Comparison of CrN Coatings Prepared Using High-Power Impulse Magnetron Sputtering and Direct Current Magnetron Sputtering

Chromium Nitride (CrN) coatings have widespread utilization across numerous industrial applications, primarily attributed to their excellent properties. Among the different methods for CrN coating synthesis, direct current magnetron sputtering (DCMS) has been the dominant technique applied. Nonethel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials Jg. 16; H. 18; S. 6303
Hauptverfasser: Bai, Heda, Li, Jin, Gao, Jialai, Ni, Jinyang, Bai, Yaxiong, Jian, Jie, Zhao, Lin, Bai, Bowen, Cai, Zeyun, He, Jianchao, Chen, Hongsheng, Leng, Xuesong, Liu, Xiangli
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 20.09.2023
MDPI
Schlagworte:
ISSN:1996-1944, 1996-1944
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Chromium Nitride (CrN) coatings have widespread utilization across numerous industrial applications, primarily attributed to their excellent properties. Among the different methods for CrN coating synthesis, direct current magnetron sputtering (DCMS) has been the dominant technique applied. Nonetheless, with the expanded applications of CrN coatings, the need for enhanced mechanical performance is concurrently escalating. High-power impulse magnetron sputtering (HiPIMS), an innovative coating deposition approach developed over the past three decades, is gaining recognition for its capability of yielding coatings with superior mechanical attributes, thereby drawing significant research interest. Considering that the mechanical performance of a coating is fundamentally governed by its microstructural properties, a comprehensive review of CrN coatings fabricated through both techniques is presented. This review of recent literature aims to embark on an insightful comparison between DCMS and HiPIMS, followed by an examination of the microstructure of CrN coatings fabricated via both techniques. Furthermore, the exploration of the underlying factors contributing to the disparities in mechanical properties observed in CrN coatings is revealed. An assessment of the advantages and potential shortcomings of HiPIMS is discussed, offering insight into CrN coating fabrication.
AbstractList Chromium Nitride (CrN) coatings have widespread utilization across numerous industrial applications, primarily attributed to their excellent properties. Among the different methods for CrN coating synthesis, direct current magnetron sputtering (DCMS) has been the dominant technique applied. Nonetheless, with the expanded applications of CrN coatings, the need for enhanced mechanical performance is concurrently escalating. High-power impulse magnetron sputtering (HiPIMS), an innovative coating deposition approach developed over the past three decades, is gaining recognition for its capability of yielding coatings with superior mechanical attributes, thereby drawing significant research interest. Considering that the mechanical performance of a coating is fundamentally governed by its microstructural properties, a comprehensive review of CrN coatings fabricated through both techniques is presented. This review of recent literature aims to embark on an insightful comparison between DCMS and HiPIMS, followed by an examination of the microstructure of CrN coatings fabricated via both techniques. Furthermore, the exploration of the underlying factors contributing to the disparities in mechanical properties observed in CrN coatings is revealed. An assessment of the advantages and potential shortcomings of HiPIMS is discussed, offering insight into CrN coating fabrication.Chromium Nitride (CrN) coatings have widespread utilization across numerous industrial applications, primarily attributed to their excellent properties. Among the different methods for CrN coating synthesis, direct current magnetron sputtering (DCMS) has been the dominant technique applied. Nonetheless, with the expanded applications of CrN coatings, the need for enhanced mechanical performance is concurrently escalating. High-power impulse magnetron sputtering (HiPIMS), an innovative coating deposition approach developed over the past three decades, is gaining recognition for its capability of yielding coatings with superior mechanical attributes, thereby drawing significant research interest. Considering that the mechanical performance of a coating is fundamentally governed by its microstructural properties, a comprehensive review of CrN coatings fabricated through both techniques is presented. This review of recent literature aims to embark on an insightful comparison between DCMS and HiPIMS, followed by an examination of the microstructure of CrN coatings fabricated via both techniques. Furthermore, the exploration of the underlying factors contributing to the disparities in mechanical properties observed in CrN coatings is revealed. An assessment of the advantages and potential shortcomings of HiPIMS is discussed, offering insight into CrN coating fabrication.
Chromium Nitride (CrN) coatings have widespread utilization across numerous industrial applications, primarily attributed to their excellent properties. Among the different methods for CrN coating synthesis, direct current magnetron sputtering (DCMS) has been the dominant technique applied. Nonetheless, with the expanded applications of CrN coatings, the need for enhanced mechanical performance is concurrently escalating. High-power impulse magnetron sputtering (HiPIMS), an innovative coating deposition approach developed over the past three decades, is gaining recognition for its capability of yielding coatings with superior mechanical attributes, thereby drawing significant research interest. Considering that the mechanical performance of a coating is fundamentally governed by its microstructural properties, a comprehensive review of CrN coatings fabricated through both techniques is presented. This review of recent literature aims to embark on an insightful comparison between DCMS and HiPIMS, followed by an examination of the microstructure of CrN coatings fabricated via both techniques. Furthermore, the exploration of the underlying factors contributing to the disparities in mechanical properties observed in CrN coatings is revealed. An assessment of the advantages and potential shortcomings of HiPIMS is discussed, offering insight into CrN coating fabrication.
Audience Academic
Author Liu, Xiangli
Chen, Hongsheng
Bai, Heda
Bai, Yaxiong
Bai, Bowen
Zhao, Lin
Leng, Xuesong
Ni, Jinyang
Jian, Jie
He, Jianchao
Cai, Zeyun
Li, Jin
Gao, Jialai
AuthorAffiliation 2 Institute of Special Environments Physical Sciences, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; 21S155061@stu.hit.edu.cn (J.G.); 22S155088@stu.hit.edu.cn (Y.B.); jianjie@hit.edu.cn (J.J.); zhaolin2020@hit.edu.cn (L.Z.); baibowen@hit.edu.cn (B.B.); caizeyun@hit.edu.cn (Z.C.); hejianchao@hit.edu.cn (J.H.); chenhongsheng@hit.edu.cn (H.C.)
1 School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; 20b955008@stu.hit.edu.cn (H.B.); 22B955003@stu.hit.edu.cn (J.N.)
AuthorAffiliation_xml – name: 2 Institute of Special Environments Physical Sciences, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; 21S155061@stu.hit.edu.cn (J.G.); 22S155088@stu.hit.edu.cn (Y.B.); jianjie@hit.edu.cn (J.J.); zhaolin2020@hit.edu.cn (L.Z.); baibowen@hit.edu.cn (B.B.); caizeyun@hit.edu.cn (Z.C.); hejianchao@hit.edu.cn (J.H.); chenhongsheng@hit.edu.cn (H.C.)
– name: 1 School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; 20b955008@stu.hit.edu.cn (H.B.); 22B955003@stu.hit.edu.cn (J.N.)
Author_xml – sequence: 1
  givenname: Heda
  surname: Bai
  fullname: Bai, Heda
– sequence: 2
  givenname: Jin
  surname: Li
  fullname: Li, Jin
– sequence: 3
  givenname: Jialai
  surname: Gao
  fullname: Gao, Jialai
– sequence: 4
  givenname: Jinyang
  surname: Ni
  fullname: Ni, Jinyang
– sequence: 5
  givenname: Yaxiong
  surname: Bai
  fullname: Bai, Yaxiong
– sequence: 6
  givenname: Jie
  surname: Jian
  fullname: Jian, Jie
– sequence: 7
  givenname: Lin
  surname: Zhao
  fullname: Zhao, Lin
– sequence: 8
  givenname: Bowen
  surname: Bai
  fullname: Bai, Bowen
– sequence: 9
  givenname: Zeyun
  surname: Cai
  fullname: Cai, Zeyun
– sequence: 10
  givenname: Jianchao
  surname: He
  fullname: He, Jianchao
– sequence: 11
  givenname: Hongsheng
  surname: Chen
  fullname: Chen, Hongsheng
– sequence: 12
  givenname: Xuesong
  surname: Leng
  fullname: Leng, Xuesong
– sequence: 13
  givenname: Xiangli
  surname: Liu
  fullname: Liu, Xiangli
BookMark eNptkstu1TAQhiNUJErphiewxAYhpfh2nHiFqhRopQKVoGvLccapq8Q-2Amob88cThFQ1V749v2_ZzTzvDqIKUJVvWT0RAhN386WKdYqQcWT6pBprWqmpTz4Z_-sOi7lluIQgrVcH1Z3XZq3NoeSIkmedPkz6ZJdQhwLucqATzCQ64Jnch7Gm_oq_YRMLubtOhUgn-wYYcmo_bpdlwXyjrNxIGchg1tIt-YMcXmUe1E99RZNju_Xo-r6w_tv3Xl9-eXjRXd6WTvJxVI3VPdNy8E770BCy2VvpdQUvNZ9P0ivNpQqBa3lTjjPFe-9lU4NfbtRTDtxVL3b-27XfobBYTzZTmabw2zznUk2mP9fYrgxY_phGN0IrhuFDq_vHXL6vkJZzByKg2myEdJaDG8byuSGtRTRVw_Q27TmiPkhpbACDf9Nneyp0U5gQvQJP3Y4B5iDw6L6gPenTaMbSRvaooDuBS6nUjJ448KCVUq7iMOEoZpdB5i_HYCSNw8kfzJ-BP4F6JG1Ig
CitedBy_id crossref_primary_10_3390_ma18153498
crossref_primary_10_4271_05_18_02_0012
crossref_primary_10_1007_s11665_025_11974_0
crossref_primary_10_1016_j_heliyon_2025_e41936
crossref_primary_10_1080_2374068X_2025_2530981
crossref_primary_10_1039_D5CE00515A
crossref_primary_10_1016_j_cap_2024_05_006
crossref_primary_10_1116_6_0004356
crossref_primary_10_1016_j_mtcomm_2024_108976
crossref_primary_10_3390_coatings13122101
crossref_primary_10_3390_coatings14040432
crossref_primary_10_1016_j_surfcoat_2025_132476
crossref_primary_10_1016_j_jallcom_2025_179427
crossref_primary_10_3390_lubricants13090390
crossref_primary_10_1016_j_surfcoat_2024_130756
crossref_primary_10_1016_j_jallcom_2025_179395
crossref_primary_10_1007_s11665_025_11900_4
crossref_primary_10_1080_21663831_2025_2473654
crossref_primary_10_1088_1742_6596_2994_1_012025
crossref_primary_10_1016_j_colsurfa_2024_135095
crossref_primary_10_3390_ma17102342
crossref_primary_10_3390_coatings15020130
crossref_primary_10_3390_ma18091997
crossref_primary_10_1016_j_optcom_2025_132278
crossref_primary_10_1016_j_est_2025_116813
crossref_primary_10_3390_lubricants11110473
crossref_primary_10_1016_j_corcom_2024_05_004
crossref_primary_10_1016_j_surfcoat_2024_131476
crossref_primary_10_1016_j_jpowsour_2025_236967
crossref_primary_10_1016_j_surfcoat_2025_132626
Cites_doi 10.1016/j.corsci.2020.108845
10.1016/j.surfcoat.2020.125773
10.1016/S0040-6090(01)01043-4
10.2320/matertrans.48.519
10.1016/j.scriptamat.2017.09.018
10.1016/j.surfcoat.2009.05.048
10.1016/j.surfcoat.2011.04.071
10.1016/j.jnucmat.2020.152745
10.1002/adem.200800053
10.1088/1361-6463/ab28e2
10.1016/j.actamat.2022.118260
10.1016/j.jnucmat.2006.05.038
10.1038/srep39484
10.1063/1.2817812
10.1021/acsami.8b08263
10.1016/j.corsci.2022.110495
10.1016/0257-8972(95)08235-2
10.4028/www.scientific.net/KEM.798.122
10.1016/j.tsf.2006.04.051
10.1016/j.corsci.2021.109755
10.1007/s00339-020-03986-5
10.1126/sciadv.aaw5519
10.1016/j.corsci.2020.108533
10.1134/S1027451020020524
10.1016/j.surfcoat.2022.128542
10.1063/1.2159555
10.1016/j.surfcoat.2005.02.161
10.1016/j.surfcoat.2016.10.087
10.1063/1.3481428
10.1088/2053-1591/ab2001
10.1016/j.apsusc.2011.12.048
10.1016/j.surfcoat.2011.07.055
10.1016/j.apsusc.2010.09.086
10.1016/j.jallcom.2008.08.104
10.1063/1.4977815
10.1016/j.tsf.2008.06.008
10.1016/j.tsf.2003.11.113
10.1016/j.ceramint.2021.10.182
10.1016/j.surfcoat.2019.06.016
10.1016/j.pmatsci.2018.03.002
10.1016/j.surfcoat.2017.08.021
10.1063/5.0009380
10.1016/j.materresbull.2012.09.051
10.1016/j.surfcoat.2014.01.021
10.1016/S0257-8972(99)00031-6
10.1016/j.physe.2012.05.008
10.1088/0022-3727/46/21/215201
10.1016/j.corsci.2018.09.013
10.1016/S0039-6028(01)01280-8
10.1016/j.vacuum.2012.02.046
10.1016/j.surfcoat.2021.127235
10.1049/mnl.2019.0600
10.1016/j.surfcoat.2020.125890
10.1016/j.surfcoat.2022.128326
10.1016/j.surfcoat.2020.125990
10.1007/s11665-019-04033-y
10.1016/j.surfcoat.2016.02.064
10.1063/1.4871635
10.3390/coatings13020219
10.1103/PhysRevB.48.11685
10.1007/s11837-018-3111-x
10.4028/www.scientific.net/KEM.718.57
10.1016/j.apsusc.2012.12.148
10.1016/j.jallcom.2021.162139
10.1016/j.promfg.2018.10.125
10.1016/j.tsf.2010.05.062
10.1016/j.actamat.2021.117212
10.1016/j.surfcoat.2022.129176
10.1016/j.jmrt.2022.01.005
10.1016/j.surfcoat.2018.09.006
10.1109/TPS.2010.2071885
10.1016/j.matpr.2018.04.087
10.1016/j.matdes.2020.109365
10.1016/j.matlet.2020.128540
10.1116/1.1818135
10.1016/j.apsusc.2017.09.166
10.1016/j.mattod.2020.04.005
10.1021/nl504677z
10.1016/j.mseb.2010.01.021
10.1016/j.actamat.2017.09.007
10.1007/978-3-030-52071-7
10.1016/S0257-8972(02)00479-6
10.1016/j.surfcoat.2003.12.026
10.1016/j.anucene.2021.108206
10.1088/1757-899X/678/1/012163
10.1016/j.matchemphys.2015.04.015
10.1038/natrevmats.2016.19
10.1016/j.mtcomm.2022.104072
10.1063/1.3692978
10.1016/j.surfcoat.2012.03.010
10.1016/S0040-6090(99)00552-0
10.1016/j.matdes.2020.108478
10.1016/j.surfcoat.2014.07.063
10.1016/j.tsf.2013.01.031
10.1016/j.vacuum.2022.111313
10.1016/j.tsf.2021.138578
10.1016/j.surfcoat.2022.128713
10.1016/j.surfcoat.2014.08.043
10.1063/1.4978350
10.1016/j.actamat.2016.05.030
10.1016/j.heliyon.2019.e01370
10.1016/j.matdes.2016.09.058
10.1016/S0257-8972(99)00240-6
10.1016/j.surfcoat.2016.08.044
10.1016/j.tsf.2008.06.050
10.1016/j.nimb.2010.03.027
10.1116/1.575473
10.1016/S0257-8972(98)00586-6
10.1016/j.actamat.2012.06.049
10.1016/j.actamat.2017.09.054
10.1088/0963-0252/15/2/011
10.1016/j.vacuum.2022.111405
10.1016/j.tsf.2006.03.033
10.1520/STP159720160011
10.1016/j.corsci.2019.05.017
10.1016/j.cplett.2011.02.059
10.1016/j.surfcoat.2004.05.032
10.1016/j.ceramint.2018.03.187
10.1016/j.surfcoat.2009.11.013
10.1016/j.tsf.2005.05.022
10.1016/j.surfcoat.2018.02.028
10.1088/0022-3727/43/27/275204
10.1016/j.ceramint.2020.04.168
10.1016/j.apsusc.2016.08.001
10.1016/j.surfcoat.2018.06.065
10.1016/j.actamat.2020.06.019
10.1016/j.actamat.2021.117095
10.1016/j.surfcoat.2003.09.049
10.1016/j.ceramint.2018.01.199
10.1016/j.surfcoat.2020.126235
10.1016/S0042-207X(01)00327-X
10.1016/j.surfcoat.2016.07.098
10.1016/j.ceramint.2018.01.260
10.1016/j.surfcoat.2021.127947
10.1557/jmr.2011.428
10.1088/1742-6596/100/8/082013
10.1016/j.surfcoat.2010.06.016
10.1088/0963-0252/23/2/025007
10.1016/j.surfcoat.2019.06.053
10.1063/1.5132783
10.1016/j.jallcom.2010.08.042
10.1016/j.surfcoat.2014.02.030
10.1016/j.surfcoat.2009.04.005
10.1016/j.tsf.2014.09.053
10.1016/j.apsusc.2015.05.110
10.1016/j.matdes.2020.109023
10.1016/j.surfcoat.2019.08.016
10.1088/0963-0252/24/3/035018
10.1016/j.ijhydene.2023.03.265
10.1109/TPS.2018.2889696
10.1063/1.5017857
10.1016/j.scriptamat.2005.02.024
10.1016/j.jallcom.2019.07.325
10.1016/j.surfcoat.2009.11.040
10.1116/1.3691832
10.1116/1.3299267
10.1088/1361-6595/abec27
10.1016/j.surfcoat.2013.11.040
10.1016/j.scriptamat.2019.11.042
10.1016/j.matdes.2016.05.029
10.1116/1.1865133
10.1016/0257-8972(95)02498-0
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID AAYXX
CITATION
7SR
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
JG9
KB.
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
7X8
5PM
DOI 10.3390/ma16186303
DatabaseName CrossRef
Engineered Materials Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
SciTech Premium Collection
Materials Research Database
Materials Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Materials Science Collection
Materials Research Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
Materials Science Database
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Publicly Available Content Database

CrossRef

Database_xml – sequence: 1
  dbid: KB.
  name: Materials Science Database
  url: http://search.proquest.com/materialsscijournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1996-1944
ExternalDocumentID PMC10532976
A779740708
10_3390_ma16186303
GrantInformation_xml – fundername: Shenzhen Science and Technology Program
  grantid: RCYX20210609103904028; JCYJ20220531095017039
– fundername: Guangdong Basic and Applied Basic Research Foundation
  grantid: 2021A1515012411; 2022A1515012119
– fundername: National Natural Science Foundation of China
  grantid: 12005048; U22B2064
– fundername: Characteristic Innovation Project of Guangdong Educational Department
  grantid: 2022KTSCX217
GroupedDBID 29M
2WC
2XV
53G
5GY
5VS
8FE
8FG
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
CZ9
D1I
E3Z
EBS
ESX
FRP
GX1
HCIFZ
HH5
HYE
I-F
IAO
ITC
KB.
KC.
KQ8
MK~
MODMG
M~E
OK1
OVT
P2P
PDBOC
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
RPM
TR2
TUS
7SR
8FD
ABUWG
AZQEC
DWQXO
JG9
PKEHL
PQEST
PQQKQ
PQUKI
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c423t-709b782efcfce4e824ba4490ef99bbd4f650066e8a2c3cf262bfa4c6db85619c3
IEDL.DBID PIMPY
ISICitedReferencesCount 33
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001073769400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1996-1944
IngestDate Tue Nov 04 02:06:32 EST 2025
Thu Oct 02 05:24:26 EDT 2025
Fri Jul 25 11:39:06 EDT 2025
Tue Nov 04 18:28:31 EST 2025
Thu Nov 13 06:56:33 EST 2025
Tue Nov 18 22:18:27 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c423t-709b782efcfce4e824ba4490ef99bbd4f650066e8a2c3cf262bfa4c6db85619c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
OpenAccessLink https://www.proquest.com/publiccontent/docview/2869447280?pq-origsite=%requestingapplication%
PQID 2869447280
PQPubID 2032366
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10532976
proquest_miscellaneous_2870145180
proquest_journals_2869447280
gale_infotracacademiconefile_A779740708
crossref_citationtrail_10_3390_ma16186303
crossref_primary_10_3390_ma16186303
PublicationCentury 2000
PublicationDate 20230920
PublicationDateYYYYMMDD 2023-09-20
PublicationDate_xml – month: 9
  year: 2023
  text: 20230920
  day: 20
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Materials
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_94
Gigax (ref_121) 2020; 178
Anders (ref_31) 2018; 123
Song (ref_126) 2013; 89
Teixeira (ref_85) 2002; 64
Anders (ref_55) 2010; 28
Bobzin (ref_115) 2008; 517
Renzelli (ref_75) 2016; 112
Zauner (ref_119) 2022; 239
Shiri (ref_92) 2016; 308
Thomann (ref_105) 2019; 377
Kabir (ref_96) 2017; 309
Song (ref_161) 2021; 156
Seo (ref_52) 2006; 15
Asgaribakhtiari (ref_87) 2023; 454
Moskovkin (ref_114) 2021; 418
Teixeira (ref_78) 2001; 392
Elo (ref_90) 2020; 397
Guo (ref_81) 2022; 445
Liu (ref_12) 2019; 6
Bienk (ref_70) 1995; 76–77
Zhang (ref_116) 2022; 48
Qi (ref_25) 2013; 544
Zhang (ref_72) 2020; 394
Zhou (ref_8) 2020; 126
Meindlhumer (ref_76) 2021; 198
Liew (ref_47) 2022; 17
Cemin (ref_74) 2017; 141
Sproul (ref_56) 2005; 491
Tang (ref_142) 2020; 175
ref_129
Zuo (ref_107) 2019; 47
Qi (ref_10) 2019; 806
Kabir (ref_138) 2018; 44
Ghailane (ref_46) 2020; 280
ref_20
Khamseh (ref_128) 2010; 508
Bilek (ref_73) 2006; 200
Liu (ref_9) 2022; 894
Bohlmark (ref_109) 2004; 23
Gelfi (ref_86) 2005; 192
Rossnagel (ref_51) 1988; 6
Hurkmans (ref_18) 1999; 114
Grimvall (ref_2) 1993; 48
Aiempanakit (ref_104) 2011; 205
Kumar (ref_106) 2021; 722
Paulitsch (ref_98) 2010; 518
Li (ref_152) 2017; 7
Sarakinos (ref_45) 2010; 204
Bobzin (ref_102) 2018; 349
Oje (ref_140) 2020; 167
Liu (ref_21) 2023; 48
Aouadi (ref_22) 2019; 28
Meindlhumer (ref_84) 2020; 195
Kauffmann (ref_118) 2005; 52
Li (ref_160) 2018; 144
Ma (ref_6) 2018; 428
Gudmundsson (ref_34) 2012; 30
Wu (ref_157) 2019; 5
Deng (ref_36) 2020; 46
ref_147
Buranawong (ref_65) 2016; 718
Wan (ref_163) 2016; 305
Zhang (ref_130) 2019; 678
Lazar (ref_111) 2010; 108
Cai (ref_139) 2018; 354
Helmersson (ref_40) 2006; 513
Kirchlechner (ref_80) 2008; 517
Guimaraes (ref_93) 2018; 340
Anders (ref_50) 2012; 111
Buranawong (ref_97) 2019; 798
Kobayashi (ref_1) 2001; 493
Shimizu (ref_53) 2021; 30
Ferrec (ref_35) 2014; 250
Shan (ref_13) 2014; 242
Cunha (ref_69) 1999; 355–356
Lundin (ref_113) 2015; 24
Li (ref_133) 2016; 114
Qiu (ref_14) 2013; 231
Greczynski (ref_62) 2010; 205
Zhao (ref_66) 2004; 185
Xiang (ref_162) 2022; 429
Ehiasarian (ref_64) 2004; 457
Ehiasarian (ref_17) 2003; 163
Yin (ref_77) 2012; 44
Li (ref_158) 2018; 70
Lin (ref_112) 2009; 203
Ou (ref_7) 2015; 351
Li (ref_48) 2020; 10
Ruden (ref_19) 2013; 270
Wang (ref_132) 2022; 204
Wu (ref_145) 2019; 374
Jablonka (ref_33) 2019; 52
Pan (ref_144) 2022; 206
Yi (ref_88) 2018; 10
(ref_164) 2010; 268
Chen (ref_137) 2018; 44
Sun (ref_43) 2020; 38
Lu (ref_122) 2016; 1
Wang (ref_141) 2018; 145
Arias (ref_11) 2015; 160
Ferrec (ref_60) 2016; 390
Kong (ref_27) 2011; 257
Li (ref_131) 2012; 60
Rezek (ref_146) 2020; 393
Meunier (ref_71) 1998; 107
Rebholz (ref_79) 1999; 115
Siriprom (ref_67) 2018; 5
Kabir (ref_135) 2018; 44
Elangovan (ref_28) 2010; 167
Serag (ref_150) 2022; 441
Stranak (ref_123) 2014; 115
Alami (ref_38) 2009; 483
Daniel (ref_89) 2016; 104
Uglov (ref_154) 2020; 14
Guo (ref_5) 2021; 218
Ecker (ref_83) 2020; 188
Petrogalli (ref_127) 2014; 258
Han (ref_143) 2019; 156
Ehiasarian (ref_103) 2010; 43
Kiran (ref_95) 2012; 47
Li (ref_125) 2021; 191
Caro (ref_15) 2020; 401
Biswas (ref_16) 2018; 336
Ellmer (ref_57) 2012; 27
Anders (ref_58) 2017; 121
Neuville (ref_44) 2011; 206
Tillmann (ref_134) 2019; 374
Hahn (ref_4) 2021; 218
Li (ref_153) 2015; 15
Baptista (ref_42) 2018; 17
Oettel (ref_82) 1995; 74–75
Bemporad (ref_91) 2014; 572
Panjan (ref_101) 2014; 23
Anders (ref_30) 2007; 102
Polcar (ref_24) 2009; 203
Ferreira (ref_29) 2016; 291
ref_37
Goyenola (ref_3) 2011; 506
Shang (ref_155) 2020; 196
Anders (ref_54) 2004; 183
Konstantinidis (ref_61) 2006; 99
Kurata (ref_149) 2007; 48
Zhang (ref_26) 2008; 10
Audronis (ref_100) 2010; 204
Anders (ref_39) 2014; 257
Glasbrenner (ref_148) 2006; 356
Greczynski (ref_49) 2010; 38
Hnilica (ref_32) 2020; 128
Liu (ref_120) 2022; 437
Shang (ref_156) 2021; 546
Wang (ref_136) 2023; 207
Li (ref_159) 2018; 143
Palmucci (ref_108) 2013; 46
Bohlmark (ref_124) 2006; 515
Alami (ref_41) 2014; 255
Li (ref_99) 2019; 5
Abdallah (ref_23) 2020; 15
Zhang (ref_151) 2018; 96
Christie (ref_63) 2005; 23
Gudmundsson (ref_110) 2008; 100
Habibi (ref_68) 2022; 32
Kadlec (ref_59) 2017; 121
Lv (ref_117) 2012; 258
References_xml – volume: 175
  start-page: 108845
  year: 2020
  ident: ref_142
  article-title: Achieving Superior Hot Corrosion Resistance by PVD/HVOF Duplex Design
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2020.108845
– volume: 393
  start-page: 125773
  year: 2020
  ident: ref_146
  article-title: Effect of Positive Pulse Voltage in Bipolar Reactive HiPIMS on Crystal Structure, Microstructure and Mechanical Properties of CrN Films
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2020.125773
– volume: 392
  start-page: 276
  year: 2001
  ident: ref_78
  article-title: Mechanical Integrity in PVD Coatings Due to the Presence of Residual Stresses
  publication-title: Thin Solid Films
  doi: 10.1016/S0040-6090(01)01043-4
– volume: 48
  start-page: 519
  year: 2007
  ident: ref_149
  article-title: Corrosion of CrN-Coated Steels in Liquid Pb-Bi
  publication-title: Mater. Trans.
  doi: 10.2320/matertrans.48.519
– volume: 144
  start-page: 13
  year: 2018
  ident: ref_160
  article-title: In Situ Study on Enhanced Heavy Ion Irradiation Tolerance of Porous Mg
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2017.09.018
– volume: 203
  start-page: 3676
  year: 2009
  ident: ref_112
  article-title: Ion Energy and Mass Distributions of the Plasma during Modulated Pulse Power Magnetron Sputtering
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2009.05.048
– volume: 205
  start-page: 4828
  year: 2011
  ident: ref_104
  article-title: Effect of Peak Power in Reactive High Power Impulse Magnetron Sputtering of Titanium Dioxide
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2011.04.071
– volume: 546
  start-page: 152745
  year: 2021
  ident: ref_156
  article-title: Heavy Ion Irradiation Response of an Additively Manufactured 316LN Stainless Steel
  publication-title: J. Nucl. Mater.
  doi: 10.1016/j.jnucmat.2020.152745
– volume: 10
  start-page: 628
  year: 2008
  ident: ref_26
  article-title: Influence of RF Bias on the Deposition of CrN Studied by OES
  publication-title: Adv. Eng. Mater.
  doi: 10.1002/adem.200800053
– volume: 52
  start-page: 365202
  year: 2019
  ident: ref_33
  article-title: Metal Filling by High Power Impulse Magnetron Sputtering
  publication-title: J. Phys. Appl. Phys.
  doi: 10.1088/1361-6463/ab28e2
– volume: 239
  start-page: 118260
  year: 2022
  ident: ref_119
  article-title: Assessing the Fracture and Fatigue Resistance of Nanostructured Thin Films
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2022.118260
– volume: 356
  start-page: 213
  year: 2006
  ident: ref_148
  article-title: Exposure of Pre-Stressed T91 Coated with TiN, CrN and DLC to Pb–55.5Bi
  publication-title: J. Nucl. Mater.
  doi: 10.1016/j.jnucmat.2006.05.038
– volume: 7
  start-page: 39484
  year: 2017
  ident: ref_152
  article-title: In Situ Heavy Ion Irradiation Studies of Nanopore Shrinkage and Enhanced Radiation Tolerance of Nanoporous Au
  publication-title: Sci. Rep.
  doi: 10.1038/srep39484
– volume: 102
  start-page: 113303
  year: 2007
  ident: ref_30
  article-title: High Power Impulse Magnetron Sputtering: Current-Voltage-Time Characteristics Indicate the Onset of Sustained Self-Sputtering
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2817812
– volume: 10
  start-page: 34561
  year: 2018
  ident: ref_88
  article-title: Impact of Film Thickness on Defects and the Graphitization of Nanothin Carbon Coatings Used for Metallic Bipolar Plates in Proton Exchange Membrane Fuel Cells
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b08263
– volume: 206
  start-page: 110495
  year: 2022
  ident: ref_144
  article-title: Anti-Corrosion Performance of the Conductive Bilayer CrC/CrN Coated 304SS Bipolar Plate in Acidic Environment
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2022.110495
– volume: 74–75
  start-page: 273
  year: 1995
  ident: ref_82
  article-title: Residual Stresses in Nitride Hard Coatings Prepared by Magnetron Sputtering and Arc Evaporation
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/0257-8972(95)08235-2
– volume: 798
  start-page: 122
  year: 2019
  ident: ref_97
  article-title: Structure and Oxidation Behavior CrN Thin Films Deposited Using DC Reactive Magnetron Sputtering
  publication-title: Key Eng. Mater.
  doi: 10.4028/www.scientific.net/KEM.798.122
– volume: 515
  start-page: 1522
  year: 2006
  ident: ref_124
  article-title: The Ion Energy Distributions and Ion Flux Composition from a High Power Impulse Magnetron Sputtering Discharge
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2006.04.051
– volume: 191
  start-page: 109755
  year: 2021
  ident: ref_125
  article-title: Microstructure, High-Temperature Corrosion and Steam Oxidation Properties of Cr/CrN Multilayer Coatings Prepared by Magnetron Sputtering
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2021.109755
– volume: 126
  start-page: 796
  year: 2020
  ident: ref_8
  article-title: Comparison of Tribological Properties of CrN, CrTiN and CrTiBN Coatings Sliding against SiC and SUS440C Balls in Water
  publication-title: Appl. Phys. A
  doi: 10.1007/s00339-020-03986-5
– ident: ref_94
– volume: 5
  start-page: eaaw5519
  year: 2019
  ident: ref_99
  article-title: Nanoscale Stacking Fault–Assisted Room Temperature Plasticity in Flash-Sintered TiO2
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aaw5519
– volume: 167
  start-page: 108533
  year: 2020
  ident: ref_140
  article-title: A Comparative Study of the Corrosion and Ion Release Behaviour of Chromium Oxide Coatings Exposed to Saline, Ringer’s and Hank’s Physiological Solutions
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2020.108533
– volume: 14
  start-page: 359
  year: 2020
  ident: ref_154
  article-title: Blistering in Helium-Ion-Irradiated Zirconium, Aluminum, and Chromium Nitride Films
  publication-title: J. Surf. Investig. X-ray Synchrotron Neutron Tech.
  doi: 10.1134/S1027451020020524
– volume: 441
  start-page: 128542
  year: 2022
  ident: ref_150
  article-title: Challenges and Coating Solutions for Wear and Corrosion inside Lead Bismuth Eutectic: A Review
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2022.128542
– volume: 99
  start-page: 013307
  year: 2006
  ident: ref_61
  article-title: Influence of Pulse Duration on the Plasma Characteristics in High-Power Pulsed Magnetron Discharges
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2159555
– volume: 200
  start-page: 4345
  year: 2006
  ident: ref_73
  article-title: A Comprehensive Model of Stress Generation and Relief Processes in Thin Films Deposited with Energetic Ions
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2005.02.161
– volume: 309
  start-page: 779
  year: 2017
  ident: ref_96
  article-title: Structure and Mechanical Properties of Graded Cr/CrN/CrTiN Coatings Synthesized by Close Field Unbalanced Magnetron Sputtering
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2016.10.087
– volume: 108
  start-page: 063307
  year: 2010
  ident: ref_111
  article-title: Ion Flux Characteristics and Efficiency of the Deposition Processes in High Power Impulse Magnetron Sputtering of Zirconium
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3481428
– volume: 6
  start-page: 086432
  year: 2019
  ident: ref_12
  article-title: Tribological Properties and Corrosion Resistance of CrSiN Coatings Prepared via Hybrid HiPIMS and DCMS
  publication-title: Mater. Res. Express
  doi: 10.1088/2053-1591/ab2001
– volume: 258
  start-page: 3864
  year: 2012
  ident: ref_117
  article-title: Influence of Substrate Bias Voltage on Structure and Properties of the CrAlN Films Deposited by Unbalanced Magnetron Sputtering
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2011.12.048
– volume: 206
  start-page: 703
  year: 2011
  ident: ref_44
  article-title: Quantum Electronic Mechanisms of Atomic Rearrangements during Growth of Hard Carbon Films
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2011.07.055
– volume: 257
  start-page: 2269
  year: 2011
  ident: ref_27
  article-title: Composition, Microstructure, and Properties of CrNx Films Deposited Using Medium Frequency Magnetron Sputtering
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2010.09.086
– volume: 483
  start-page: 530
  year: 2009
  ident: ref_38
  article-title: High Power Pulsed Magnetron Sputtering: Fundamentals and Applications
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2008.08.104
– volume: 121
  start-page: 171911
  year: 2017
  ident: ref_59
  article-title: Return of Target Material Ions Leads to a Reduced Hysteresis in Reactive High Power Impulse Magnetron Sputtering: Experiment
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4977815
– volume: 517
  start-page: 1167
  year: 2008
  ident: ref_80
  article-title: Residual Stresses in Thermally Cycled CrN Coatings on Steel
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2008.06.008
– volume: 457
  start-page: 270
  year: 2004
  ident: ref_64
  article-title: Comparison of Microstructure and Mechanical Properties of Chromium Nitride-Based Coatings Deposited by High Power Impulse Magnetron Sputtering and by the Combined Steered Cathodic Arc/Unbalanced Magnetron Technique
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2003.11.113
– volume: 48
  start-page: 3954
  year: 2022
  ident: ref_116
  article-title: Effect of Plasma Nitriding Ion Current Density on Tribological Properties of Composite CrAlN Coatings
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2021.10.182
– volume: 374
  start-page: 383
  year: 2019
  ident: ref_145
  article-title: Enhancement of Discharge and Deposition Rate in Dual-Pulse Pulsed Magnetron Sputtering: Effect of Ignition Pulse Width
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2019.06.016
– volume: 96
  start-page: 217
  year: 2018
  ident: ref_151
  article-title: Radiation Damage in Nanostructured Materials
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2018.03.002
– volume: 336
  start-page: 84
  year: 2018
  ident: ref_16
  article-title: Effect of Chamber Pressure on Defect Generation and Their Influence on Corrosion and Tribological Properties of HIPIMS Deposited CrN/NbN Coatings
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2017.08.021
– volume: 128
  start-page: 043304
  year: 2020
  ident: ref_32
  article-title: Revisiting Particle Dynamics in HiPIMS Discharges. II. Plasma Pulse Effects
  publication-title: J. Appl. Phys.
  doi: 10.1063/5.0009380
– volume: 47
  start-page: 4463
  year: 2012
  ident: ref_95
  article-title: Structural and Mechanical Properties of Room Temperature Sputter Deposited CrN Coatings
  publication-title: Mater. Res. Bull.
  doi: 10.1016/j.materresbull.2012.09.051
– volume: 242
  start-page: 74
  year: 2014
  ident: ref_13
  article-title: Effect of N2 Flow Rate on Microstructure and Mechanical Properties of PVD CrNx Coatings for Tribological Application in Seawater
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2014.01.021
– volume: 114
  start-page: 52
  year: 1999
  ident: ref_18
  article-title: Influence of Ion Bombardment on Structure and Properties of Unbalanced Magnetron Grown CrNx Coatings k
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/S0257-8972(99)00031-6
– volume: 44
  start-page: 1838
  year: 2012
  ident: ref_77
  article-title: Impact of Residual Stress on the Adhesion and Tensile Fracture of TiN/CrN Multi-Layered Coatings from First Principles
  publication-title: Phys. E Low-Dimens. Syst. Nanostruct.
  doi: 10.1016/j.physe.2012.05.008
– volume: 46
  start-page: 215201
  year: 2013
  ident: ref_108
  article-title: Mass Spectrometry Diagnostics of Short-Pulsed HiPIMS Discharges
  publication-title: J. Phys. Appl. Phys.
  doi: 10.1088/0022-3727/46/21/215201
– volume: 145
  start-page: 55
  year: 2018
  ident: ref_141
  article-title: A Self-Healing Stainless Steel: Role of Nitrogen in Eliminating Detrimental Effect of Cold Working on Pitting Corrosion Resistance
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2018.09.013
– volume: 493
  start-page: 665
  year: 2001
  ident: ref_1
  article-title: First-Principles Study of the Electronic Properties of Transition Metal Nitride Surfaces
  publication-title: Surf. Sci.
  doi: 10.1016/S0039-6028(01)01280-8
– volume: 89
  start-page: 136
  year: 2013
  ident: ref_126
  article-title: The Corrosive Behavior of Cr/CrN Multilayer Coatings with Different Modulation Periods
  publication-title: Vacuum
  doi: 10.1016/j.vacuum.2012.02.046
– volume: 418
  start-page: 127235
  year: 2021
  ident: ref_114
  article-title: Link between Plasma Properties with Morphological, Structural and Mechanical Properties of Thin Ti Films Deposited by High Power Impulse Magnetron Sputtering
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2021.127235
– volume: 15
  start-page: 678
  year: 2020
  ident: ref_23
  article-title: Temperature Effect on Structural, Mechanical Properties and Corrosion Behaviour of CrN Thin Films Deposited by Magnetron Sputtering
  publication-title: Micro Nano Lett.
  doi: 10.1049/mnl.2019.0600
– volume: 394
  start-page: 125890
  year: 2020
  ident: ref_72
  article-title: Comparative Study on Protective Properties of CrN Coatings on the ABS Substrate by DCMS and HiPIMS Techniques
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2020.125890
– volume: 437
  start-page: 128326
  year: 2022
  ident: ref_120
  article-title: Fabrication and Hydrogen Permeation Resistance of Dense CrN Coatings
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2022.128326
– volume: 397
  start-page: 125990
  year: 2020
  ident: ref_90
  article-title: Tailoring Residual Stresses in CrNx Films on Alumina and Silicon Deposited by High-Power Impulse Magnetron Sputtering
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2020.125990
– volume: 28
  start-page: 2881
  year: 2019
  ident: ref_22
  article-title: Influence of Substrate Bias Voltage on Corrosion and Wear Behavior of Physical Vapor Deposition CrN Coatings
  publication-title: J. Mater. Eng. Perform.
  doi: 10.1007/s11665-019-04033-y
– volume: 291
  start-page: 365
  year: 2016
  ident: ref_29
  article-title: CrN Thin Films Deposited by HiPIMS in DOMS Mode
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2016.02.064
– volume: 115
  start-page: 153301
  year: 2014
  ident: ref_123
  article-title: Investigation of Ionized Metal Flux in Enhanced High Power Impulse Magnetron Sputtering Discharges
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4871635
– ident: ref_20
  doi: 10.3390/coatings13020219
– volume: 48
  start-page: 11685
  year: 1993
  ident: ref_2
  article-title: Theory of Bonding in Transition-Metal Carbides and Nitrides
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.48.11685
– volume: 70
  start-page: 2753
  year: 2018
  ident: ref_158
  article-title: A Review on the Radiation Response of Nanoporous Metallic Materials
  publication-title: JOM
  doi: 10.1007/s11837-018-3111-x
– volume: 718
  start-page: 57
  year: 2016
  ident: ref_65
  article-title: Nanostructure and Microstructure Evolution of D.C. Reactive Magnetron Sputtered CrN Thin Films
  publication-title: Key Eng. Mater.
  doi: 10.4028/www.scientific.net/KEM.718.57
– volume: 270
  start-page: 150
  year: 2013
  ident: ref_19
  article-title: Corrosion Resistance of CrN Thin Films Produced by Dc Magnetron Sputtering
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2012.12.148
– volume: 894
  start-page: 162139
  year: 2022
  ident: ref_9
  article-title: Hard and Tough CrN Coatings Strengthened by High-Density Distorted Coherent Grain Boundaries
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2021.162139
– volume: 17
  start-page: 746
  year: 2018
  ident: ref_42
  article-title: On the Physical Vapour Deposition (PVD): Evolution of Magnetron Sputtering Processes for Industrial Applications
  publication-title: Procedia Manuf.
  doi: 10.1016/j.promfg.2018.10.125
– volume: 518
  start-page: 5558
  year: 2010
  ident: ref_98
  article-title: Structure and Properties of High Power Impulse Magnetron Sputtering and DC Magnetron Sputtering CrN and TiN Films Deposited in an Industrial Scale Unit
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2010.05.062
– volume: 218
  start-page: 117212
  year: 2021
  ident: ref_5
  article-title: Superhardness Induced by Grain Boundary Vertical Sliding in (001)-Textured ZrB2 and TiB2 Nano Films
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2021.117212
– volume: 454
  start-page: 129176
  year: 2023
  ident: ref_87
  article-title: On the Effect of Cr/CrN Nanolayered Coating Deposited by Arc-PVD Method on Axial Fretting Fatigue Behavior of Al7075-T6 Alloy
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2022.129176
– volume: 17
  start-page: 961
  year: 2022
  ident: ref_47
  article-title: Thermal Stability, Mechanical Properties, and Tribological Performance of TiAlXN Coatings: Understanding the Effects of Alloying Additions
  publication-title: J. Mater. Res. Technol.
  doi: 10.1016/j.jmrt.2022.01.005
– volume: 354
  start-page: 194
  year: 2018
  ident: ref_139
  article-title: Corrosion Resistance and Antifouling Activities of Silver-Doped CrN Coatings Deposited by Magnetron Sputtering
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2018.09.006
– volume: 38
  start-page: 3046
  year: 2010
  ident: ref_49
  article-title: CrNx Films Prepared by DC Magnetron Sputtering and High-Power Pulsed Magnetron Sputtering: A Comparative Study
  publication-title: IEEE Trans. Plasma Sci.
  doi: 10.1109/TPS.2010.2071885
– volume: 5
  start-page: 15224
  year: 2018
  ident: ref_67
  article-title: Preparation and Characterization of CrN Thin Film by DC Reactive Magnetron Sputtering
  publication-title: Mater. Today Proc.
  doi: 10.1016/j.matpr.2018.04.087
– volume: 198
  start-page: 109365
  year: 2021
  ident: ref_76
  article-title: Evolution of Stress Fields during Crack Growth and Arrest in a Brittle-Ductile CrN-Cr Clamped-Cantilever Analysed by X-Ray Nanodiffraction and Modelling
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2020.109365
– volume: 280
  start-page: 128540
  year: 2020
  ident: ref_46
  article-title: Design of Hard Coatings Deposited by HiPIMS and DcMS
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2020.128540
– volume: 23
  start-page: 18
  year: 2004
  ident: ref_109
  article-title: Ionization of Sputtered Metals in High Power Pulsed Magnetron Sputtering
  publication-title: J. Vac. Sci. Technol. A
  doi: 10.1116/1.1818135
– volume: 428
  start-page: 404
  year: 2018
  ident: ref_6
  article-title: Structural, Mechanical and Tribocorrosion Behaviour in Artificial Seawater of CrN/AlN Nano-Multilayer Coatings on F690 Steel Substrates
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2017.09.166
– volume: 38
  start-page: 114
  year: 2020
  ident: ref_43
  article-title: Nanostructural Metallic Materials: Structures and Mechanical Properties
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2020.04.005
– volume: 15
  start-page: 2922
  year: 2015
  ident: ref_153
  article-title: In Situ Study of Defect Migration Kinetics and Self-Healing of Twin Boundaries in Heavy Ion Irradiated Nanotwinned Metals
  publication-title: Nano Lett.
  doi: 10.1021/nl504677z
– volume: 167
  start-page: 17
  year: 2010
  ident: ref_28
  article-title: Nanostructured CrN Thin Films Prepared by Reactive Pulsed DC Magnetron Sputtering
  publication-title: Mater. Sci. Eng. B
  doi: 10.1016/j.mseb.2010.01.021
– volume: 141
  start-page: 120
  year: 2017
  ident: ref_74
  article-title: Benefits of Energetic Ion Bombardment for Tailoring Stress and Microstructural Evolution during Growth of Cu Thin Films
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2017.09.007
– ident: ref_129
  doi: 10.1007/978-3-030-52071-7
– volume: 163
  start-page: 267
  year: 2003
  ident: ref_17
  article-title: High Power Pulsed Magnetron Sputtered CrNx Films
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/S0257-8972(02)00479-6
– volume: 185
  start-page: 329
  year: 2004
  ident: ref_66
  article-title: Phase Formation and Structure of Magnetron Sputtered Chromium Nitride Films: In-Situ and Ex-Situ Studies
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2003.12.026
– volume: 156
  start-page: 108206
  year: 2021
  ident: ref_161
  article-title: Effects of Ion Irradiation on Cr, CrN, and TiAlCrN Coated Zircaloy-4 for Accident Tolerant Fuel Claddings
  publication-title: Ann. Nucl. Energy
  doi: 10.1016/j.anucene.2021.108206
– volume: 678
  start-page: 012163
  year: 2019
  ident: ref_130
  article-title: Al Content Effects on Mechanical and Tribological Properties of Cr/CrN/CrAlN Multilayer Nanocomposite Coatings
  publication-title: IOP Conf. Ser. Mater. Sci. Eng.
  doi: 10.1088/1757-899X/678/1/012163
– volume: 160
  start-page: 131
  year: 2015
  ident: ref_11
  article-title: A Mechanical and Tribological Study of Cr/CrN Multilayer Coatings
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2015.04.015
– volume: 1
  start-page: 16019
  year: 2016
  ident: ref_122
  article-title: Stabilizing Nanostructures in Metals Using Grain and Twin Boundary Architectures
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2016.19
– volume: 32
  start-page: 104072
  year: 2022
  ident: ref_68
  article-title: Microstructure, Fractal Geometry and Corrosion Properties of CrN Thin Films: The Effect of Shot Number and Angular Position
  publication-title: Mater. Today Commun.
  doi: 10.1016/j.mtcomm.2022.104072
– volume: 111
  start-page: 053304
  year: 2012
  ident: ref_50
  article-title: Drifting Localization of Ionization Runaway: Unraveling the Nature of Anomalous Transport in High Power Impulse Magnetron Sputtering
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3692978
– volume: 231
  start-page: 357
  year: 2013
  ident: ref_14
  article-title: Improvement of Tribological Performance of CrN Coating via Multilayering with VN
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2012.03.010
– volume: 355–356
  start-page: 465
  year: 1999
  ident: ref_69
  article-title: Microstructure of CrN Coatings Produced by PVD Techniques
  publication-title: Thin Solid Films
  doi: 10.1016/S0040-6090(99)00552-0
– volume: 188
  start-page: 108478
  year: 2020
  ident: ref_83
  article-title: Nanoscale Evolution of Stress Concentrations and Crack Morphology in Multilayered CrN Coating during Indentation: Experiment and Simulation
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2020.108478
– volume: 258
  start-page: 878
  year: 2014
  ident: ref_127
  article-title: Tribological and Corrosion Behavior of CrN Coatings: Roles of Substrate and Deposition Defects
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2014.07.063
– volume: 544
  start-page: 515
  year: 2013
  ident: ref_25
  article-title: A Comparative Study of the Oxidation Behavior of Cr2N and CrN Coatings
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2013.01.031
– volume: 204
  start-page: 111313
  year: 2022
  ident: ref_132
  article-title: Failure Mechanisms of CrN and CrAlN Coatings for Solid Particle Erosion Resistance
  publication-title: Vacuum
  doi: 10.1016/j.vacuum.2022.111313
– volume: 722
  start-page: 138578
  year: 2021
  ident: ref_106
  article-title: Fully Dense, Highly Conductive Nanocrystalline TiN Diffusion Barrier on Steel via Reactive High Power Impulse Magnetron Sputtering
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2021.138578
– volume: 445
  start-page: 128713
  year: 2022
  ident: ref_81
  article-title: Residual Stress and Tribological Behavior of Hydrogen-Free Al-DLC Films Prepared by HiPIMS under Different Bias Voltages
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2022.128713
– volume: 257
  start-page: 308
  year: 2014
  ident: ref_39
  article-title: A Review Comparing Cathodic Arcs and High Power Impulse Magnetron Sputtering (HiPIMS)
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2014.08.043
– volume: 121
  start-page: 171101
  year: 2017
  ident: ref_58
  article-title: Tutorial: Reactive High Power Impulse Magnetron Sputtering (R-HiPIMS)
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4978350
– volume: 114
  start-page: 154
  year: 2016
  ident: ref_133
  article-title: Comparison of Size Dependent Strengthening Mechanisms in Ag/Fe and Ag/Ni Multilayers
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2016.05.030
– volume: 5
  start-page: e01370
  year: 2019
  ident: ref_157
  article-title: A Comparative Investigation on Structure Evolution of ZrN and CrN Coatings against Ion Irradiation
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2019.e01370
– volume: 112
  start-page: 162
  year: 2016
  ident: ref_75
  article-title: Design, Fabrication and Characterization of Multilayer Cr-CrN Thin Coatings with Tailored Residual Stress Profiles
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2016.09.058
– volume: 115
  start-page: 222
  year: 1999
  ident: ref_79
  article-title: Structure, Mechanical and Tribological Properties of Nitrogen-Containing Chromium Coatings Prepared by Reactive Magnetron Sputtering
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/S0257-8972(99)00240-6
– volume: 305
  start-page: 165
  year: 2016
  ident: ref_163
  article-title: Ion Irradiation Tolerance of Ti Si N Nanocomposite Coating
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2016.08.044
– volume: 517
  start-page: 1251
  year: 2008
  ident: ref_115
  article-title: Mechanical Properties and Oxidation Behaviour of (Al,Cr)N and (Al,Cr,Si)N Coatings for Cutting Tools Deposited by HPPMS
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2008.06.050
– volume: 268
  start-page: 2883
  year: 2010
  ident: ref_164
  article-title: Ion-Beam Irradiation Effects on Reactively Sputtered CrN Thin Films
  publication-title: Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At.
  doi: 10.1016/j.nimb.2010.03.027
– volume: 6
  start-page: 3049
  year: 1988
  ident: ref_51
  article-title: Deposition and Redeposition in Magnetrons
  publication-title: J. Vac. Sci. Technol. Vac. Surf. Films
  doi: 10.1116/1.575473
– volume: 107
  start-page: 149
  year: 1998
  ident: ref_71
  article-title: X-Ray Diffractometry Analysis of r.f.-Magnetron-Sputtered Chromium/Chromium Nitride Coatings
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/S0257-8972(98)00586-6
– volume: 60
  start-page: 5735
  year: 2012
  ident: ref_131
  article-title: Designing Superhard, Self-Toughening CrAlN Coatings through Grain Boundary Engineering
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2012.06.049
– volume: 143
  start-page: 30
  year: 2018
  ident: ref_159
  article-title: In Situ Studies on Irradiation Resistance of Nanoporous Au through Temperature-Jump Tests
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2017.09.054
– volume: 15
  start-page: 256
  year: 2006
  ident: ref_52
  article-title: Experimental Investigation of Plasma Dynamics in Dc and Short-Pulse Magnetron Discharges
  publication-title: Plasma Sources Sci. Technol.
  doi: 10.1088/0963-0252/15/2/011
– volume: 207
  start-page: 111405
  year: 2023
  ident: ref_136
  article-title: Tensile Mechanism of Wear-Resistant Cr/CrN/Cr/CrAlN Multilayer Film
  publication-title: Vacuum
  doi: 10.1016/j.vacuum.2022.111405
– volume: 513
  start-page: 1
  year: 2006
  ident: ref_40
  article-title: Ionized Physical Vapor Deposition (IPVD): A Review of Technology and Applications
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2006.03.033
– ident: ref_147
  doi: 10.1520/STP159720160011
– volume: 156
  start-page: 117
  year: 2019
  ident: ref_143
  article-title: An Interesting Oxidation Phenomenon of Cr Coatings on Zry-4 Substrates in High Temperature Steam Environment
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2019.05.017
– volume: 506
  start-page: 86
  year: 2011
  ident: ref_3
  article-title: Fullerene-like CSx: A First-Principles Study of Synthetic Growth
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2011.02.059
– volume: 192
  start-page: 263
  year: 2005
  ident: ref_86
  article-title: Relationship between Through-Thickness Residual Stress of CrN-PVD Coatings and Fatigue Nucleation Sites
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2004.05.032
– volume: 44
  start-page: 11364
  year: 2018
  ident: ref_135
  article-title: Study of the Structure, Properties, Scratch Resistance and Deformation Behaviour of Graded Cr-CrN-Cr(1-x)AlxN Coatings
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2018.03.187
– volume: 204
  start-page: 1661
  year: 2010
  ident: ref_45
  article-title: High Power Pulsed Magnetron Sputtering: A Review on Scientific and Engineering State of the Art
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2009.11.013
– volume: 491
  start-page: 1
  year: 2005
  ident: ref_56
  article-title: Control of Reactive Sputtering Processes
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2005.05.022
– volume: 340
  start-page: 112
  year: 2018
  ident: ref_93
  article-title: On the Effect of Substrate Oscillation on CrN Coatings Deposited by HiPIMS and DcMS
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2018.02.028
– volume: 43
  start-page: 275204
  year: 2010
  ident: ref_103
  article-title: Distance-Dependent Plasma Composition and Ion Energy in High Power Impulse Magnetron Sputtering
  publication-title: J. Phys. Appl. Phys.
  doi: 10.1088/0022-3727/43/27/275204
– volume: 46
  start-page: 18373
  year: 2020
  ident: ref_36
  article-title: Physical Vapor Deposition Technology for Coated Cutting Tools: A Review
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2020.04.168
– volume: 390
  start-page: 497
  year: 2016
  ident: ref_60
  article-title: Mass Spectrometry Analyzes to Highlight Differences between Short and Long HiPIMS Discharges
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2016.08.001
– volume: 349
  start-page: 1130
  year: 2018
  ident: ref_102
  article-title: Correlation of HPPMS Plasma and Coating Properties Using Artificial Neural Networks
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2018.06.065
– volume: 196
  start-page: 175
  year: 2020
  ident: ref_155
  article-title: He Ion Irradiation Response of a Gradient T91 Steel
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2020.06.019
– volume: 218
  start-page: 117095
  year: 2021
  ident: ref_4
  article-title: Mechanical Properties of CrN-Based Superlattices: Impact of Magnetism
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2021.117095
– volume: 183
  start-page: 301
  year: 2004
  ident: ref_54
  article-title: Fundamentals of Pulsed Plasmas for Materials Processing
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2003.09.049
– ident: ref_37
– volume: 44
  start-page: 7723
  year: 2018
  ident: ref_138
  article-title: Wear Behavior of Graded Cr-CrN-Cr(1−x)Al(x)N Coatings Synthesized by Closed-Field Unbalanced Magnetron Sputtering for Advanced Machining Operations
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2018.01.199
– volume: 401
  start-page: 126235
  year: 2020
  ident: ref_15
  article-title: Tailoring CrNx Stoichiometry and Functionality by Means of Reactive HiPIMS
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2020.126235
– volume: 64
  start-page: 393
  year: 2002
  ident: ref_85
  article-title: Residual Stress and Cracking in Thin PVD Coatings
  publication-title: Vacuum
  doi: 10.1016/S0042-207X(01)00327-X
– volume: 308
  start-page: 98
  year: 2016
  ident: ref_92
  article-title: Evaluation of Stoney Equation for Determining the Internal Stress of DLC Thin Films Using an Optical Profiler
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2016.07.098
– volume: 44
  start-page: 8138
  year: 2018
  ident: ref_137
  article-title: Thermal Failure Mechanism of Multilayer Brittle TiN/CrAlN Films
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2018.01.260
– volume: 429
  start-page: 127947
  year: 2022
  ident: ref_162
  article-title: Interface Stability and Microstructural Evolution of the (Cr/CrN)24-Coated Zirconium Alloy under Different Thermal Shock Temperatures
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2021.127947
– volume: 27
  start-page: 765
  year: 2012
  ident: ref_57
  article-title: Reactive Magnetron Sputtering of Transparent Conductive Oxide Thin Films: Role of Energetic Particle (Ion) Bombardment
  publication-title: J. Mater. Res.
  doi: 10.1557/jmr.2011.428
– volume: 100
  start-page: 082013
  year: 2008
  ident: ref_110
  article-title: Ionization Mechanism in the High Power Impulse Magnetron Sputtering (HiPIMS) Discharge
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/100/8/082013
– volume: 205
  start-page: 118
  year: 2010
  ident: ref_62
  article-title: Microstructure Control of CrNx Films during High Power Impulse Magnetron Sputtering
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2010.06.016
– volume: 23
  start-page: 025007
  year: 2014
  ident: ref_101
  article-title: Asymmetric Particle Fluxes from Drifting Ionization Zones in Sputtering Magnetrons
  publication-title: Plasma Sources Sci. Technol.
  doi: 10.1088/0963-0252/23/2/025007
– volume: 374
  start-page: 774
  year: 2019
  ident: ref_134
  article-title: Structural and Mechanical Properties of Carbon Incorporation in DC/HiPIMS CrAlN Coatings
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2019.06.053
– volume: 10
  start-page: 015125
  year: 2020
  ident: ref_48
  article-title: The Superior Properties of CrN Coatings Prepared by High Power Pulsed Reactive Magnetron Sputtering
  publication-title: AIP Adv.
  doi: 10.1063/1.5132783
– volume: 508
  start-page: 191
  year: 2010
  ident: ref_128
  article-title: A Comparative Study of CrAlN Films Synthesized by Dc and Pulsed Dc Reactive Magnetron Facing Target Sputtering System with Different Pulse Frequencies
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2010.08.042
– volume: 250
  start-page: 52
  year: 2014
  ident: ref_35
  article-title: Correlation between Mass-Spectrometer Measurements and Thin Film Characteristics Using DcMS and HiPIMS Discharges
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2014.02.030
– volume: 203
  start-page: 3254
  year: 2009
  ident: ref_24
  article-title: High Temperature Tribology of CrN and Multilayered Cr/CrN Coatings
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2009.04.005
– volume: 572
  start-page: 224
  year: 2014
  ident: ref_91
  article-title: A Critical Comparison between XRD and FIB Residual Stress Measurement Techniques in Thin Films
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2014.09.053
– volume: 351
  start-page: 332
  year: 2015
  ident: ref_7
  article-title: Wear and Corrosion Resistance of CrN/TiN Superlattice Coatings Deposited by a Combined Deep Oscillation Magnetron Sputtering and Pulsed Dc Magnetron Sputtering
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2015.05.110
– volume: 195
  start-page: 109023
  year: 2020
  ident: ref_84
  article-title: Nanoscale Stress Distributions and Microstructural Changes at Scratch Track Cross-Sections of a Deformed Brittle-Ductile CrN-Cr Bilayer
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2020.109023
– volume: 377
  start-page: 124887
  year: 2019
  ident: ref_105
  article-title: Energy Flux Measurements during Magnetron Sputter Deposition Processes
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2019.08.016
– volume: 24
  start-page: 035018
  year: 2015
  ident: ref_113
  article-title: Ionization of Sputtered Ti, Al, and C Coupled with Plasma Characterization in HiPIMS
  publication-title: Plasma Sources Sci. Technol.
  doi: 10.1088/0963-0252/24/3/035018
– volume: 48
  start-page: 25901
  year: 2023
  ident: ref_21
  article-title: Corrosion Resistance of CrN Film Deposited by High-Power Impulse Magnetron Sputtering on SS304 in a Simulated Environment for Proton Exchange Membrane Fuel Cells
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2023.03.265
– volume: 47
  start-page: 1215
  year: 2019
  ident: ref_107
  article-title: Gas Breakdown and Discharge Formation in High-Power Impulse Magnetron Sputtering
  publication-title: IEEE Trans. Plasma Sci.
  doi: 10.1109/TPS.2018.2889696
– volume: 123
  start-page: 043302
  year: 2018
  ident: ref_31
  article-title: Plasma Studies of a Linear Magnetron Operating in the Range from DC to HiPIMS
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.5017857
– volume: 52
  start-page: 1269
  year: 2005
  ident: ref_118
  article-title: A Quantitative Study of the Hardness of a Superhard Nanocrystalline Titanium Nitride/Silicon Nitride Coating
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2005.02.024
– volume: 806
  start-page: 953
  year: 2019
  ident: ref_10
  article-title: Nanostructured Porous CrN Thin Films by Oblique Angle Magnetron Sputtering for Symmetric Supercapacitors
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2019.07.325
– volume: 204
  start-page: 2159
  year: 2010
  ident: ref_100
  article-title: Control of Reactive High Power Impulse Magnetron Sputtering Processes
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2009.11.040
– volume: 30
  start-page: 030801
  year: 2012
  ident: ref_34
  article-title: High Power Impulse Magnetron Sputtering Discharge
  publication-title: J. Vac. Sci. Technol. Vac. Surf. Films
  doi: 10.1116/1.3691832
– volume: 28
  start-page: 783
  year: 2010
  ident: ref_55
  article-title: Deposition Rates of High Power Impulse Magnetron Sputtering: Physics and Economics
  publication-title: J. Vac. Sci. Technol. Vac. Surf. Films
  doi: 10.1116/1.3299267
– volume: 30
  start-page: 045006
  year: 2021
  ident: ref_53
  article-title: Experimental Verification of Deposition Rate Increase, with Maintained High Ionized Flux Fraction, by Shortening the HiPIMS Pulse
  publication-title: Plasma Sources Sci. Technol.
  doi: 10.1088/1361-6595/abec27
– volume: 255
  start-page: 43
  year: 2014
  ident: ref_41
  article-title: Enhanced Ionization Sputtering: A Concept for Superior Industrial Coatings
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2013.11.040
– volume: 178
  start-page: 508
  year: 2020
  ident: ref_121
  article-title: Micro- and Mesoscale Mechanical Properties of an Ultra-Fine Grained CrFeMnNi High Entropy Alloy Produced by Large Strain Machining
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2019.11.042
– volume: 104
  start-page: 227
  year: 2016
  ident: ref_89
  article-title: Fracture Toughness Enhancement of Brittle Nanostructured Materials by Spatial Heterogeneity: A Micromechanical Proof for CrN/Cr and TiN/SiOx Multilayers
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2016.05.029
– volume: 23
  start-page: 330
  year: 2005
  ident: ref_63
  article-title: Target Material Pathways Model for High Power Pulsed Magnetron Sputtering
  publication-title: J. Vac. Sci. Technol. Vac. Surf. Films
  doi: 10.1116/1.1865133
– volume: 76–77
  start-page: 475
  year: 1995
  ident: ref_70
  article-title: Wear and Friction Properties of Hard PVD Coatings
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/0257-8972(95)02498-0
SSID ssj0000331829
Score 2.5046444
SecondaryResourceType review_article
Snippet Chromium Nitride (CrN) coatings have widespread utilization across numerous industrial applications, primarily attributed to their excellent properties. Among...
SourceID pubmedcentral
proquest
gale
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 6303
SubjectTerms Atoms & subatomic particles
Chromium nitride
Coatings
Coatings industry
Comparative analysis
Corrosion resistance
Cost analysis
Crystals
Direct current
Efficiency
Energy
Friction
Industrial applications
Ions
Literature reviews
Magnetron sputtering
Mechanical properties
Microstructure
Nitrides
Plasma
Review
Technology application
Title Comparison of CrN Coatings Prepared Using High-Power Impulse Magnetron Sputtering and Direct Current Magnetron Sputtering
URI https://www.proquest.com/docview/2869447280
https://www.proquest.com/docview/2870145180
https://pubmed.ncbi.nlm.nih.gov/PMC10532976
Volume 16
WOSCitedRecordID wos001073769400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1996-1944
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331829
  issn: 1996-1944
  databaseCode: M~E
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 1996-1944
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331829
  issn: 1996-1944
  databaseCode: KB.
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1996-1944
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331829
  issn: 1996-1944
  databaseCode: BENPR
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1996-1944
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331829
  issn: 1996-1944
  databaseCode: PIMPY
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB7RXQ5w4F2xUFZGICEOYV3Hu7FPqF21okJdRTyk5RT5FahEk2UfSPx7ZhJv-lDFiUukyKPE0ozHn-3x9wG85qnz42B9Ir3HR-AhUS7wRBkhDQIIXjreiE1ks5maz3Uer0evYlnlNic2ibple6a6bUzCI1872jEfCTXRUpK00vvFr4Q0pOisNQpq7ECfiLd4D_r5yWn-rdtz4SlGsNAtS2mKq_3RuWkI49OtZlacl65n5-sVk5emoOP7_7fzD-BehKLsoI2dh3ArVI_g7iWCwsfwZ9rJFLK6ZNPljE1rQ5XSK5YvQ1O9zpqqA0YFI0lOmmvs5HyxwRmXnZrvVaCtdvZ50ehhk52pPGvzLIvcUDfaPYGvx0dfph-SKNaQOERk6yTj2iLaCKUrXZBBCWmNlJqHUmtrvSzR7whvAgaBS10pJsKWRrqJtwohnHbpLvSqugpPge2nLlgV7Nh7K63ItEqtzbT1gvjhxn4Ab7euKlxkMidBjZ8FrmjIrcWFWwfwqrNdtPwdN1q9IY8XNKjxS87EuwnYH6LHKg6yDNddmB3VAPa2Hi7iaF8VFw4dwMuuGccpHb6YKtQbsskaVWSyUVeCqesXMX1fbanOfjSM3_uk34HA8dm___4c7gjEYFTOIvge9NbLTXgBt93v9dlqOYSdbK6G0D88muWf8O3j4bthHCF_AWz8JHg
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLRJw4I1YKGAECHGI6jrejX1AqFqoump3tRJFKqfUr7SVaLLsA9Q_xW9kJq8-VHHrgUsuGTlO8nlmbI-_D-Atj53vBesj6T1eAg-RcoFHyghpMIHgmeOl2EQyHqv9fT1ZgT_NWRgqq2x8YumofeFojXxdqL6WksSUPk1_RqQaRburjYRGBYudcPobp2zzj8PP-H_fCbH1ZW-wHdWqApHD1GERJVxbDIshc5kLMighrZFS85Bpba2XGXYQ43DA3rrYZaIvbGak63urMNfQLsZ2b8CqRLDzDqxOhqPJ93ZVh8c4RoSueFDjWPP1E1NS0seNKlcd-S77_8s1meeC3Na9_-3z3Ie7dTrNNiv8P4CVkD-EO-dIFh_B6aCVWmRFxgazMRsUhqq952wyC2UFPisrJxgVvUQT0o1jw5PpErMGNjKHeaDtAvZ1Wmp6k53JPatiBav5ra60ewzfruXdn0AnL_LwFNhG7IJVwfa8t9KKRKvY2kRbL4jjrue78KEBQ-pqNnYSBfmR4qyMgJOeAacLb1rbacVBcqXVe8JUSo4JW3KmPl-B_SGKr3QzSXDuiB5edWGtwVBae6x5egagLrxub6OvoQ0kk4diSTZJqexMNuoCXNt-EVv5xTv58VHJWr5BGiSY_D7799Nfwa3tvdFuujsc7zyH2wJzSirPEXwNOovZMryAm-7X4ng-e1mPPQYH143nv1F1dKw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLULlwBuxUMAIEOIQbep4N_YBobLtilUhinhIvQW_UirRZNkHqH-NX8dMXn2o4tYDl1wycpzk88zYHn8fwIswsm7ojQuEc3jxoQ-k9WEgNRcaE4gwt2ElNhEnidzfV-ka_GnPwlBZZesTK0ftSktr5AMuR0oIElMa5E1ZRLozeTv7GZCCFO20tnIaNUT2_PFvnL4t3kx38F-_5Hyy-2X8PmgUBgKLacQyiENlMET63ObWCy-5MFoIFfpcKWOcyLGzGJM99txGNucjbnIt7MgZiXmHshG2ewXW4wgnPT1Yf7ebpJ-6FZ4wwvHCVc2JGkUqHBzpip4-ahW6mih4Phacr888FfAmN__nT3ULbjRpNtuux8VtWPPFHbh-inzxLhyPOwlGVuZsPE_YuNRUBb5g6dxXlfmsqqhgVAwTpKQnx6ZHsxVmE-yjPig8bSOwz7NK65vsdOFYHUNYw3t1od09-Hop734fekVZ-AfAtiLrjfRm6JwRhsdKRsbEyjhO3HdD14fXLTAy27C0k1jIjwxnawSi7AREfXje2c5qbpILrV4RvjJyWNiS1c25C-wPUX9l23GMc0r0_LIPmy2essaTLbITMPXhWXcbfRBtLOnClyuyiSvFZ7KRZ6Db9YtYzM_eKQ6_V2zmW6RNgknxw38__SlcQxBnH6bJ3iPY4JhqUtUODzeht5yv_GO4an8tDxfzJ80wZPDtsuH8F9UpfUY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+CrN+Coatings+Prepared+Using+High-Power+Impulse+Magnetron+Sputtering+and+Direct+Current+Magnetron+Sputtering&rft.jtitle=Materials&rft.au=Bai%2C+Heda&rft.au=Li%2C+Jin&rft.au=Gao%2C+Jialai&rft.au=Ni%2C+Jinyang&rft.date=2023-09-20&rft.issn=1996-1944&rft.eissn=1996-1944&rft.volume=16&rft.issue=18&rft_id=info:doi/10.3390%2Fma16186303&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1944&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1944&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1944&client=summon