Learning a Generative Motion Model From Image Sequences Based on a Latent Motion Matrix
We propose to learn a probabilistic motion model from a sequence of images for spatio-temporal registration. Our model encodes motion in a low-dimensional probabilistic space - the motion matrix - which enables various motion analysis tasks such as simulation and interpolation of realistic motion pa...
Uloženo v:
| Vydáno v: | IEEE transactions on medical imaging Ročník 40; číslo 5; s. 1405 - 1416 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
IEEE
01.05.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Institute of Electrical and Electronics Engineers |
| Témata: | |
| ISSN: | 0278-0062, 1558-254X, 1558-254X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | We propose to learn a probabilistic motion model from a sequence of images for spatio-temporal registration. Our model encodes motion in a low-dimensional probabilistic space - the motion matrix - which enables various motion analysis tasks such as simulation and interpolation of realistic motion patterns allowing for faster data acquisition and data augmentation. More precisely, the motion matrix allows to transport the recovered motion from one subject to another simulating for example a pathological motion in a healthy subject without the need for inter-subject registration. The method is based on a conditional latent variable model that is trained using amortized variational inference. This unsupervised generative model follows a novel multivariate Gaussian process prior and is applied within a temporal convolutional network which leads to a diffeomorphic motion model. Temporal consistency and generalizability is further improved by applying a temporal dropout training scheme. Applied to cardiac cine-MRI sequences, we show improved registration accuracy and spatio-temporally smoother deformations compared to three state-of-the-art registration algorithms. Besides, we demonstrate the model's applicability for motion analysis, simulation and super-resolution by an improved motion reconstruction from sequences with missing frames compared to linear and cubic interpolation. |
|---|---|
| AbstractList | We propose to learn a probabilistic motion model from a sequence of images for spatio-temporal registration. Our model encodes motion in a low-dimensional probabilistic space - the motion matrix - which enables various motion analysis tasks such as simulation and interpolation of realistic motion patterns allowing for faster data acquisition and data augmentation. More precisely, the motion matrix allows to transport the recovered motion from one subject to another simulating for example a pathological motion in a healthy subject without the need for inter-subject registration. The method is based on a conditional latent variable model that is trained using amortized variational inference. This unsupervised generative model follows a novel multivariate Gaussian process prior and is applied within a temporal convolutional network which leads to a diffeomorphic motion model. Temporal consistency and generalizability is further improved by applying a temporal dropout training scheme. Applied to cardiac cine-MRI sequences, we show improved registration accuracy and spatio-temporally smoother deformations compared to three state-of-the-art registration algorithms. Besides, we demonstrate the model's applicability for motion analysis, simulation and super-resolution by an improved motion reconstruction from sequences with missing frames compared to linear and cubic interpolation.We propose to learn a probabilistic motion model from a sequence of images for spatio-temporal registration. Our model encodes motion in a low-dimensional probabilistic space - the motion matrix - which enables various motion analysis tasks such as simulation and interpolation of realistic motion patterns allowing for faster data acquisition and data augmentation. More precisely, the motion matrix allows to transport the recovered motion from one subject to another simulating for example a pathological motion in a healthy subject without the need for inter-subject registration. The method is based on a conditional latent variable model that is trained using amortized variational inference. This unsupervised generative model follows a novel multivariate Gaussian process prior and is applied within a temporal convolutional network which leads to a diffeomorphic motion model. Temporal consistency and generalizability is further improved by applying a temporal dropout training scheme. Applied to cardiac cine-MRI sequences, we show improved registration accuracy and spatio-temporally smoother deformations compared to three state-of-the-art registration algorithms. Besides, we demonstrate the model's applicability for motion analysis, simulation and super-resolution by an improved motion reconstruction from sequences with missing frames compared to linear and cubic interpolation. We propose to learn a probabilistic motion model from a sequence of images for spatio-temporal registration. Our model encodes motion in a low-dimensional probabilistic space - the motion matrix - which enables various motion analysis tasks such as simulation and interpolation of realistic motion patterns allowing for faster data acquisition and data augmentation. More precisely, the motion matrix allows to transport the recovered motion from one subject to another simulating for example a pathological motion in a healthy subject without the need for inter-subject registration. The method is based on a conditional latent variable model that is trained using amortized variational inference. This unsupervised generative model follows a novel multivariate Gaussian process prior and is applied within a temporal convolutional network which leads to a diffeomorphic motion model. Temporal consistency and generalizability is further improved by applying a temporal dropout training scheme. Applied to cardiac cine-MRI sequences, we show improved registration accuracy and spatio-temporally smoother deformations compared to three state-of-the-art registration algorithms. Besides, we demonstrate the model's applicability for motion analysis, simulation and super-resolution by an improved motion reconstruction from sequences with missing frames compared to linear and cubic interpolation. We propose to learn a probabilistic motion model from a sequence of images for spatio-temporal registration. Our model encodes motion in a low-dimensional probabilistic spacethe motion matrix-which enables various motion analysis tasks such as simulation and interpolation of realistic motion patterns allowing for faster data acquisition and data augmentation. More precisely, the motion matrix allows to transport the recovered motion from one subject to another simulating for example a pathological motion in a healthy subject without the need for inter-subject registration. The method is based on a conditional latent variable model that is trained using amortized variational inference. This unsupervised generative model follows a novel multivariate Gaussian process prior and is applied within a temporal convolutional network which leads to a diffeomorphic motion model. Temporal consistency and generalizability is further improved by applying a temporal dropout training scheme. Applied to cardiac cine-MRI sequences, we show improved registration accuracy and spatio-temporally smoother deformations compared to three state-of-the-art registration algorithms. Besides, we demonstrate the model's applicability for motion analysis, simulation and super-resolution by an improved motion reconstruction from sequences with missing frames compared to linear and cubic interpolation. |
| Author | Krebs, Julian Delingette, Herve Mansi, Tommaso Ayache, Nicholas |
| Author_xml | – sequence: 1 givenname: Julian orcidid: 0000-0002-3902-0223 surname: Krebs fullname: Krebs, Julian email: julian.krebs@inria.fr organization: Inria, Epione Team, Université Côte d'Azur, Sophia Antipolis, France – sequence: 2 givenname: Herve surname: Delingette fullname: Delingette, Herve organization: Inria, Epione Team, Université Côte d'Azur, Sophia Antipolis, France – sequence: 3 givenname: Nicholas surname: Ayache fullname: Ayache, Nicholas organization: Inria, Epione Team, Université Côte d'Azur, Sophia Antipolis, France – sequence: 4 givenname: Tommaso orcidid: 0000-0002-8342-4110 surname: Mansi fullname: Mansi, Tommaso organization: Siemens Healthineers, Digital Technology and Innovation, Princeton, NJ, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33531298$$D View this record in MEDLINE/PubMed https://hal.science/hal-03126419$$DView record in HAL |
| BookMark | eNp9kU1r3DAQhkVJSTZp7oVCMfTSHrwdfdiyjklokgWHHrrQ3oQsz6YKtpRK3tD8-8jsdg859DQgnkfDO-8pOfLBIyHvKSwpBfV1fbdaMmB0yaGqK07fkAWtqqZklfh1RBbAZFMC1OyEnKb0AEBFBeqYnHCeYaaaBfnZoone-fvCFDfoMZrJPWFxFyYXfB49DsV1DGOxGs09Fj_wzxa9xVRcmoR9kRlTtGZCPx0cM0X39x15uzFDwvP9PCPr62_rq9uy_X6zurpoSysYn0ppJJedtFD3HHqoKOuYqbkRSljVKM5YZ61lagNSdoJ2ommoFAggN1Syjp-RL7tvf5tBP0Y3mvisg3H69qLV8xvknLWg6olm9vOOfYwhp0iTHl2yOAzGY9gmzURTUwG1EBn99Ap9CNvocxDNKqpULTnM1Mc9te1G7A_7_103A7ADbAwpRdwcEAp6LlDnAvVcoN4XmJX6lWLdZObDTtG44X_ih53oEPGwR3EhGt7wF_akoxI |
| CODEN | ITMID4 |
| CitedBy_id | crossref_primary_10_1109_TMI_2024_3435000 crossref_primary_10_1016_j_media_2022_102678 crossref_primary_10_1145_3638044 crossref_primary_10_1109_TMI_2023_3331982 crossref_primary_10_1002_nbm_4775 crossref_primary_10_1109_TPAMI_2023_3243040 |
| Cites_doi | 10.1007/978-3-319-66182-7_31 10.1109/TMI.2005.852050 10.1561/2200000056 10.1016/j.media.2007.06.004 10.1109/TCI.2016.2532323 10.1023/B:VISI.0000043755.93987.aa 10.1016/j.media.2017.12.008 10.1007/11866565_113 10.1109/ISS1.2017.8389230 10.1109/CVPR.2017.304 10.1016/j.neuroimage.2013.04.114 10.1007/978-3-030-39074-7_19 10.1016/j.media.2019.07.006 10.1109/TMI.2009.2038908 10.1109/TMI.2011.2158440 10.1109/CVPR.2018.00964 10.1007/978-3-030-32281-6_2 10.1109/TMI.2011.2168567 10.1016/j.media.2018.11.010 10.1109/TMI.2013.2265603 10.1016/j.media.2011.10.006 10.1109/TMI.2018.2837502 10.1016/j.neuroimage.2017.07.008 10.1007/978-3-319-66185-8_30 10.1016/j.neuroimage.2008.10.040 10.1007/978-3-540-85988-8_90 10.1016/j.media.2010.10.003 10.1016/j.media.2013.04.010 10.1007/978-3-030-00928-1_82 10.1007/978-3-030-00937-3_10 10.1007/978-3-319-19992-4_19 10.1118/1.3523619 10.1016/j.hfc.2008.02.014 10.1109/TMI.2019.2897112 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 1XC VOOES |
| DOI | 10.1109/TMI.2021.3056531 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE Materials Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering Computer Science |
| EISSN | 1558-254X |
| EndPage | 1416 |
| ExternalDocumentID | oai:HAL:hal-03126419v1 33531298 10_1109_TMI_2021_3056531 9344838 |
| Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: DGA-DSH – fundername: Inria Sophia Antipolis-Méditerranée, NEF Computation Cluster – fundername: French Government, through the 3IA Côte d’Azur Investments in the Future Project – fundername: National Research Agency (ANR) grantid: ANR-19-P3IA-0002; AAP Santé 06 2017-260 |
| GroupedDBID | --- -DZ -~X .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ACPRK AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 VH1 AAYXX CITATION CGR CUY CVF ECM EIF NPM RIG 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 1XC VOOES |
| ID | FETCH-LOGICAL-c423t-7a737b7c06d30d0512b2a63a494c989322bccc29f077b41b488174e007f172b3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 13 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000645866500009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0278-0062 1558-254X |
| IngestDate | Tue Oct 14 20:39:26 EDT 2025 Sun Sep 28 08:32:46 EDT 2025 Mon Jun 30 03:59:13 EDT 2025 Mon Jul 21 06:05:50 EDT 2025 Sat Nov 29 05:14:08 EST 2025 Tue Nov 18 22:17:43 EST 2025 Wed Aug 27 02:30:05 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 5 |
| Keywords | motion simulation conditional variational autoencoder latent variable model motion model tracking deformable registration motion interpolation gaussian process |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c423t-7a737b7c06d30d0512b2a63a494c989322bccc29f077b41b488174e007f172b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-8342-4110 0000-0002-3902-0223 0000-0001-6050-5949 |
| OpenAccessLink | https://hal.science/hal-03126419 |
| PMID | 33531298 |
| PQID | 2519967304 |
| PQPubID | 85460 |
| PageCount | 12 |
| ParticipantIDs | proquest_journals_2519967304 ieee_primary_9344838 crossref_primary_10_1109_TMI_2021_3056531 pubmed_primary_33531298 crossref_citationtrail_10_1109_TMI_2021_3056531 hal_primary_oai_HAL_hal_03126419v1 proquest_miscellaneous_2486140644 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-05-01 |
| PublicationDateYYYYMMDD | 2021-05-01 |
| PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | IEEE transactions on medical imaging |
| PublicationTitleAbbrev | TMI |
| PublicationTitleAlternate | IEEE Trans Med Imaging |
| PublicationYear | 2021 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Institute of Electrical and Electronics Engineers |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) – name: Institute of Electrical and Electronics Engineers |
| References | ref35 kingma (ref34) 2014 ref13 ref12 ref15 ref14 maas (ref43) 2013; 30 ref30 ref33 ref11 ref10 fortuin (ref40) 2019 ref2 ref1 qiu (ref31) 2012; 31 ref17 ref16 ref19 chollet (ref45) 2015 ref18 bai (ref38) 2018 abadi (ref46) 2016 duchi (ref47) 2007; 3 kingma (ref37) 2014 jaderberg (ref44) 2015 rasmussen (ref39) 2003 ref24 ref26 ref25 ref20 ref42 ref41 jud (ref32) 2015 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 qin (ref23) 2018 kingma (ref36) 2013 |
| References_xml | – ident: ref13 doi: 10.1007/978-3-319-66182-7_31 – ident: ref19 doi: 10.1109/TMI.2005.852050 – volume: 30 start-page: 3 year: 2013 ident: ref43 article-title: Rectifier nonlinearities improve neural network acoustic models publication-title: Proc ICML – year: 2016 ident: ref46 article-title: TensorFlow: Large-scale machine learning on heterogeneous distributed systems publication-title: arXiv 1603 04467 – year: 2015 ident: ref45 publication-title: Keras – ident: ref42 doi: 10.1561/2200000056 – ident: ref10 doi: 10.1016/j.media.2007.06.004 – ident: ref28 doi: 10.1109/TCI.2016.2532323 – ident: ref7 doi: 10.1023/B:VISI.0000043755.93987.aa – ident: ref3 doi: 10.1016/j.media.2017.12.008 – ident: ref18 doi: 10.1007/11866565_113 – ident: ref2 doi: 10.1109/ISS1.2017.8389230 – ident: ref27 doi: 10.1109/CVPR.2017.304 – ident: ref11 doi: 10.1016/j.neuroimage.2013.04.114 – ident: ref35 doi: 10.1007/978-3-030-39074-7_19 – ident: ref17 doi: 10.1016/j.media.2019.07.006 – ident: ref6 doi: 10.1109/TMI.2009.2038908 – start-page: 3581 year: 2014 ident: ref34 article-title: Semi-supervised learning with deep generative models publication-title: Proc Adv Neural Inf Process Syst – ident: ref30 doi: 10.1109/TMI.2011.2158440 – ident: ref41 doi: 10.1109/CVPR.2018.00964 – ident: ref26 doi: 10.1007/978-3-030-32281-6_2 – volume: 31 start-page: 302 year: 2012 ident: ref31 article-title: Principal component based diffeomorphic surface mapping publication-title: IEEE Trans Med Imag doi: 10.1109/TMI.2011.2168567 – ident: ref16 doi: 10.1016/j.media.2018.11.010 – start-page: 472 year: 2018 ident: ref23 article-title: Joint learning of motion estimation and segmentation for cardiac mr image sequences publication-title: Proc Int Conf Med Image Comput Comput -Assist Intervent – year: 2013 ident: ref36 article-title: Auto-encoding variational Bayes publication-title: arXiv 1312 6114 – volume: 3 start-page: 2325 year: 2007 ident: ref47 article-title: Derivations for linear algebra and optimization publication-title: Berkeley – year: 2014 ident: ref37 article-title: Adam: A method for stochastic optimization publication-title: arXiv 1412 6980 – ident: ref4 doi: 10.1109/TMI.2013.2265603 – ident: ref21 doi: 10.1016/j.media.2011.10.006 – ident: ref1 doi: 10.1109/TMI.2018.2837502 – year: 2018 ident: ref38 article-title: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling publication-title: arXiv 1803 01271 – ident: ref12 doi: 10.1016/j.neuroimage.2017.07.008 – ident: ref33 doi: 10.1007/978-3-319-66185-8_30 – start-page: 63 year: 2003 ident: ref39 article-title: Gaussian processes in machine learning publication-title: Machine Learning Summer School – ident: ref5 doi: 10.1016/j.neuroimage.2008.10.040 – ident: ref9 doi: 10.1007/978-3-540-85988-8_90 – ident: ref22 doi: 10.1016/j.media.2010.10.003 – ident: ref24 doi: 10.1016/j.media.2013.04.010 – year: 2019 ident: ref40 article-title: GP-VAE: Deep probabilistic time series imputation publication-title: arXiv 1907 04155 – start-page: 97 year: 2015 ident: ref32 article-title: Respiratory motion compensation with topology independent surrogates publication-title: Proc Workshop Imag Comput Assistance Radiat Therapy – ident: ref14 doi: 10.1007/978-3-030-00928-1_82 – start-page: 2017 year: 2015 ident: ref44 article-title: Spatial transformer networks publication-title: Proc Adv Neural Inf Process Syst – ident: ref25 doi: 10.1007/978-3-030-00937-3_10 – ident: ref8 doi: 10.1007/978-3-319-19992-4_19 – ident: ref20 doi: 10.1118/1.3523619 – ident: ref29 doi: 10.1016/j.hfc.2008.02.014 – ident: ref15 doi: 10.1109/TMI.2019.2897112 |
| SSID | ssj0014509 |
| Score | 2.4660504 |
| Snippet | We propose to learn a probabilistic motion model from a sequence of images for spatio-temporal registration. Our model encodes motion in a low-dimensional... |
| SourceID | hal proquest pubmed crossref ieee |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1405 |
| SubjectTerms | Algorithms Artificial Intelligence Computer Science Computer Vision and Pattern Recognition conditional variational autoencoder Data acquisition Data models Deformable models deformable registration Gaussian process Gaussian processes Humans Image Processing, Computer-Assisted Image sequences Interpolation latent variable model Machine Learning Magnetic Resonance Imaging Magnetic Resonance Imaging, Cine Medical Imaging Motion motion interpolation Motion model motion simulation Probabilistic logic Registration Simulation Strain Tracking |
| Title | Learning a Generative Motion Model From Image Sequences Based on a Latent Motion Matrix |
| URI | https://ieeexplore.ieee.org/document/9344838 https://www.ncbi.nlm.nih.gov/pubmed/33531298 https://www.proquest.com/docview/2519967304 https://www.proquest.com/docview/2486140644 https://hal.science/hal-03126419 |
| Volume | 40 |
| WOSCitedRecordID | wos000645866500009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared) customDbUrl: eissn: 1558-254X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014509 issn: 0278-0062 databaseCode: RIE dateStart: 19820101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9tADBdNKaV72Pqxj2xduY6-DObGvrv4rMduLLSQlEJDlzdjn5Vu0DojTcr-_En-YoNtsCcbW2cf1sf9ZOkkgBObxfMYaRjYyPrAYugDRCoCGkamyHUWmqpN583YXV4msxlebcCHbi8MEVXJZ3Qqp1Usv1j4tfwqG6BhZ8IkPeg55-q9Wl3EwA7rdA4tFWPDWLchyRAH08kFO4I6OhW4zDK3A9vG8FFj8ttq1PsquZBVk5W_481q3Rk9-78Z78LTBl-qs1og9mCDyn148kvVwX3YnjTx9AP40pRXvVWZqgtQi_VTk6q1j5I-aXdqtFzcq4t7tjvqus27Vh958SsU02RqzGi1XHVjpOT_j-cwHX2efjoPmlYLgWc8tQpc5ozLnQ_jwoQFK6pmPsUms2g9MqTROvfea5yHzuU2ylnt2ZUhBhhzRkC5eQGb5aKkV6AsZbkt_DyPxN8lNg-JIfSI_GyiqOjDoP3iqW_KkEs3jLu0ckdCTJldqbArbdjVh_fdiO91CY5_0L5jJnZkUjv7_GycyjW2Xgz-InxkogPhVEfVMKkPhy3P00aRH1LZ2Isxm0Hbh-PuNqugxFWykhZrprEJgxzGdkzzspaV7tmtoL3-8zvfwI5Mv86gPITN1XJNb2HLP66-PSyPWM5nyVEl5z8BgmzyvA |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9NAEB61BZXywNFyBAosiBck3Ni7G9vzWBBRIpwIiQj6trLXE0BqHZQmFT-fGV8CCZB4smXP-ppjv_HMzgC8tHm8jJFGgY2sDyyGPkCkMqBRZMpC56Gp23R-ypL5PD07ww878LpfC0NEdfIZnchuHcsvV34rv8qGaNiZMOkuXBtZq6NmtVYfM7CjJqFDS83YMNZdUDLE4WI2ZVdQRycCmFnqDmDfGN5qTH-bj3a_SjZk3Wbl74iznnnGt__vme_ArRZhqtNGJO7CDlWHcPOXuoOHsD9rI-pH8LktsPpF5aopQS32T83q5j5KOqWdq_F6daGmF2x51Mcu81q94emvVEyTq4zxarXpx0jR_x_3YDF-t3g7CdpmC4FnRLUJkjwxSZH4MC5NWLKqauZUbHKL1iODGq0L773GZZgkhY0KVnx2ZoghxpIxUGHuw161qughKEt5YUu_LCLxeIkNRGoIPSJfmygqBzDsvrjzbSFy6Ydx7mqHJETH7HLCLteyawCv-hHfmyIc_6B9wUzsyaR69uQ0c3KM7RfDvwivmOhIONVTtUwawHHHc9eq8qWTpb0YsyG0A3jen2YllMhKXtFqyzQ2ZZjD6I5pHjSy0l-7E7RHf77nM7gxWcwyl03n7x_DgbxKk095DHub9ZaewHV_tfl2uX5aS_tPkjj1Gw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+a+Generative+Motion+Model+From+Image+Sequences+Based+on+a+Latent+Motion+Matrix&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Krebs%2C+Julian&rft.au=Delingette%2C+Herve&rft.au=Ayache%2C+Nicholas&rft.au=Mansi%2C+Tommaso&rft.date=2021-05-01&rft.pub=IEEE&rft.issn=0278-0062&rft.volume=40&rft.issue=5&rft.spage=1405&rft.epage=1416&rft_id=info:doi/10.1109%2FTMI.2021.3056531&rft_id=info%3Apmid%2F33531298&rft.externalDocID=9344838 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon |