Learning a Generative Motion Model From Image Sequences Based on a Latent Motion Matrix

We propose to learn a probabilistic motion model from a sequence of images for spatio-temporal registration. Our model encodes motion in a low-dimensional probabilistic space - the motion matrix - which enables various motion analysis tasks such as simulation and interpolation of realistic motion pa...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on medical imaging Ročník 40; číslo 5; s. 1405 - 1416
Hlavní autoři: Krebs, Julian, Delingette, Herve, Ayache, Nicholas, Mansi, Tommaso
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States IEEE 01.05.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Institute of Electrical and Electronics Engineers
Témata:
ISSN:0278-0062, 1558-254X, 1558-254X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We propose to learn a probabilistic motion model from a sequence of images for spatio-temporal registration. Our model encodes motion in a low-dimensional probabilistic space - the motion matrix - which enables various motion analysis tasks such as simulation and interpolation of realistic motion patterns allowing for faster data acquisition and data augmentation. More precisely, the motion matrix allows to transport the recovered motion from one subject to another simulating for example a pathological motion in a healthy subject without the need for inter-subject registration. The method is based on a conditional latent variable model that is trained using amortized variational inference. This unsupervised generative model follows a novel multivariate Gaussian process prior and is applied within a temporal convolutional network which leads to a diffeomorphic motion model. Temporal consistency and generalizability is further improved by applying a temporal dropout training scheme. Applied to cardiac cine-MRI sequences, we show improved registration accuracy and spatio-temporally smoother deformations compared to three state-of-the-art registration algorithms. Besides, we demonstrate the model's applicability for motion analysis, simulation and super-resolution by an improved motion reconstruction from sequences with missing frames compared to linear and cubic interpolation.
AbstractList We propose to learn a probabilistic motion model from a sequence of images for spatio-temporal registration. Our model encodes motion in a low-dimensional probabilistic space - the motion matrix - which enables various motion analysis tasks such as simulation and interpolation of realistic motion patterns allowing for faster data acquisition and data augmentation. More precisely, the motion matrix allows to transport the recovered motion from one subject to another simulating for example a pathological motion in a healthy subject without the need for inter-subject registration. The method is based on a conditional latent variable model that is trained using amortized variational inference. This unsupervised generative model follows a novel multivariate Gaussian process prior and is applied within a temporal convolutional network which leads to a diffeomorphic motion model. Temporal consistency and generalizability is further improved by applying a temporal dropout training scheme. Applied to cardiac cine-MRI sequences, we show improved registration accuracy and spatio-temporally smoother deformations compared to three state-of-the-art registration algorithms. Besides, we demonstrate the model's applicability for motion analysis, simulation and super-resolution by an improved motion reconstruction from sequences with missing frames compared to linear and cubic interpolation.We propose to learn a probabilistic motion model from a sequence of images for spatio-temporal registration. Our model encodes motion in a low-dimensional probabilistic space - the motion matrix - which enables various motion analysis tasks such as simulation and interpolation of realistic motion patterns allowing for faster data acquisition and data augmentation. More precisely, the motion matrix allows to transport the recovered motion from one subject to another simulating for example a pathological motion in a healthy subject without the need for inter-subject registration. The method is based on a conditional latent variable model that is trained using amortized variational inference. This unsupervised generative model follows a novel multivariate Gaussian process prior and is applied within a temporal convolutional network which leads to a diffeomorphic motion model. Temporal consistency and generalizability is further improved by applying a temporal dropout training scheme. Applied to cardiac cine-MRI sequences, we show improved registration accuracy and spatio-temporally smoother deformations compared to three state-of-the-art registration algorithms. Besides, we demonstrate the model's applicability for motion analysis, simulation and super-resolution by an improved motion reconstruction from sequences with missing frames compared to linear and cubic interpolation.
We propose to learn a probabilistic motion model from a sequence of images for spatio-temporal registration. Our model encodes motion in a low-dimensional probabilistic space - the motion matrix - which enables various motion analysis tasks such as simulation and interpolation of realistic motion patterns allowing for faster data acquisition and data augmentation. More precisely, the motion matrix allows to transport the recovered motion from one subject to another simulating for example a pathological motion in a healthy subject without the need for inter-subject registration. The method is based on a conditional latent variable model that is trained using amortized variational inference. This unsupervised generative model follows a novel multivariate Gaussian process prior and is applied within a temporal convolutional network which leads to a diffeomorphic motion model. Temporal consistency and generalizability is further improved by applying a temporal dropout training scheme. Applied to cardiac cine-MRI sequences, we show improved registration accuracy and spatio-temporally smoother deformations compared to three state-of-the-art registration algorithms. Besides, we demonstrate the model's applicability for motion analysis, simulation and super-resolution by an improved motion reconstruction from sequences with missing frames compared to linear and cubic interpolation.
We propose to learn a probabilistic motion model from a sequence of images for spatio-temporal registration. Our model encodes motion in a low-dimensional probabilistic spacethe motion matrix-which enables various motion analysis tasks such as simulation and interpolation of realistic motion patterns allowing for faster data acquisition and data augmentation. More precisely, the motion matrix allows to transport the recovered motion from one subject to another simulating for example a pathological motion in a healthy subject without the need for inter-subject registration. The method is based on a conditional latent variable model that is trained using amortized variational inference. This unsupervised generative model follows a novel multivariate Gaussian process prior and is applied within a temporal convolutional network which leads to a diffeomorphic motion model. Temporal consistency and generalizability is further improved by applying a temporal dropout training scheme. Applied to cardiac cine-MRI sequences, we show improved registration accuracy and spatio-temporally smoother deformations compared to three state-of-the-art registration algorithms. Besides, we demonstrate the model's applicability for motion analysis, simulation and super-resolution by an improved motion reconstruction from sequences with missing frames compared to linear and cubic interpolation.
Author Krebs, Julian
Delingette, Herve
Mansi, Tommaso
Ayache, Nicholas
Author_xml – sequence: 1
  givenname: Julian
  orcidid: 0000-0002-3902-0223
  surname: Krebs
  fullname: Krebs, Julian
  email: julian.krebs@inria.fr
  organization: Inria, Epione Team, Université Côte d'Azur, Sophia Antipolis, France
– sequence: 2
  givenname: Herve
  surname: Delingette
  fullname: Delingette, Herve
  organization: Inria, Epione Team, Université Côte d'Azur, Sophia Antipolis, France
– sequence: 3
  givenname: Nicholas
  surname: Ayache
  fullname: Ayache, Nicholas
  organization: Inria, Epione Team, Université Côte d'Azur, Sophia Antipolis, France
– sequence: 4
  givenname: Tommaso
  orcidid: 0000-0002-8342-4110
  surname: Mansi
  fullname: Mansi, Tommaso
  organization: Siemens Healthineers, Digital Technology and Innovation, Princeton, NJ, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33531298$$D View this record in MEDLINE/PubMed
https://hal.science/hal-03126419$$DView record in HAL
BookMark eNp9kU1r3DAQhkVJSTZp7oVCMfTSHrwdfdiyjklokgWHHrrQ3oQsz6YKtpRK3tD8-8jsdg859DQgnkfDO-8pOfLBIyHvKSwpBfV1fbdaMmB0yaGqK07fkAWtqqZklfh1RBbAZFMC1OyEnKb0AEBFBeqYnHCeYaaaBfnZoone-fvCFDfoMZrJPWFxFyYXfB49DsV1DGOxGs09Fj_wzxa9xVRcmoR9kRlTtGZCPx0cM0X39x15uzFDwvP9PCPr62_rq9uy_X6zurpoSysYn0ppJJedtFD3HHqoKOuYqbkRSljVKM5YZ61lagNSdoJ2ommoFAggN1Syjp-RL7tvf5tBP0Y3mvisg3H69qLV8xvknLWg6olm9vOOfYwhp0iTHl2yOAzGY9gmzURTUwG1EBn99Ap9CNvocxDNKqpULTnM1Mc9te1G7A_7_103A7ADbAwpRdwcEAp6LlDnAvVcoN4XmJX6lWLdZObDTtG44X_ih53oEPGwR3EhGt7wF_akoxI
CODEN ITMID4
CitedBy_id crossref_primary_10_1109_TMI_2024_3435000
crossref_primary_10_1016_j_media_2022_102678
crossref_primary_10_1145_3638044
crossref_primary_10_1109_TMI_2023_3331982
crossref_primary_10_1002_nbm_4775
crossref_primary_10_1109_TPAMI_2023_3243040
Cites_doi 10.1007/978-3-319-66182-7_31
10.1109/TMI.2005.852050
10.1561/2200000056
10.1016/j.media.2007.06.004
10.1109/TCI.2016.2532323
10.1023/B:VISI.0000043755.93987.aa
10.1016/j.media.2017.12.008
10.1007/11866565_113
10.1109/ISS1.2017.8389230
10.1109/CVPR.2017.304
10.1016/j.neuroimage.2013.04.114
10.1007/978-3-030-39074-7_19
10.1016/j.media.2019.07.006
10.1109/TMI.2009.2038908
10.1109/TMI.2011.2158440
10.1109/CVPR.2018.00964
10.1007/978-3-030-32281-6_2
10.1109/TMI.2011.2168567
10.1016/j.media.2018.11.010
10.1109/TMI.2013.2265603
10.1016/j.media.2011.10.006
10.1109/TMI.2018.2837502
10.1016/j.neuroimage.2017.07.008
10.1007/978-3-319-66185-8_30
10.1016/j.neuroimage.2008.10.040
10.1007/978-3-540-85988-8_90
10.1016/j.media.2010.10.003
10.1016/j.media.2013.04.010
10.1007/978-3-030-00928-1_82
10.1007/978-3-030-00937-3_10
10.1007/978-3-319-19992-4_19
10.1118/1.3523619
10.1016/j.hfc.2008.02.014
10.1109/TMI.2019.2897112
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
1XC
VOOES
DOI 10.1109/TMI.2021.3056531
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


MEDLINE
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Computer Science
EISSN 1558-254X
EndPage 1416
ExternalDocumentID oai:HAL:hal-03126419v1
33531298
10_1109_TMI_2021_3056531
9344838
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: DGA-DSH
– fundername: Inria Sophia Antipolis-Méditerranée, NEF Computation Cluster
– fundername: French Government, through the 3IA Côte d’Azur Investments in the Future Project
– fundername: National Research Agency (ANR)
  grantid: ANR-19-P3IA-0002; AAP Santé 06 2017-260
GroupedDBID ---
-DZ
-~X
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
RIG
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
1XC
VOOES
ID FETCH-LOGICAL-c423t-7a737b7c06d30d0512b2a63a494c989322bccc29f077b41b488174e007f172b3
IEDL.DBID RIE
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000645866500009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0278-0062
1558-254X
IngestDate Tue Oct 14 20:39:26 EDT 2025
Sun Sep 28 08:32:46 EDT 2025
Mon Jun 30 03:59:13 EDT 2025
Mon Jul 21 06:05:50 EDT 2025
Sat Nov 29 05:14:08 EST 2025
Tue Nov 18 22:17:43 EST 2025
Wed Aug 27 02:30:05 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 5
Keywords motion simulation
conditional variational autoencoder
latent variable model
motion model
tracking
deformable registration
motion interpolation
gaussian process
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c423t-7a737b7c06d30d0512b2a63a494c989322bccc29f077b41b488174e007f172b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8342-4110
0000-0002-3902-0223
0000-0001-6050-5949
OpenAccessLink https://hal.science/hal-03126419
PMID 33531298
PQID 2519967304
PQPubID 85460
PageCount 12
ParticipantIDs proquest_journals_2519967304
ieee_primary_9344838
crossref_primary_10_1109_TMI_2021_3056531
pubmed_primary_33531298
crossref_citationtrail_10_1109_TMI_2021_3056531
hal_primary_oai_HAL_hal_03126419v1
proquest_miscellaneous_2486140644
PublicationCentury 2000
PublicationDate 2021-05-01
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on medical imaging
PublicationTitleAbbrev TMI
PublicationTitleAlternate IEEE Trans Med Imaging
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Institute of Electrical and Electronics Engineers
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
– name: Institute of Electrical and Electronics Engineers
References ref35
kingma (ref34) 2014
ref13
ref12
ref15
ref14
maas (ref43) 2013; 30
ref30
ref33
ref11
ref10
fortuin (ref40) 2019
ref2
ref1
qiu (ref31) 2012; 31
ref17
ref16
ref19
chollet (ref45) 2015
ref18
bai (ref38) 2018
abadi (ref46) 2016
duchi (ref47) 2007; 3
kingma (ref37) 2014
jaderberg (ref44) 2015
rasmussen (ref39) 2003
ref24
ref26
ref25
ref20
ref42
ref41
jud (ref32) 2015
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
qin (ref23) 2018
kingma (ref36) 2013
References_xml – ident: ref13
  doi: 10.1007/978-3-319-66182-7_31
– ident: ref19
  doi: 10.1109/TMI.2005.852050
– volume: 30
  start-page: 3
  year: 2013
  ident: ref43
  article-title: Rectifier nonlinearities improve neural network acoustic models
  publication-title: Proc ICML
– year: 2016
  ident: ref46
  article-title: TensorFlow: Large-scale machine learning on heterogeneous distributed systems
  publication-title: arXiv 1603 04467
– year: 2015
  ident: ref45
  publication-title: Keras
– ident: ref42
  doi: 10.1561/2200000056
– ident: ref10
  doi: 10.1016/j.media.2007.06.004
– ident: ref28
  doi: 10.1109/TCI.2016.2532323
– ident: ref7
  doi: 10.1023/B:VISI.0000043755.93987.aa
– ident: ref3
  doi: 10.1016/j.media.2017.12.008
– ident: ref18
  doi: 10.1007/11866565_113
– ident: ref2
  doi: 10.1109/ISS1.2017.8389230
– ident: ref27
  doi: 10.1109/CVPR.2017.304
– ident: ref11
  doi: 10.1016/j.neuroimage.2013.04.114
– ident: ref35
  doi: 10.1007/978-3-030-39074-7_19
– ident: ref17
  doi: 10.1016/j.media.2019.07.006
– ident: ref6
  doi: 10.1109/TMI.2009.2038908
– start-page: 3581
  year: 2014
  ident: ref34
  article-title: Semi-supervised learning with deep generative models
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref30
  doi: 10.1109/TMI.2011.2158440
– ident: ref41
  doi: 10.1109/CVPR.2018.00964
– ident: ref26
  doi: 10.1007/978-3-030-32281-6_2
– volume: 31
  start-page: 302
  year: 2012
  ident: ref31
  article-title: Principal component based diffeomorphic surface mapping
  publication-title: IEEE Trans Med Imag
  doi: 10.1109/TMI.2011.2168567
– ident: ref16
  doi: 10.1016/j.media.2018.11.010
– start-page: 472
  year: 2018
  ident: ref23
  article-title: Joint learning of motion estimation and segmentation for cardiac mr image sequences
  publication-title: Proc Int Conf Med Image Comput Comput -Assist Intervent
– year: 2013
  ident: ref36
  article-title: Auto-encoding variational Bayes
  publication-title: arXiv 1312 6114
– volume: 3
  start-page: 2325
  year: 2007
  ident: ref47
  article-title: Derivations for linear algebra and optimization
  publication-title: Berkeley
– year: 2014
  ident: ref37
  article-title: Adam: A method for stochastic optimization
  publication-title: arXiv 1412 6980
– ident: ref4
  doi: 10.1109/TMI.2013.2265603
– ident: ref21
  doi: 10.1016/j.media.2011.10.006
– ident: ref1
  doi: 10.1109/TMI.2018.2837502
– year: 2018
  ident: ref38
  article-title: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling
  publication-title: arXiv 1803 01271
– ident: ref12
  doi: 10.1016/j.neuroimage.2017.07.008
– ident: ref33
  doi: 10.1007/978-3-319-66185-8_30
– start-page: 63
  year: 2003
  ident: ref39
  article-title: Gaussian processes in machine learning
  publication-title: Machine Learning Summer School
– ident: ref5
  doi: 10.1016/j.neuroimage.2008.10.040
– ident: ref9
  doi: 10.1007/978-3-540-85988-8_90
– ident: ref22
  doi: 10.1016/j.media.2010.10.003
– ident: ref24
  doi: 10.1016/j.media.2013.04.010
– year: 2019
  ident: ref40
  article-title: GP-VAE: Deep probabilistic time series imputation
  publication-title: arXiv 1907 04155
– start-page: 97
  year: 2015
  ident: ref32
  article-title: Respiratory motion compensation with topology independent surrogates
  publication-title: Proc Workshop Imag Comput Assistance Radiat Therapy
– ident: ref14
  doi: 10.1007/978-3-030-00928-1_82
– start-page: 2017
  year: 2015
  ident: ref44
  article-title: Spatial transformer networks
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref25
  doi: 10.1007/978-3-030-00937-3_10
– ident: ref8
  doi: 10.1007/978-3-319-19992-4_19
– ident: ref20
  doi: 10.1118/1.3523619
– ident: ref29
  doi: 10.1016/j.hfc.2008.02.014
– ident: ref15
  doi: 10.1109/TMI.2019.2897112
SSID ssj0014509
Score 2.4660504
Snippet We propose to learn a probabilistic motion model from a sequence of images for spatio-temporal registration. Our model encodes motion in a low-dimensional...
SourceID hal
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1405
SubjectTerms Algorithms
Artificial Intelligence
Computer Science
Computer Vision and Pattern Recognition
conditional variational autoencoder
Data acquisition
Data models
Deformable models
deformable registration
Gaussian process
Gaussian processes
Humans
Image Processing, Computer-Assisted
Image sequences
Interpolation
latent variable model
Machine Learning
Magnetic Resonance Imaging
Magnetic Resonance Imaging, Cine
Medical Imaging
Motion
motion interpolation
Motion model
motion simulation
Probabilistic logic
Registration
Simulation
Strain
Tracking
Title Learning a Generative Motion Model From Image Sequences Based on a Latent Motion Matrix
URI https://ieeexplore.ieee.org/document/9344838
https://www.ncbi.nlm.nih.gov/pubmed/33531298
https://www.proquest.com/docview/2519967304
https://www.proquest.com/docview/2486140644
https://hal.science/hal-03126419
Volume 40
WOSCitedRecordID wos000645866500009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared)
  customDbUrl:
  eissn: 1558-254X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014509
  issn: 0278-0062
  databaseCode: RIE
  dateStart: 19820101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9tADBdNKaV72Pqxj2xduY6-DObGvrv4rMduLLSQlEJDlzdjn5Vu0DojTcr-_En-YoNtsCcbW2cf1sf9ZOkkgBObxfMYaRjYyPrAYugDRCoCGkamyHUWmqpN583YXV4msxlebcCHbi8MEVXJZ3Qqp1Usv1j4tfwqG6BhZ8IkPeg55-q9Wl3EwA7rdA4tFWPDWLchyRAH08kFO4I6OhW4zDK3A9vG8FFj8ttq1PsquZBVk5W_481q3Rk9-78Z78LTBl-qs1og9mCDyn148kvVwX3YnjTx9AP40pRXvVWZqgtQi_VTk6q1j5I-aXdqtFzcq4t7tjvqus27Vh958SsU02RqzGi1XHVjpOT_j-cwHX2efjoPmlYLgWc8tQpc5ozLnQ_jwoQFK6pmPsUms2g9MqTROvfea5yHzuU2ylnt2ZUhBhhzRkC5eQGb5aKkV6AsZbkt_DyPxN8lNg-JIfSI_GyiqOjDoP3iqW_KkEs3jLu0ckdCTJldqbArbdjVh_fdiO91CY5_0L5jJnZkUjv7_GycyjW2Xgz-InxkogPhVEfVMKkPhy3P00aRH1LZ2Isxm0Hbh-PuNqugxFWykhZrprEJgxzGdkzzspaV7tmtoL3-8zvfwI5Mv86gPITN1XJNb2HLP66-PSyPWM5nyVEl5z8BgmzyvA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9NAEB61BZXywNFyBAosiBck3Ni7G9vzWBBRIpwIiQj6trLXE0BqHZQmFT-fGV8CCZB4smXP-ppjv_HMzgC8tHm8jJFGgY2sDyyGPkCkMqBRZMpC56Gp23R-ypL5PD07ww878LpfC0NEdfIZnchuHcsvV34rv8qGaNiZMOkuXBtZq6NmtVYfM7CjJqFDS83YMNZdUDLE4WI2ZVdQRycCmFnqDmDfGN5qTH-bj3a_SjZk3Wbl74iznnnGt__vme_ArRZhqtNGJO7CDlWHcPOXuoOHsD9rI-pH8LktsPpF5aopQS32T83q5j5KOqWdq_F6daGmF2x51Mcu81q94emvVEyTq4zxarXpx0jR_x_3YDF-t3g7CdpmC4FnRLUJkjwxSZH4MC5NWLKqauZUbHKL1iODGq0L773GZZgkhY0KVnx2ZoghxpIxUGHuw161qughKEt5YUu_LCLxeIkNRGoIPSJfmygqBzDsvrjzbSFy6Ydx7mqHJETH7HLCLteyawCv-hHfmyIc_6B9wUzsyaR69uQ0c3KM7RfDvwivmOhIONVTtUwawHHHc9eq8qWTpb0YsyG0A3jen2YllMhKXtFqyzQ2ZZjD6I5pHjSy0l-7E7RHf77nM7gxWcwyl03n7x_DgbxKk095DHub9ZaewHV_tfl2uX5aS_tPkjj1Gw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+a+Generative+Motion+Model+From+Image+Sequences+Based+on+a+Latent+Motion+Matrix&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Krebs%2C+Julian&rft.au=Delingette%2C+Herve&rft.au=Ayache%2C+Nicholas&rft.au=Mansi%2C+Tommaso&rft.date=2021-05-01&rft.pub=IEEE&rft.issn=0278-0062&rft.volume=40&rft.issue=5&rft.spage=1405&rft.epage=1416&rft_id=info:doi/10.1109%2FTMI.2021.3056531&rft_id=info%3Apmid%2F33531298&rft.externalDocID=9344838
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon