimal bPOE portfolio for an entire class of distributions simultaneously. Second, we apply our formulas to parametric density estimation and propose the method of superquantiles (MOS), a simple variation of the method of moments where moments are replaced by superquantiles at different confidence levels. With the freedom to select various combinations of confidence levels, MOS allows the user to focus the fitting procedure on different portions of the distribution, such as the tail when fitting heavy-tailed asymmetric data. |
|---|---|
| AbstractList | Conditional value-at-risk (CVaR) and value-at-risk, also called the superquantile and quantile, are frequently used to characterize the tails of probability distributions and are popular measures of risk in applications where the distribution represents the magnitude of a potential loss. buffered probability of exceedance (bPOE) is a recently introduced characterization of the tail which is the inverse of CVaR, much like the CDF is the inverse of the quantile. These quantities can prove very useful as the basis for a variety of risk-averse parametric engineering approaches. Their use, however, is often made difficult by the lack of well-known closed-form equations for calculating these quantities for commonly used probability distributions. In this paper, we derive formulas for the superquantile and bPOE for a variety of common univariate probability distributions. Besides providing a useful collection within a single reference, we use these formulas to incorporate the superquantile and bPOE into parametric procedures. In particular, we consider two: portfolio optimization and density estimation. First, when portfolio returns are assumed to follow particular distribution families, we show that finding the optimal portfolio via minimization of bPOE has advantages over superquantile minimization. We show that, given a fixed threshold, a single portfolio is the minimal bPOE portfolio for an entire class of distributions simultaneously. Second, we apply our formulas to parametric density estimation and propose the method of superquantiles (MOS), a simple variation of the method of moments where moments are replaced by superquantiles at different confidence levels. With the freedom to select various combinations of confidence levels, MOS allows the user to focus the fitting procedure on different portions of the distribution, such as the tail when fitting heavy-tailed asymmetric data. |
| Audience | Academic |
| Author | Khokhlov, Valentyn Norton, Matthew Uryasev, Stan |
| Author_xml | – sequence: 1 givenname: Matthew surname: Norton fullname: Norton, Matthew email: mnorton@nps.edu organization: Operations Research Department, Naval Postgraduate School – sequence: 2 givenname: Valentyn surname: Khokhlov fullname: Khokhlov, Valentyn organization: CFA Society – sequence: 3 givenname: Stan surname: Uryasev fullname: Uryasev, Stan organization: Department of Industrial and Systems Engineering, Risk Management and Financial Engineering Laboratory, University of Florida |
| BookMark | eNp9UU1r3DAUFCWBbtL-gZ4EvdapZMlr6xiW9AMCKSXpVcj6cF6wJVeSKcmpP73adWmbEoJ4Erw3Mw_NnKAjH7xF6A0lZ5SQ9n2ihLeiIrQUYy2r6Au0oU1bV4Kx7ghtSN3wqmGMvEQnKd0RQijtmg36uVOjXkaVwQ949019xcob3H-5usAuRKzDNAWP5xh61cMI-R4bSDlCv2QIPuEfkG-xmucRtNp3cA54DjG7MELAYc4wwcM62Qsb69NexKYyOLRfoWOnxmRf_35P0c2Hi-vdp-ry6uPn3fllpXnNctWpmgvhTGOcNY4YrmzXcdW1WgshaFurLafW9ExTq4RumRYNd4zbLXFbaww7RW9X3fKX70vZL-_CEn1ZKeuGdKRmpNQf1KBGK8G7kKPSEyQtz7fFzoYRxgvq7AlUOcZOoEsyDkr_EeHdP4R-SeBtKleC4TanQS0pPYZ3K1zHkFK0TmrIB7fKHhglJXKfulxTlyV1eUhd0kKt_6POsTgd758nsZWUCtgPNv715hnWLwwSwxY |
| CitedBy_id | crossref_primary_10_11648_j_ajist_20250902_15 crossref_primary_10_3390_math13091410 crossref_primary_10_1007_s10696_024_09562_w crossref_primary_10_1016_j_jmaa_2024_128987 crossref_primary_10_2139_ssrn_3777921 crossref_primary_10_1016_j_cam_2021_113678 crossref_primary_10_1016_j_ijnonlinmec_2024_104670 crossref_primary_10_1088_1361_6587_ac89b0 crossref_primary_10_1137_22M1538946 crossref_primary_10_3390_axioms14050391 crossref_primary_10_1016_j_insmatheco_2025_103150 crossref_primary_10_1007_s10100_023_00847_3 crossref_primary_10_1007_s11009_022_09951_4 crossref_primary_10_1142_S021962202350058X crossref_primary_10_1109_LCSYS_2022_3186269 crossref_primary_10_1016_j_csda_2023_107892 crossref_primary_10_3390_jrfm16100450 crossref_primary_10_1007_s11750_025_00702_5 crossref_primary_10_1080_02331934_2023_2231483 crossref_primary_10_2514_1_J060539 crossref_primary_10_1109_LCOMM_2024_3381989 crossref_primary_10_1007_s10287_023_00450_6 crossref_primary_10_1016_j_infsof_2023_107215 crossref_primary_10_1007_s00158_022_03477_6 crossref_primary_10_1109_TCST_2024_3427910 crossref_primary_10_3390_su131810201 crossref_primary_10_3390_sym12101698 crossref_primary_10_1016_j_segan_2024_101541 crossref_primary_10_1109_TVT_2023_3300275 crossref_primary_10_3390_e25030541 crossref_primary_10_1007_s10661_023_12140_6 crossref_primary_10_3390_sym13020263 crossref_primary_10_3390_math10163018 crossref_primary_10_1109_TASE_2024_3431530 crossref_primary_10_1287_moor_2023_0202 crossref_primary_10_1109_LWC_2022_3146389 |
| Cites_doi | 10.1016/j.ress.2010.01.001 10.1007/s11069-016-2324-y 10.1137/15M1042644 10.21314/JOR.2000.038 10.1016/S0378-4266(02)00271-6 10.1080/01621459.2014.929522 10.1111/1467-9965.00068 10.1080/10920277.2003.10596118 10.1007/s10107-014-0801-1 10.1007/s10479-016-2354-6 10.1016/j.ejor.2018.01.021 10.1080/03610919908813579 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2019 COPYRIGHT 2021 Springer Springer Science+Business Media, LLC, part of Springer Nature 2019. |
| Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019 – notice: COPYRIGHT 2021 Springer – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019. |
| DBID | AAYXX CITATION N95 3V. 7TA 7TB 7WY 7WZ 7XB 87Z 88I 8AL 8AO 8FD 8FE 8FG 8FK 8FL ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FR3 FRNLG F~G GNUQQ HCIFZ JG9 JQ2 K60 K6~ K7- KR7 L.- L6V M0C M0N M2P M7S P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U |
| DOI | 10.1007/s10479-019-03373-1 |
| DatabaseName | CrossRef Gale Business: Insights ProQuest Central (Corporate) Materials Business File Mechanical & Transportation Engineering Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Database (1962 - current) ProQuest Central Essentials - QC ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database Civil Engineering Abstracts ABI/INFORM Professional Advanced ProQuest Engineering Collection ABI/INFORM Global Computing Database Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering collection ProQuest Central Basic |
| DatabaseTitle | CrossRef Materials Research Database ProQuest Business Collection (Alumni Edition) Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest Central China ABI/INFORM Complete Materials Business File ProQuest One Applied & Life Sciences ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest Business Collection ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Engineering Collection ProQuest Central Korea ABI/INFORM Complete (Alumni Edition) Civil Engineering Abstracts ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Advanced Technologies & Aerospace Database Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science Business |
| EISSN | 1572-9338 |
| EndPage | 1315 |
| ExternalDocumentID | A657253034 10_1007_s10479_019_03373_1 |
| GeographicLocations | United States |
| GeographicLocations_xml | – name: United States |
| GrantInformation_xml | – fundername: Naval Postgraduate School grantid: B64C3 funderid: http://dx.doi.org/10.13039/100009910 |
| GroupedDBID | -4X -57 -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 23M 28- 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 7WY 88I 8AO 8FE 8FG 8FL 8TC 8VB 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHQJS AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKVCP ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYQZM AZFZN AZQEC B-. BA0 BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DWQXO EBLON EBO EBS EBU EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GROUPED_ABI_INFORM_RESEARCH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IAO IEA IHE IJ- IKXTQ ITC ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K1G K60 K6V K6~ K7- KDC KOV KOW L6V LAK LLZTM M0C M0N M2P M4Y M7S MA- N2Q N95 N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9M PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS QWB R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZD RZK S16 S1Z S26 S27 S28 S3B SAP SBE SCF SCLPG SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z88 Z8N Z8U Z92 ZL0 ZMTXR ZYFGU ~8M ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION ICD PHGZM PHGZT PQGLB 7TA 7TB 7XB 8AL 8FD 8FK FR3 JG9 JQ2 KR7 L.- PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c423t-8a2499fd5dfedf0d4ae884a87cc999172a641edb3c1ea9c73c954f34e60f6edd3 |
| IEDL.DBID | K7- |
| ISICitedReferencesCount | 48 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000492567900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0254-5330 |
| IngestDate | Wed Nov 05 14:53:24 EST 2025 Sat Nov 29 13:09:32 EST 2025 Sat Nov 29 10:21:32 EST 2025 Sat Nov 29 08:28:07 EST 2025 Sat Nov 29 02:36:39 EST 2025 Tue Nov 18 22:27:37 EST 2025 Fri Feb 21 02:49:22 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1-2 |
| Keywords | Buffered probability of exceedance Portfolio optimization Conditional value-at-risk Density estimation Superquantile |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c423t-8a2499fd5dfedf0d4ae884a87cc999172a641edb3c1ea9c73c954f34e60f6edd3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2508023002 |
| PQPubID | 25585 |
| PageCount | 35 |
| ParticipantIDs | proquest_journals_2508023002 gale_infotracmisc_A657253034 gale_infotracacademiconefile_A657253034 gale_businessinsightsgauss_A657253034 crossref_citationtrail_10_1007_s10479_019_03373_1 crossref_primary_10_1007_s10479_019_03373_1 springer_journals_10_1007_s10479_019_03373_1 |
| PublicationCentury | 2000 |
| PublicationDate | 20210400 2021-04-00 20210401 |
| PublicationDateYYYYMMDD | 2021-04-01 |
| PublicationDate_xml | – month: 4 year: 2021 text: 20210400 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Annals of operations research |
| PublicationTitleAbbrev | Ann Oper Res |
| PublicationYear | 2021 |
| Publisher | Springer US Springer Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer – name: Springer Nature B.V |
| References | RockafellarRTRoysetJORandom variables, monotone relations, and convex analysisMathematical Programming20141481–229733110.1007/s10107-014-0801-1 ArtznerPDelbaenFEberJMHeathDCoherent measures of riskMathematical Finance1999920322810.1111/1467-9965.00068 LandsmanZMValdezEATail conditional expectation for elliptical distributionsNorth American Actuarial Journal200374557110.1080/10920277.2003.10596118 Norton, M., & Uryasev, S. (2016). Maximization of AUC and buffered AUC in binary classification. Mathematical Programming, 174(1–2), 575–612. RockafellarRRoysetJOn buffered failure probability in design and optimization of structuresReliability Engineering & System Safety20109549951010.1016/j.ress.2010.01.001 NortonMMafusalovAUryasevSSoft margin support vector classification as buffered probability minimizationThe Journal of Machine Learning Research201718122852327 Andreev, A., Kanto, A., & Malo, P. (2005). On closed-form calculation of CVaR. Helsinki School of Economics working paper W-389. RockafellarRUryasevSOptimization of conditional value-at-riskThe Journal of Risk200023214110.21314/JOR.2000.038 DavisJRUryasevSAnalysis of tropical storm damage using buffered probability of exceedanceNatural Hazards201683146548310.1007/s11069-016-2324-y RockafellarRTUryasevSConditional value-at-risk for general loss distributionsJournal of Banking & Finance20022671443147110.1016/S0378-4266(02)00271-6 MafusalovAShapiroAUryasevSEstimation and asymptotics for buffered probability of exceedanceEuropean Journal of Operational Research2018270382683610.1016/j.ejor.2018.01.021 MafusalovAUryasevSBuffered probability of exceedance: Mathematical properties and optimizationSIAM Journal on Optimization20182821077110310.1137/15M1042644 Uryasev, S. (2014). Buffered probability of exceedance and buffered service level: Definitions and properties. Department of Industrial and Systems Engineering, University of Florida, research report 3. EverittBSThe Cambridge dictionary of statistics2006CambridgeCambridge University Press KarianZADudewiczEJFitting the generalized lambda distribution to data: A method based on percentilesCommunications in Statistics: Simulation and Computation199928379381910.1080/03610919908813579 SgouropoulosNYaoQYastremizCMatching a distribution by matching quantiles estimationJournal of the American Statistical Association201511051074275910.1080/01621459.2014.929522 ShangDKuzmenkoVUryasevSCash flow matching with risks controlled by buffered probability of exceedance and conditional value-at-riskAnnals of Operations Research20182601–250151410.1007/s10479-016-2354-6 A Mafusalov (3373_CR8) 2018; 28 ZA Karian (3373_CR5) 1999; 28 JR Davis (3373_CR3) 2016; 83 3373_CR10 RT Rockafellar (3373_CR14) 2002; 26 BS Everitt (3373_CR4) 2006 D Shang (3373_CR16) 2018; 260 P Artzner (3373_CR2) 1999; 9 3373_CR17 ZM Landsman (3373_CR6) 2003; 7 3373_CR1 M Norton (3373_CR9) 2017; 18 N Sgouropoulos (3373_CR15) 2015; 110 R Rockafellar (3373_CR11) 2010; 95 RT Rockafellar (3373_CR13) 2014; 148 R Rockafellar (3373_CR12) 2000; 2 A Mafusalov (3373_CR7) 2018; 270 |
| References_xml | – reference: RockafellarRUryasevSOptimization of conditional value-at-riskThe Journal of Risk200023214110.21314/JOR.2000.038 – reference: RockafellarRTUryasevSConditional value-at-risk for general loss distributionsJournal of Banking & Finance20022671443147110.1016/S0378-4266(02)00271-6 – reference: Andreev, A., Kanto, A., & Malo, P. (2005). On closed-form calculation of CVaR. Helsinki School of Economics working paper W-389. – reference: ShangDKuzmenkoVUryasevSCash flow matching with risks controlled by buffered probability of exceedance and conditional value-at-riskAnnals of Operations Research20182601–250151410.1007/s10479-016-2354-6 – reference: KarianZADudewiczEJFitting the generalized lambda distribution to data: A method based on percentilesCommunications in Statistics: Simulation and Computation199928379381910.1080/03610919908813579 – reference: SgouropoulosNYaoQYastremizCMatching a distribution by matching quantiles estimationJournal of the American Statistical Association201511051074275910.1080/01621459.2014.929522 – reference: DavisJRUryasevSAnalysis of tropical storm damage using buffered probability of exceedanceNatural Hazards201683146548310.1007/s11069-016-2324-y – reference: RockafellarRRoysetJOn buffered failure probability in design and optimization of structuresReliability Engineering & System Safety20109549951010.1016/j.ress.2010.01.001 – reference: Norton, M., & Uryasev, S. (2016). Maximization of AUC and buffered AUC in binary classification. Mathematical Programming, 174(1–2), 575–612. – reference: MafusalovAUryasevSBuffered probability of exceedance: Mathematical properties and optimizationSIAM Journal on Optimization20182821077110310.1137/15M1042644 – reference: RockafellarRTRoysetJORandom variables, monotone relations, and convex analysisMathematical Programming20141481–229733110.1007/s10107-014-0801-1 – reference: Uryasev, S. (2014). Buffered probability of exceedance and buffered service level: Definitions and properties. Department of Industrial and Systems Engineering, University of Florida, research report 3. – reference: EverittBSThe Cambridge dictionary of statistics2006CambridgeCambridge University Press – reference: LandsmanZMValdezEATail conditional expectation for elliptical distributionsNorth American Actuarial Journal200374557110.1080/10920277.2003.10596118 – reference: MafusalovAShapiroAUryasevSEstimation and asymptotics for buffered probability of exceedanceEuropean Journal of Operational Research2018270382683610.1016/j.ejor.2018.01.021 – reference: NortonMMafusalovAUryasevSSoft margin support vector classification as buffered probability minimizationThe Journal of Machine Learning Research201718122852327 – reference: ArtznerPDelbaenFEberJMHeathDCoherent measures of riskMathematical Finance1999920322810.1111/1467-9965.00068 – volume-title: The Cambridge dictionary of statistics year: 2006 ident: 3373_CR4 – volume: 95 start-page: 499 year: 2010 ident: 3373_CR11 publication-title: Reliability Engineering & System Safety doi: 10.1016/j.ress.2010.01.001 – ident: 3373_CR1 – volume: 18 start-page: 2285 issue: 1 year: 2017 ident: 3373_CR9 publication-title: The Journal of Machine Learning Research – volume: 83 start-page: 465 issue: 1 year: 2016 ident: 3373_CR3 publication-title: Natural Hazards doi: 10.1007/s11069-016-2324-y – volume: 28 start-page: 1077 issue: 2 year: 2018 ident: 3373_CR8 publication-title: SIAM Journal on Optimization doi: 10.1137/15M1042644 – volume: 2 start-page: 21 issue: 3 year: 2000 ident: 3373_CR12 publication-title: The Journal of Risk doi: 10.21314/JOR.2000.038 – volume: 26 start-page: 1443 issue: 7 year: 2002 ident: 3373_CR14 publication-title: Journal of Banking & Finance doi: 10.1016/S0378-4266(02)00271-6 – ident: 3373_CR10 – ident: 3373_CR17 – volume: 110 start-page: 742 issue: 510 year: 2015 ident: 3373_CR15 publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.2014.929522 – volume: 9 start-page: 203 year: 1999 ident: 3373_CR2 publication-title: Mathematical Finance doi: 10.1111/1467-9965.00068 – volume: 7 start-page: 55 issue: 4 year: 2003 ident: 3373_CR6 publication-title: North American Actuarial Journal doi: 10.1080/10920277.2003.10596118 – volume: 148 start-page: 297 issue: 1–2 year: 2014 ident: 3373_CR13 publication-title: Mathematical Programming doi: 10.1007/s10107-014-0801-1 – volume: 260 start-page: 501 issue: 1–2 year: 2018 ident: 3373_CR16 publication-title: Annals of Operations Research doi: 10.1007/s10479-016-2354-6 – volume: 270 start-page: 826 issue: 3 year: 2018 ident: 3373_CR7 publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2018.01.021 – volume: 28 start-page: 793 issue: 3 year: 1999 ident: 3373_CR5 publication-title: Communications in Statistics: Simulation and Computation doi: 10.1080/03610919908813579 |
| SSID | ssj0001185 |
| Score | 2.5407364 |
| Snippet | Conditional value-at-risk (CVaR) and value-at-risk, also called the superquantile and quantile, are frequently used to characterize the tails of probability... |
| SourceID | proquest gale crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1281 |
| SubjectTerms | Business and Management Combinatorics Confidence intervals Convex analysis Density Distribution (Probability theory) Engineering Financial risk Functions, Inverse Linear programming Logistics Mathematical analysis Measurement Method of moments Methods Operations research Operations Research/Decision Theory Optimization Portfolio management Quantiles Random variables Risk S.I.: Recent Developments in Financial Modeling and Risk Management Statistical analysis Theory of Computation |
| SummonAdditionalLinks | – databaseName: SpringerLINK Contemporary 1997-Present dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6hghA9UFhALBTkA4gDRNrETuIcq1UrTqUqUPVmOWO7qrQkqNlW4sZPZ8brtLu8JDgkF48txxnPw575BuAVBu0rxDJrW_J0FEqX8fVd1lR5kIEB3Csbi03Uh4f69LQ5SklhwxjtPl5JRkm9luymao7toUfKWmbk89wmdad5Ox5_PLmWv2Qyx8BFcn0yjp1MqTK_H2NDHf0slH-5HY1K52Dn_6b7AO4nI1PsrbjiIdzy3QTujjHuE9gZazmItLUnsL0GTPgIvs_tAmNhr-5MzE_ssbCdE-3Rh31BRq6gGRD3Ci5Gs4L5_iYcA_Cm2lmD4NNdsXY3Lpa9YEM_9IvzXvQkpr6k_M84sOMoehqEET9WqZSP4fPB_qf5-yzVasiQDLJlpi35cU1wpQvehZlT1mutrK4R2QStC1up3LtWYu5tg7XEplRBKl_NQuWdk09gq-s7_xRE0YaWvNoitKVUBeq2Dho5g9jnM6T-U8jHX2YwAZlzPY2FuYFg5rU3tPYmrr2hPm-v-3xdwXj8lfo1c4JJdUDpNfBJyXBmL4fB7FVlXZSk-tUU3kQ6lgU0A7QppYG-g1G1Nih3NyhpD-Nm88hzJsmQwZBxyuh8pLKm8G7ksZvmP0__2b-RP4d7BQfqxHCkXdhaXlz6F3AHr5bnw8XLuLd-AFhZHtQ priority: 102 providerName: Springer Nature |
| Title | Calculating CVaR and bPOE for common probability distributions with application to portfolio optimization and density estimation |
| URI | https://link.springer.com/article/10.1007/s10479-019-03373-1 https://www.proquest.com/docview/2508023002 |
| Volume | 299 |
| WOSCitedRecordID | wos000492567900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1572-9338 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001185 issn: 0254-5330 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFH5iG0JwYFBAK4zKBxAHsGjiJE5OaFSdkBCl6mAMLpHjH9OkLhlLh8SNP533XGddQezCIe8S23Hk5-dn-73vA3imXW4zrVNeVbjTSbQwnK7veJFFTjgCcM-UJ5uQk0l-dFRMw4FbG8IqO5voDbVpNJ2Rv8almrDKcAK_OfvOiTWKblcDhcYGbEVxHJGev5f80hKj8-xDGHETxCmKMiTNhNS5RFKkED5CSMGjtYXpT_P81z2pX372t_-34_fgbnA82d5SU-7DDVv34FYX996D7Y7fgYXp3oM7V8AKH8CvkZprT_ZVH7PRoZoxVRtWTT-OGTq-DDuDX2JEULOE_v7JDIHyBj6tltGJL7tyX84WDSPn3zXzk4Y1aLpOQ06ob9hQZD02Qiggy_TKh_B5f_xp9I4H_gau0Ulb8Fzh3q5wJjXOGjc0ibJ5nqhcak1uqYxVlkTWVEJHVhVaCl2kiROJzYYus8aIR7BZN7XdARZXrsKdbuyqVCSxzivpck1ZxTYaaqzfh6gbvFIHcHPi2JiXK1hmGvASB7z0A15inZeXdc6W0B7Xln5OOlEGblAULZ2etMfqom3LvSyVcYruQNKHF74c2QfsgVYhzQH_g5C21krurpXEea3XX3f6VAa70pYrZerDq04jV6__3f3H17f2BG7HFKzjQ5J2YXNxfmGfwk39Y3HSng9gQ375OoCtt-PJdDbwcwzlh-GIZDwlKQ9QTtNvKGcHh78B3msvyw |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgigcKCxFLBTwgYoDRGxi53VAqFpatWpZKlRQb8bxo6q0JKXZgnrjF_EbmfE63S6I3nrgkFxiW3EyM56xZ74P4Ll2hc20TqOqwkhHaG4iOr6Lyix23BGAe6Y82UQ-GhUHB-XeAvzqamEorbKzid5Qm0bTHvlrXKoJqwwV-O3xt4hYo-h0taPQmIrFjj37gSFb-2b7Hf7ftSTZ3NgfbkWBVSDS6DpMokJhxFE6kxpnjRsYoWxRCFXkWpOzlCcqE7E1FdexVaXOuS5T4biw2cBl1hiO416D60KgOlCq4GB4bvnRWfcpkxh0RZS1GYp0QqmeyCkzCS_Ocx7Fcwvhn8vBX-eyfrnbXP7fPtRduBMca7Y-1YR7sGDrHtzs8vp7sNzxV7Bgznpw-wIY4334OVRj7cnM6kM2_Kw-MlUbVu192GDo2DOcPM6MEQHPFNr8jBkCHQ58YS2jHW12IR-ATRpGwY1rxkcNa9A0fw01r35gQ5UDOAihnEzLR1fg05V8oAewWDe1fQgsqVyFkXziqpSLRBdV7gpNVdM2Hmjs34e4ExapA3g7cYiM5Qx2mgRMooBJL2AS-7w873M8hS65tPUayaAM3Kd4a2l3qD1Up20r17M0T1J0d0QfXvh2ZP_wDbQKZRw4D0ISm2u5OtcS7Zaef9zJrwx2s5Uz4e3Dq04DZo___fqPLh_tGSxt7b_flbvbo53HcCuhxCSffrUKi5OTU_sEbujvk6P25KnXaAZfrlozfgMrbIgs |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6Vgio4UFhAXSjgAxUHiLqJ8zwgVG27oipaVghQxcV1_KgqLUnbbEG98bv4dcw4TrcLorceOCSX2FbizIxn7JnvA3ihbG5SpZKgLDHSiRXXAR3fBUUaWm4JwD2VjmwiG4_z_f1isgS_uloYSqvsbKIz1LpWtEe-iUs1YZWhAm9anxYx2R69PT4JiEGKTlo7Oo1WRPbM-Q8M35o3u9v4rzeiaLTzafgu8AwDgUI3YhbkEqOPwupEW6PtQMfS5Hks80wpcpyySKZxaHTJVWhkoTKuiiS2PDbpwKZGa47j3oCbGcaYFPhNkq8XqwA67i59EgOwgDI4fcGOL9uLM8pSwovzjAfhwqL459Lw1xmtW_pGq__zpN2Du97hZluthtyHJVP1YKXL9-_BasdrwbyZ68GdSyCND-DnUE6VIzmrDtnwi_zIZKVZOfmww9DhZzgR-GWMiHlayPNzpgmM2POINYx2utmlPAE2qxkFPbaeHtWsRpP9zdfCuoE1VRTgIIR-0paVPoTP1zJBj2C5qiuzBiwqbYkRfmTLhMeRysvM5oqqqU04UNi_D2EnOEJ5UHfiFpmKORw1CZtAYRNO2AT2eXXR57iFNLmy9QbJo_CcqHhraNeoOZRnTSO20iSLEnSD4j68dO3ILuIbKOnLO_A7CGFsoeX6Qku0Z2rxcSfLwtvTRswFuQ-vO22YP_736z--erTnsIIKId7vjveewO2I8pVcVtY6LM9Oz8xTuKW-z46a02dOuRkcXLdi_AZ57ZE9 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Calculating+CVaR+and+bPOE+for+common+probability+distributions+with+application+to+portfolio+optimization+and+density+estimation&rft.jtitle=Annals+of+operations+research&rft.au=Norton%2C+Matthew&rft.au=Khokhlov%2C+Valentyn&rft.au=Uryasev%2C+Stan&rft.date=2021-04-01&rft.pub=Springer&rft.issn=0254-5330&rft.volume=299&rft.issue=1-2&rft.spage=1281&rft_id=info:doi/10.1007%2Fs10479-019-03373-1&rft.externalDocID=A657253034 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0254-5330&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0254-5330&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0254-5330&client=summon |