Comparison of CrN Coatings Prepared Using High-Power Impulse Magnetron Sputtering and Direct Current Magnetron Sputtering
Chromium Nitride (CrN) coatings have widespread utilization across numerous industrial applications, primarily attributed to their excellent properties. Among the different methods for CrN coating synthesis, direct current magnetron sputtering (DCMS) has been the dominant technique applied. Nonethel...
Gespeichert in:
| Veröffentlicht in: | Materials Jg. 16; H. 18; S. 6303 |
|---|---|
| Hauptverfasser: | , , , , , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Basel
MDPI AG
20.09.2023
MDPI |
| Schlagworte: | |
| ISSN: | 1996-1944, 1996-1944 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Chromium Nitride (CrN) coatings have widespread utilization across numerous industrial applications, primarily attributed to their excellent properties. Among the different methods for CrN coating synthesis, direct current magnetron sputtering (DCMS) has been the dominant technique applied. Nonetheless, with the expanded applications of CrN coatings, the need for enhanced mechanical performance is concurrently escalating. High-power impulse magnetron sputtering (HiPIMS), an innovative coating deposition approach developed over the past three decades, is gaining recognition for its capability of yielding coatings with superior mechanical attributes, thereby drawing significant research interest. Considering that the mechanical performance of a coating is fundamentally governed by its microstructural properties, a comprehensive review of CrN coatings fabricated through both techniques is presented. This review of recent literature aims to embark on an insightful comparison between DCMS and HiPIMS, followed by an examination of the microstructure of CrN coatings fabricated via both techniques. Furthermore, the exploration of the underlying factors contributing to the disparities in mechanical properties observed in CrN coatings is revealed. An assessment of the advantages and potential shortcomings of HiPIMS is discussed, offering insight into CrN coating fabrication. |
|---|---|
| AbstractList | Chromium Nitride (CrN) coatings have widespread utilization across numerous industrial applications, primarily attributed to their excellent properties. Among the different methods for CrN coating synthesis, direct current magnetron sputtering (DCMS) has been the dominant technique applied. Nonetheless, with the expanded applications of CrN coatings, the need for enhanced mechanical performance is concurrently escalating. High-power impulse magnetron sputtering (HiPIMS), an innovative coating deposition approach developed over the past three decades, is gaining recognition for its capability of yielding coatings with superior mechanical attributes, thereby drawing significant research interest. Considering that the mechanical performance of a coating is fundamentally governed by its microstructural properties, a comprehensive review of CrN coatings fabricated through both techniques is presented. This review of recent literature aims to embark on an insightful comparison between DCMS and HiPIMS, followed by an examination of the microstructure of CrN coatings fabricated via both techniques. Furthermore, the exploration of the underlying factors contributing to the disparities in mechanical properties observed in CrN coatings is revealed. An assessment of the advantages and potential shortcomings of HiPIMS is discussed, offering insight into CrN coating fabrication.Chromium Nitride (CrN) coatings have widespread utilization across numerous industrial applications, primarily attributed to their excellent properties. Among the different methods for CrN coating synthesis, direct current magnetron sputtering (DCMS) has been the dominant technique applied. Nonetheless, with the expanded applications of CrN coatings, the need for enhanced mechanical performance is concurrently escalating. High-power impulse magnetron sputtering (HiPIMS), an innovative coating deposition approach developed over the past three decades, is gaining recognition for its capability of yielding coatings with superior mechanical attributes, thereby drawing significant research interest. Considering that the mechanical performance of a coating is fundamentally governed by its microstructural properties, a comprehensive review of CrN coatings fabricated through both techniques is presented. This review of recent literature aims to embark on an insightful comparison between DCMS and HiPIMS, followed by an examination of the microstructure of CrN coatings fabricated via both techniques. Furthermore, the exploration of the underlying factors contributing to the disparities in mechanical properties observed in CrN coatings is revealed. An assessment of the advantages and potential shortcomings of HiPIMS is discussed, offering insight into CrN coating fabrication. Chromium Nitride (CrN) coatings have widespread utilization across numerous industrial applications, primarily attributed to their excellent properties. Among the different methods for CrN coating synthesis, direct current magnetron sputtering (DCMS) has been the dominant technique applied. Nonetheless, with the expanded applications of CrN coatings, the need for enhanced mechanical performance is concurrently escalating. High-power impulse magnetron sputtering (HiPIMS), an innovative coating deposition approach developed over the past three decades, is gaining recognition for its capability of yielding coatings with superior mechanical attributes, thereby drawing significant research interest. Considering that the mechanical performance of a coating is fundamentally governed by its microstructural properties, a comprehensive review of CrN coatings fabricated through both techniques is presented. This review of recent literature aims to embark on an insightful comparison between DCMS and HiPIMS, followed by an examination of the microstructure of CrN coatings fabricated via both techniques. Furthermore, the exploration of the underlying factors contributing to the disparities in mechanical properties observed in CrN coatings is revealed. An assessment of the advantages and potential shortcomings of HiPIMS is discussed, offering insight into CrN coating fabrication. |
| Audience | Academic |
| Author | Liu, Xiangli Chen, Hongsheng Bai, Heda Bai, Yaxiong Bai, Bowen Zhao, Lin Leng, Xuesong Ni, Jinyang Jian, Jie He, Jianchao Cai, Zeyun Li, Jin Gao, Jialai |
| AuthorAffiliation | 2 Institute of Special Environments Physical Sciences, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; 21S155061@stu.hit.edu.cn (J.G.); 22S155088@stu.hit.edu.cn (Y.B.); jianjie@hit.edu.cn (J.J.); zhaolin2020@hit.edu.cn (L.Z.); baibowen@hit.edu.cn (B.B.); caizeyun@hit.edu.cn (Z.C.); hejianchao@hit.edu.cn (J.H.); chenhongsheng@hit.edu.cn (H.C.) 1 School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; 20b955008@stu.hit.edu.cn (H.B.); 22B955003@stu.hit.edu.cn (J.N.) |
| AuthorAffiliation_xml | – name: 2 Institute of Special Environments Physical Sciences, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; 21S155061@stu.hit.edu.cn (J.G.); 22S155088@stu.hit.edu.cn (Y.B.); jianjie@hit.edu.cn (J.J.); zhaolin2020@hit.edu.cn (L.Z.); baibowen@hit.edu.cn (B.B.); caizeyun@hit.edu.cn (Z.C.); hejianchao@hit.edu.cn (J.H.); chenhongsheng@hit.edu.cn (H.C.) – name: 1 School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; 20b955008@stu.hit.edu.cn (H.B.); 22B955003@stu.hit.edu.cn (J.N.) |
| Author_xml | – sequence: 1 givenname: Heda surname: Bai fullname: Bai, Heda – sequence: 2 givenname: Jin surname: Li fullname: Li, Jin – sequence: 3 givenname: Jialai surname: Gao fullname: Gao, Jialai – sequence: 4 givenname: Jinyang surname: Ni fullname: Ni, Jinyang – sequence: 5 givenname: Yaxiong surname: Bai fullname: Bai, Yaxiong – sequence: 6 givenname: Jie surname: Jian fullname: Jian, Jie – sequence: 7 givenname: Lin surname: Zhao fullname: Zhao, Lin – sequence: 8 givenname: Bowen surname: Bai fullname: Bai, Bowen – sequence: 9 givenname: Zeyun surname: Cai fullname: Cai, Zeyun – sequence: 10 givenname: Jianchao surname: He fullname: He, Jianchao – sequence: 11 givenname: Hongsheng surname: Chen fullname: Chen, Hongsheng – sequence: 12 givenname: Xuesong surname: Leng fullname: Leng, Xuesong – sequence: 13 givenname: Xiangli surname: Liu fullname: Liu, Xiangli |
| BookMark | eNptkstu1TAQhiNUJErphiewxAYhpfh2nHiFqhRopQKVoGvLccapq8Q-2Amob88cThFQ1V749v2_ZzTzvDqIKUJVvWT0RAhN386WKdYqQcWT6pBprWqmpTz4Z_-sOi7lluIQgrVcH1Z3XZq3NoeSIkmedPkz6ZJdQhwLucqATzCQ64Jnch7Gm_oq_YRMLubtOhUgn-wYYcmo_bpdlwXyjrNxIGchg1tIt-YMcXmUe1E99RZNju_Xo-r6w_tv3Xl9-eXjRXd6WTvJxVI3VPdNy8E770BCy2VvpdQUvNZ9P0ivNpQqBa3lTjjPFe-9lU4NfbtRTDtxVL3b-27XfobBYTzZTmabw2zznUk2mP9fYrgxY_phGN0IrhuFDq_vHXL6vkJZzByKg2myEdJaDG8byuSGtRTRVw_Q27TmiPkhpbACDf9Nneyp0U5gQvQJP3Y4B5iDw6L6gPenTaMbSRvaooDuBS6nUjJ448KCVUq7iMOEoZpdB5i_HYCSNw8kfzJ-BP4F6JG1Ig |
| CitedBy_id | crossref_primary_10_3390_ma18153498 crossref_primary_10_4271_05_18_02_0012 crossref_primary_10_1007_s11665_025_11974_0 crossref_primary_10_1016_j_heliyon_2025_e41936 crossref_primary_10_1080_2374068X_2025_2530981 crossref_primary_10_1039_D5CE00515A crossref_primary_10_1016_j_cap_2024_05_006 crossref_primary_10_1116_6_0004356 crossref_primary_10_1016_j_mtcomm_2024_108976 crossref_primary_10_3390_coatings13122101 crossref_primary_10_3390_coatings14040432 crossref_primary_10_1016_j_surfcoat_2025_132476 crossref_primary_10_1016_j_jallcom_2025_179427 crossref_primary_10_3390_lubricants13090390 crossref_primary_10_1016_j_surfcoat_2024_130756 crossref_primary_10_1016_j_jallcom_2025_179395 crossref_primary_10_1007_s11665_025_11900_4 crossref_primary_10_1080_21663831_2025_2473654 crossref_primary_10_1088_1742_6596_2994_1_012025 crossref_primary_10_1016_j_colsurfa_2024_135095 crossref_primary_10_3390_ma17102342 crossref_primary_10_3390_coatings15020130 crossref_primary_10_3390_ma18091997 crossref_primary_10_1016_j_optcom_2025_132278 crossref_primary_10_1016_j_est_2025_116813 crossref_primary_10_3390_lubricants11110473 crossref_primary_10_1016_j_corcom_2024_05_004 crossref_primary_10_1016_j_surfcoat_2024_131476 crossref_primary_10_1016_j_jpowsour_2025_236967 crossref_primary_10_1016_j_surfcoat_2025_132626 |
| Cites_doi | 10.1016/j.corsci.2020.108845 10.1016/j.surfcoat.2020.125773 10.1016/S0040-6090(01)01043-4 10.2320/matertrans.48.519 10.1016/j.scriptamat.2017.09.018 10.1016/j.surfcoat.2009.05.048 10.1016/j.surfcoat.2011.04.071 10.1016/j.jnucmat.2020.152745 10.1002/adem.200800053 10.1088/1361-6463/ab28e2 10.1016/j.actamat.2022.118260 10.1016/j.jnucmat.2006.05.038 10.1038/srep39484 10.1063/1.2817812 10.1021/acsami.8b08263 10.1016/j.corsci.2022.110495 10.1016/0257-8972(95)08235-2 10.4028/www.scientific.net/KEM.798.122 10.1016/j.tsf.2006.04.051 10.1016/j.corsci.2021.109755 10.1007/s00339-020-03986-5 10.1126/sciadv.aaw5519 10.1016/j.corsci.2020.108533 10.1134/S1027451020020524 10.1016/j.surfcoat.2022.128542 10.1063/1.2159555 10.1016/j.surfcoat.2005.02.161 10.1016/j.surfcoat.2016.10.087 10.1063/1.3481428 10.1088/2053-1591/ab2001 10.1016/j.apsusc.2011.12.048 10.1016/j.surfcoat.2011.07.055 10.1016/j.apsusc.2010.09.086 10.1016/j.jallcom.2008.08.104 10.1063/1.4977815 10.1016/j.tsf.2008.06.008 10.1016/j.tsf.2003.11.113 10.1016/j.ceramint.2021.10.182 10.1016/j.surfcoat.2019.06.016 10.1016/j.pmatsci.2018.03.002 10.1016/j.surfcoat.2017.08.021 10.1063/5.0009380 10.1016/j.materresbull.2012.09.051 10.1016/j.surfcoat.2014.01.021 10.1016/S0257-8972(99)00031-6 10.1016/j.physe.2012.05.008 10.1088/0022-3727/46/21/215201 10.1016/j.corsci.2018.09.013 10.1016/S0039-6028(01)01280-8 10.1016/j.vacuum.2012.02.046 10.1016/j.surfcoat.2021.127235 10.1049/mnl.2019.0600 10.1016/j.surfcoat.2020.125890 10.1016/j.surfcoat.2022.128326 10.1016/j.surfcoat.2020.125990 10.1007/s11665-019-04033-y 10.1016/j.surfcoat.2016.02.064 10.1063/1.4871635 10.3390/coatings13020219 10.1103/PhysRevB.48.11685 10.1007/s11837-018-3111-x 10.4028/www.scientific.net/KEM.718.57 10.1016/j.apsusc.2012.12.148 10.1016/j.jallcom.2021.162139 10.1016/j.promfg.2018.10.125 10.1016/j.tsf.2010.05.062 10.1016/j.actamat.2021.117212 10.1016/j.surfcoat.2022.129176 10.1016/j.jmrt.2022.01.005 10.1016/j.surfcoat.2018.09.006 10.1109/TPS.2010.2071885 10.1016/j.matpr.2018.04.087 10.1016/j.matdes.2020.109365 10.1016/j.matlet.2020.128540 10.1116/1.1818135 10.1016/j.apsusc.2017.09.166 10.1016/j.mattod.2020.04.005 10.1021/nl504677z 10.1016/j.mseb.2010.01.021 10.1016/j.actamat.2017.09.007 10.1007/978-3-030-52071-7 10.1016/S0257-8972(02)00479-6 10.1016/j.surfcoat.2003.12.026 10.1016/j.anucene.2021.108206 10.1088/1757-899X/678/1/012163 10.1016/j.matchemphys.2015.04.015 10.1038/natrevmats.2016.19 10.1016/j.mtcomm.2022.104072 10.1063/1.3692978 10.1016/j.surfcoat.2012.03.010 10.1016/S0040-6090(99)00552-0 10.1016/j.matdes.2020.108478 10.1016/j.surfcoat.2014.07.063 10.1016/j.tsf.2013.01.031 10.1016/j.vacuum.2022.111313 10.1016/j.tsf.2021.138578 10.1016/j.surfcoat.2022.128713 10.1016/j.surfcoat.2014.08.043 10.1063/1.4978350 10.1016/j.actamat.2016.05.030 10.1016/j.heliyon.2019.e01370 10.1016/j.matdes.2016.09.058 10.1016/S0257-8972(99)00240-6 10.1016/j.surfcoat.2016.08.044 10.1016/j.tsf.2008.06.050 10.1016/j.nimb.2010.03.027 10.1116/1.575473 10.1016/S0257-8972(98)00586-6 10.1016/j.actamat.2012.06.049 10.1016/j.actamat.2017.09.054 10.1088/0963-0252/15/2/011 10.1016/j.vacuum.2022.111405 10.1016/j.tsf.2006.03.033 10.1520/STP159720160011 10.1016/j.corsci.2019.05.017 10.1016/j.cplett.2011.02.059 10.1016/j.surfcoat.2004.05.032 10.1016/j.ceramint.2018.03.187 10.1016/j.surfcoat.2009.11.013 10.1016/j.tsf.2005.05.022 10.1016/j.surfcoat.2018.02.028 10.1088/0022-3727/43/27/275204 10.1016/j.ceramint.2020.04.168 10.1016/j.apsusc.2016.08.001 10.1016/j.surfcoat.2018.06.065 10.1016/j.actamat.2020.06.019 10.1016/j.actamat.2021.117095 10.1016/j.surfcoat.2003.09.049 10.1016/j.ceramint.2018.01.199 10.1016/j.surfcoat.2020.126235 10.1016/S0042-207X(01)00327-X 10.1016/j.surfcoat.2016.07.098 10.1016/j.ceramint.2018.01.260 10.1016/j.surfcoat.2021.127947 10.1557/jmr.2011.428 10.1088/1742-6596/100/8/082013 10.1016/j.surfcoat.2010.06.016 10.1088/0963-0252/23/2/025007 10.1016/j.surfcoat.2019.06.053 10.1063/1.5132783 10.1016/j.jallcom.2010.08.042 10.1016/j.surfcoat.2014.02.030 10.1016/j.surfcoat.2009.04.005 10.1016/j.tsf.2014.09.053 10.1016/j.apsusc.2015.05.110 10.1016/j.matdes.2020.109023 10.1016/j.surfcoat.2019.08.016 10.1088/0963-0252/24/3/035018 10.1016/j.ijhydene.2023.03.265 10.1109/TPS.2018.2889696 10.1063/1.5017857 10.1016/j.scriptamat.2005.02.024 10.1016/j.jallcom.2019.07.325 10.1016/j.surfcoat.2009.11.040 10.1116/1.3691832 10.1116/1.3299267 10.1088/1361-6595/abec27 10.1016/j.surfcoat.2013.11.040 10.1016/j.scriptamat.2019.11.042 10.1016/j.matdes.2016.05.029 10.1116/1.1865133 10.1016/0257-8972(95)02498-0 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
| DBID | AAYXX CITATION 7SR 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ JG9 KB. PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI 7X8 5PM |
| DOI | 10.3390/ma16186303 |
| DatabaseName | CrossRef Engineered Materials Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Materials Science Collection ProQuest Central Korea SciTech Premium Collection Materials Research Database Materials Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Materials Science Collection Materials Research Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central ProQuest One Applied & Life Sciences Engineered Materials Abstracts ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection Materials Science Database ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: KB. name: Materials Science Database url: http://search.proquest.com/materialsscijournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1996-1944 |
| ExternalDocumentID | PMC10532976 A779740708 10_3390_ma16186303 |
| GrantInformation_xml | – fundername: Shenzhen Science and Technology Program grantid: RCYX20210609103904028; JCYJ20220531095017039 – fundername: Guangdong Basic and Applied Basic Research Foundation grantid: 2021A1515012411; 2022A1515012119 – fundername: National Natural Science Foundation of China grantid: 12005048; U22B2064 – fundername: Characteristic Innovation Project of Guangdong Educational Department grantid: 2022KTSCX217 |
| GroupedDBID | 29M 2WC 2XV 53G 5GY 5VS 8FE 8FG AADQD AAFWJ AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV BENPR BGLVJ CCPQU CITATION CZ9 D1I E3Z EBS ESX FRP GX1 HCIFZ HH5 HYE I-F IAO ITC KB. KC. KQ8 MK~ MODMG M~E OK1 OVT P2P PDBOC PGMZT PHGZM PHGZT PIMPY PQGLB PROAC RPM TR2 TUS 7SR 8FD ABUWG AZQEC DWQXO JG9 PKEHL PQEST PQQKQ PQUKI 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c423t-709b782efcfce4e824ba4490ef99bbd4f650066e8a2c3cf262bfa4c6db85619c3 |
| IEDL.DBID | PIMPY |
| ISICitedReferencesCount | 33 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001073769400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1996-1944 |
| IngestDate | Tue Nov 04 02:06:32 EST 2025 Thu Oct 02 05:24:26 EDT 2025 Fri Jul 25 11:39:06 EDT 2025 Tue Nov 04 18:28:31 EST 2025 Thu Nov 13 06:56:33 EST 2025 Tue Nov 18 22:18:27 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 18 |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c423t-709b782efcfce4e824ba4490ef99bbd4f650066e8a2c3cf262bfa4c6db85619c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| OpenAccessLink | https://www.proquest.com/publiccontent/docview/2869447280?pq-origsite=%requestingapplication% |
| PQID | 2869447280 |
| PQPubID | 2032366 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10532976 proquest_miscellaneous_2870145180 proquest_journals_2869447280 gale_infotracacademiconefile_A779740708 crossref_citationtrail_10_3390_ma16186303 crossref_primary_10_3390_ma16186303 |
| PublicationCentury | 2000 |
| PublicationDate | 20230920 |
| PublicationDateYYYYMMDD | 2023-09-20 |
| PublicationDate_xml | – month: 9 year: 2023 text: 20230920 day: 20 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Materials |
| PublicationYear | 2023 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | ref_94 Gigax (ref_121) 2020; 178 Anders (ref_31) 2018; 123 Song (ref_126) 2013; 89 Teixeira (ref_85) 2002; 64 Anders (ref_55) 2010; 28 Bobzin (ref_115) 2008; 517 Renzelli (ref_75) 2016; 112 Zauner (ref_119) 2022; 239 Shiri (ref_92) 2016; 308 Thomann (ref_105) 2019; 377 Kabir (ref_96) 2017; 309 Song (ref_161) 2021; 156 Seo (ref_52) 2006; 15 Asgaribakhtiari (ref_87) 2023; 454 Moskovkin (ref_114) 2021; 418 Teixeira (ref_78) 2001; 392 Elo (ref_90) 2020; 397 Guo (ref_81) 2022; 445 Liu (ref_12) 2019; 6 Bienk (ref_70) 1995; 76–77 Zhang (ref_116) 2022; 48 Qi (ref_25) 2013; 544 Zhang (ref_72) 2020; 394 Zhou (ref_8) 2020; 126 Meindlhumer (ref_76) 2021; 198 Liew (ref_47) 2022; 17 Cemin (ref_74) 2017; 141 Sproul (ref_56) 2005; 491 Tang (ref_142) 2020; 175 ref_129 Zuo (ref_107) 2019; 47 Qi (ref_10) 2019; 806 Kabir (ref_138) 2018; 44 Ghailane (ref_46) 2020; 280 ref_20 Khamseh (ref_128) 2010; 508 Bilek (ref_73) 2006; 200 Liu (ref_9) 2022; 894 Bohlmark (ref_109) 2004; 23 Gelfi (ref_86) 2005; 192 Rossnagel (ref_51) 1988; 6 Hurkmans (ref_18) 1999; 114 Grimvall (ref_2) 1993; 48 Aiempanakit (ref_104) 2011; 205 Kumar (ref_106) 2021; 722 Paulitsch (ref_98) 2010; 518 Li (ref_152) 2017; 7 Sarakinos (ref_45) 2010; 204 Bobzin (ref_102) 2018; 349 Oje (ref_140) 2020; 167 Liu (ref_21) 2023; 48 Aouadi (ref_22) 2019; 28 Meindlhumer (ref_84) 2020; 195 Kauffmann (ref_118) 2005; 52 Li (ref_160) 2018; 144 Ma (ref_6) 2018; 428 Gudmundsson (ref_34) 2012; 30 Wu (ref_157) 2019; 5 Deng (ref_36) 2020; 46 ref_147 Buranawong (ref_65) 2016; 718 Wan (ref_163) 2016; 305 Zhang (ref_130) 2019; 678 Lazar (ref_111) 2010; 108 Cai (ref_139) 2018; 354 Helmersson (ref_40) 2006; 513 Kirchlechner (ref_80) 2008; 517 Guimaraes (ref_93) 2018; 340 Anders (ref_50) 2012; 111 Buranawong (ref_97) 2019; 798 Kobayashi (ref_1) 2001; 493 Shimizu (ref_53) 2021; 30 Ferrec (ref_35) 2014; 250 Shan (ref_13) 2014; 242 Cunha (ref_69) 1999; 355–356 Lundin (ref_113) 2015; 24 Li (ref_133) 2016; 114 Qiu (ref_14) 2013; 231 Greczynski (ref_62) 2010; 205 Zhao (ref_66) 2004; 185 Xiang (ref_162) 2022; 429 Ehiasarian (ref_64) 2004; 457 Ehiasarian (ref_17) 2003; 163 Yin (ref_77) 2012; 44 Li (ref_158) 2018; 70 Lin (ref_112) 2009; 203 Ou (ref_7) 2015; 351 Li (ref_48) 2020; 10 Ruden (ref_19) 2013; 270 Wang (ref_132) 2022; 204 Wu (ref_145) 2019; 374 Jablonka (ref_33) 2019; 52 Pan (ref_144) 2022; 206 Yi (ref_88) 2018; 10 (ref_164) 2010; 268 Chen (ref_137) 2018; 44 Sun (ref_43) 2020; 38 Lu (ref_122) 2016; 1 Wang (ref_141) 2018; 145 Arias (ref_11) 2015; 160 Ferrec (ref_60) 2016; 390 Kong (ref_27) 2011; 257 Li (ref_131) 2012; 60 Rezek (ref_146) 2020; 393 Meunier (ref_71) 1998; 107 Rebholz (ref_79) 1999; 115 Siriprom (ref_67) 2018; 5 Kabir (ref_135) 2018; 44 Elangovan (ref_28) 2010; 167 Serag (ref_150) 2022; 441 Stranak (ref_123) 2014; 115 Alami (ref_38) 2009; 483 Daniel (ref_89) 2016; 104 Uglov (ref_154) 2020; 14 Guo (ref_5) 2021; 218 Ecker (ref_83) 2020; 188 Petrogalli (ref_127) 2014; 258 Han (ref_143) 2019; 156 Ehiasarian (ref_103) 2010; 43 Kiran (ref_95) 2012; 47 Li (ref_125) 2021; 191 Caro (ref_15) 2020; 401 Biswas (ref_16) 2018; 336 Ellmer (ref_57) 2012; 27 Anders (ref_58) 2017; 121 Neuville (ref_44) 2011; 206 Tillmann (ref_134) 2019; 374 Hahn (ref_4) 2021; 218 Li (ref_153) 2015; 15 Baptista (ref_42) 2018; 17 Oettel (ref_82) 1995; 74–75 Bemporad (ref_91) 2014; 572 Panjan (ref_101) 2014; 23 Anders (ref_30) 2007; 102 Polcar (ref_24) 2009; 203 Ferreira (ref_29) 2016; 291 ref_37 Goyenola (ref_3) 2011; 506 Shang (ref_155) 2020; 196 Anders (ref_54) 2004; 183 Konstantinidis (ref_61) 2006; 99 Kurata (ref_149) 2007; 48 Zhang (ref_26) 2008; 10 Audronis (ref_100) 2010; 204 Anders (ref_39) 2014; 257 Glasbrenner (ref_148) 2006; 356 Greczynski (ref_49) 2010; 38 Hnilica (ref_32) 2020; 128 Liu (ref_120) 2022; 437 Shang (ref_156) 2021; 546 Wang (ref_136) 2023; 207 Li (ref_159) 2018; 143 Palmucci (ref_108) 2013; 46 Bohlmark (ref_124) 2006; 515 Alami (ref_41) 2014; 255 Li (ref_99) 2019; 5 Abdallah (ref_23) 2020; 15 Zhang (ref_151) 2018; 96 Christie (ref_63) 2005; 23 Gudmundsson (ref_110) 2008; 100 Habibi (ref_68) 2022; 32 Kadlec (ref_59) 2017; 121 Lv (ref_117) 2012; 258 |
| References_xml | – volume: 175 start-page: 108845 year: 2020 ident: ref_142 article-title: Achieving Superior Hot Corrosion Resistance by PVD/HVOF Duplex Design publication-title: Corros. Sci. doi: 10.1016/j.corsci.2020.108845 – volume: 393 start-page: 125773 year: 2020 ident: ref_146 article-title: Effect of Positive Pulse Voltage in Bipolar Reactive HiPIMS on Crystal Structure, Microstructure and Mechanical Properties of CrN Films publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2020.125773 – volume: 392 start-page: 276 year: 2001 ident: ref_78 article-title: Mechanical Integrity in PVD Coatings Due to the Presence of Residual Stresses publication-title: Thin Solid Films doi: 10.1016/S0040-6090(01)01043-4 – volume: 48 start-page: 519 year: 2007 ident: ref_149 article-title: Corrosion of CrN-Coated Steels in Liquid Pb-Bi publication-title: Mater. Trans. doi: 10.2320/matertrans.48.519 – volume: 144 start-page: 13 year: 2018 ident: ref_160 article-title: In Situ Study on Enhanced Heavy Ion Irradiation Tolerance of Porous Mg publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2017.09.018 – volume: 203 start-page: 3676 year: 2009 ident: ref_112 article-title: Ion Energy and Mass Distributions of the Plasma during Modulated Pulse Power Magnetron Sputtering publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2009.05.048 – volume: 205 start-page: 4828 year: 2011 ident: ref_104 article-title: Effect of Peak Power in Reactive High Power Impulse Magnetron Sputtering of Titanium Dioxide publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2011.04.071 – volume: 546 start-page: 152745 year: 2021 ident: ref_156 article-title: Heavy Ion Irradiation Response of an Additively Manufactured 316LN Stainless Steel publication-title: J. Nucl. Mater. doi: 10.1016/j.jnucmat.2020.152745 – volume: 10 start-page: 628 year: 2008 ident: ref_26 article-title: Influence of RF Bias on the Deposition of CrN Studied by OES publication-title: Adv. Eng. Mater. doi: 10.1002/adem.200800053 – volume: 52 start-page: 365202 year: 2019 ident: ref_33 article-title: Metal Filling by High Power Impulse Magnetron Sputtering publication-title: J. Phys. Appl. Phys. doi: 10.1088/1361-6463/ab28e2 – volume: 239 start-page: 118260 year: 2022 ident: ref_119 article-title: Assessing the Fracture and Fatigue Resistance of Nanostructured Thin Films publication-title: Acta Mater. doi: 10.1016/j.actamat.2022.118260 – volume: 356 start-page: 213 year: 2006 ident: ref_148 article-title: Exposure of Pre-Stressed T91 Coated with TiN, CrN and DLC to Pb–55.5Bi publication-title: J. Nucl. Mater. doi: 10.1016/j.jnucmat.2006.05.038 – volume: 7 start-page: 39484 year: 2017 ident: ref_152 article-title: In Situ Heavy Ion Irradiation Studies of Nanopore Shrinkage and Enhanced Radiation Tolerance of Nanoporous Au publication-title: Sci. Rep. doi: 10.1038/srep39484 – volume: 102 start-page: 113303 year: 2007 ident: ref_30 article-title: High Power Impulse Magnetron Sputtering: Current-Voltage-Time Characteristics Indicate the Onset of Sustained Self-Sputtering publication-title: J. Appl. Phys. doi: 10.1063/1.2817812 – volume: 10 start-page: 34561 year: 2018 ident: ref_88 article-title: Impact of Film Thickness on Defects and the Graphitization of Nanothin Carbon Coatings Used for Metallic Bipolar Plates in Proton Exchange Membrane Fuel Cells publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b08263 – volume: 206 start-page: 110495 year: 2022 ident: ref_144 article-title: Anti-Corrosion Performance of the Conductive Bilayer CrC/CrN Coated 304SS Bipolar Plate in Acidic Environment publication-title: Corros. Sci. doi: 10.1016/j.corsci.2022.110495 – volume: 74–75 start-page: 273 year: 1995 ident: ref_82 article-title: Residual Stresses in Nitride Hard Coatings Prepared by Magnetron Sputtering and Arc Evaporation publication-title: Surf. Coat. Technol. doi: 10.1016/0257-8972(95)08235-2 – volume: 798 start-page: 122 year: 2019 ident: ref_97 article-title: Structure and Oxidation Behavior CrN Thin Films Deposited Using DC Reactive Magnetron Sputtering publication-title: Key Eng. Mater. doi: 10.4028/www.scientific.net/KEM.798.122 – volume: 515 start-page: 1522 year: 2006 ident: ref_124 article-title: The Ion Energy Distributions and Ion Flux Composition from a High Power Impulse Magnetron Sputtering Discharge publication-title: Thin Solid Films doi: 10.1016/j.tsf.2006.04.051 – volume: 191 start-page: 109755 year: 2021 ident: ref_125 article-title: Microstructure, High-Temperature Corrosion and Steam Oxidation Properties of Cr/CrN Multilayer Coatings Prepared by Magnetron Sputtering publication-title: Corros. Sci. doi: 10.1016/j.corsci.2021.109755 – volume: 126 start-page: 796 year: 2020 ident: ref_8 article-title: Comparison of Tribological Properties of CrN, CrTiN and CrTiBN Coatings Sliding against SiC and SUS440C Balls in Water publication-title: Appl. Phys. A doi: 10.1007/s00339-020-03986-5 – ident: ref_94 – volume: 5 start-page: eaaw5519 year: 2019 ident: ref_99 article-title: Nanoscale Stacking Fault–Assisted Room Temperature Plasticity in Flash-Sintered TiO2 publication-title: Sci. Adv. doi: 10.1126/sciadv.aaw5519 – volume: 167 start-page: 108533 year: 2020 ident: ref_140 article-title: A Comparative Study of the Corrosion and Ion Release Behaviour of Chromium Oxide Coatings Exposed to Saline, Ringer’s and Hank’s Physiological Solutions publication-title: Corros. Sci. doi: 10.1016/j.corsci.2020.108533 – volume: 14 start-page: 359 year: 2020 ident: ref_154 article-title: Blistering in Helium-Ion-Irradiated Zirconium, Aluminum, and Chromium Nitride Films publication-title: J. Surf. Investig. X-ray Synchrotron Neutron Tech. doi: 10.1134/S1027451020020524 – volume: 441 start-page: 128542 year: 2022 ident: ref_150 article-title: Challenges and Coating Solutions for Wear and Corrosion inside Lead Bismuth Eutectic: A Review publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2022.128542 – volume: 99 start-page: 013307 year: 2006 ident: ref_61 article-title: Influence of Pulse Duration on the Plasma Characteristics in High-Power Pulsed Magnetron Discharges publication-title: J. Appl. Phys. doi: 10.1063/1.2159555 – volume: 200 start-page: 4345 year: 2006 ident: ref_73 article-title: A Comprehensive Model of Stress Generation and Relief Processes in Thin Films Deposited with Energetic Ions publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2005.02.161 – volume: 309 start-page: 779 year: 2017 ident: ref_96 article-title: Structure and Mechanical Properties of Graded Cr/CrN/CrTiN Coatings Synthesized by Close Field Unbalanced Magnetron Sputtering publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2016.10.087 – volume: 108 start-page: 063307 year: 2010 ident: ref_111 article-title: Ion Flux Characteristics and Efficiency of the Deposition Processes in High Power Impulse Magnetron Sputtering of Zirconium publication-title: J. Appl. Phys. doi: 10.1063/1.3481428 – volume: 6 start-page: 086432 year: 2019 ident: ref_12 article-title: Tribological Properties and Corrosion Resistance of CrSiN Coatings Prepared via Hybrid HiPIMS and DCMS publication-title: Mater. Res. Express doi: 10.1088/2053-1591/ab2001 – volume: 258 start-page: 3864 year: 2012 ident: ref_117 article-title: Influence of Substrate Bias Voltage on Structure and Properties of the CrAlN Films Deposited by Unbalanced Magnetron Sputtering publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2011.12.048 – volume: 206 start-page: 703 year: 2011 ident: ref_44 article-title: Quantum Electronic Mechanisms of Atomic Rearrangements during Growth of Hard Carbon Films publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2011.07.055 – volume: 257 start-page: 2269 year: 2011 ident: ref_27 article-title: Composition, Microstructure, and Properties of CrNx Films Deposited Using Medium Frequency Magnetron Sputtering publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2010.09.086 – volume: 483 start-page: 530 year: 2009 ident: ref_38 article-title: High Power Pulsed Magnetron Sputtering: Fundamentals and Applications publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2008.08.104 – volume: 121 start-page: 171911 year: 2017 ident: ref_59 article-title: Return of Target Material Ions Leads to a Reduced Hysteresis in Reactive High Power Impulse Magnetron Sputtering: Experiment publication-title: J. Appl. Phys. doi: 10.1063/1.4977815 – volume: 517 start-page: 1167 year: 2008 ident: ref_80 article-title: Residual Stresses in Thermally Cycled CrN Coatings on Steel publication-title: Thin Solid Films doi: 10.1016/j.tsf.2008.06.008 – volume: 457 start-page: 270 year: 2004 ident: ref_64 article-title: Comparison of Microstructure and Mechanical Properties of Chromium Nitride-Based Coatings Deposited by High Power Impulse Magnetron Sputtering and by the Combined Steered Cathodic Arc/Unbalanced Magnetron Technique publication-title: Thin Solid Films doi: 10.1016/j.tsf.2003.11.113 – volume: 48 start-page: 3954 year: 2022 ident: ref_116 article-title: Effect of Plasma Nitriding Ion Current Density on Tribological Properties of Composite CrAlN Coatings publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2021.10.182 – volume: 374 start-page: 383 year: 2019 ident: ref_145 article-title: Enhancement of Discharge and Deposition Rate in Dual-Pulse Pulsed Magnetron Sputtering: Effect of Ignition Pulse Width publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2019.06.016 – volume: 96 start-page: 217 year: 2018 ident: ref_151 article-title: Radiation Damage in Nanostructured Materials publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2018.03.002 – volume: 336 start-page: 84 year: 2018 ident: ref_16 article-title: Effect of Chamber Pressure on Defect Generation and Their Influence on Corrosion and Tribological Properties of HIPIMS Deposited CrN/NbN Coatings publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2017.08.021 – volume: 128 start-page: 043304 year: 2020 ident: ref_32 article-title: Revisiting Particle Dynamics in HiPIMS Discharges. II. Plasma Pulse Effects publication-title: J. Appl. Phys. doi: 10.1063/5.0009380 – volume: 47 start-page: 4463 year: 2012 ident: ref_95 article-title: Structural and Mechanical Properties of Room Temperature Sputter Deposited CrN Coatings publication-title: Mater. Res. Bull. doi: 10.1016/j.materresbull.2012.09.051 – volume: 242 start-page: 74 year: 2014 ident: ref_13 article-title: Effect of N2 Flow Rate on Microstructure and Mechanical Properties of PVD CrNx Coatings for Tribological Application in Seawater publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2014.01.021 – volume: 114 start-page: 52 year: 1999 ident: ref_18 article-title: Influence of Ion Bombardment on Structure and Properties of Unbalanced Magnetron Grown CrNx Coatings k publication-title: Surf. Coat. Technol. doi: 10.1016/S0257-8972(99)00031-6 – volume: 44 start-page: 1838 year: 2012 ident: ref_77 article-title: Impact of Residual Stress on the Adhesion and Tensile Fracture of TiN/CrN Multi-Layered Coatings from First Principles publication-title: Phys. E Low-Dimens. Syst. Nanostruct. doi: 10.1016/j.physe.2012.05.008 – volume: 46 start-page: 215201 year: 2013 ident: ref_108 article-title: Mass Spectrometry Diagnostics of Short-Pulsed HiPIMS Discharges publication-title: J. Phys. Appl. Phys. doi: 10.1088/0022-3727/46/21/215201 – volume: 145 start-page: 55 year: 2018 ident: ref_141 article-title: A Self-Healing Stainless Steel: Role of Nitrogen in Eliminating Detrimental Effect of Cold Working on Pitting Corrosion Resistance publication-title: Corros. Sci. doi: 10.1016/j.corsci.2018.09.013 – volume: 493 start-page: 665 year: 2001 ident: ref_1 article-title: First-Principles Study of the Electronic Properties of Transition Metal Nitride Surfaces publication-title: Surf. Sci. doi: 10.1016/S0039-6028(01)01280-8 – volume: 89 start-page: 136 year: 2013 ident: ref_126 article-title: The Corrosive Behavior of Cr/CrN Multilayer Coatings with Different Modulation Periods publication-title: Vacuum doi: 10.1016/j.vacuum.2012.02.046 – volume: 418 start-page: 127235 year: 2021 ident: ref_114 article-title: Link between Plasma Properties with Morphological, Structural and Mechanical Properties of Thin Ti Films Deposited by High Power Impulse Magnetron Sputtering publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2021.127235 – volume: 15 start-page: 678 year: 2020 ident: ref_23 article-title: Temperature Effect on Structural, Mechanical Properties and Corrosion Behaviour of CrN Thin Films Deposited by Magnetron Sputtering publication-title: Micro Nano Lett. doi: 10.1049/mnl.2019.0600 – volume: 394 start-page: 125890 year: 2020 ident: ref_72 article-title: Comparative Study on Protective Properties of CrN Coatings on the ABS Substrate by DCMS and HiPIMS Techniques publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2020.125890 – volume: 437 start-page: 128326 year: 2022 ident: ref_120 article-title: Fabrication and Hydrogen Permeation Resistance of Dense CrN Coatings publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2022.128326 – volume: 397 start-page: 125990 year: 2020 ident: ref_90 article-title: Tailoring Residual Stresses in CrNx Films on Alumina and Silicon Deposited by High-Power Impulse Magnetron Sputtering publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2020.125990 – volume: 28 start-page: 2881 year: 2019 ident: ref_22 article-title: Influence of Substrate Bias Voltage on Corrosion and Wear Behavior of Physical Vapor Deposition CrN Coatings publication-title: J. Mater. Eng. Perform. doi: 10.1007/s11665-019-04033-y – volume: 291 start-page: 365 year: 2016 ident: ref_29 article-title: CrN Thin Films Deposited by HiPIMS in DOMS Mode publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2016.02.064 – volume: 115 start-page: 153301 year: 2014 ident: ref_123 article-title: Investigation of Ionized Metal Flux in Enhanced High Power Impulse Magnetron Sputtering Discharges publication-title: J. Appl. Phys. doi: 10.1063/1.4871635 – ident: ref_20 doi: 10.3390/coatings13020219 – volume: 48 start-page: 11685 year: 1993 ident: ref_2 article-title: Theory of Bonding in Transition-Metal Carbides and Nitrides publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.48.11685 – volume: 70 start-page: 2753 year: 2018 ident: ref_158 article-title: A Review on the Radiation Response of Nanoporous Metallic Materials publication-title: JOM doi: 10.1007/s11837-018-3111-x – volume: 718 start-page: 57 year: 2016 ident: ref_65 article-title: Nanostructure and Microstructure Evolution of D.C. Reactive Magnetron Sputtered CrN Thin Films publication-title: Key Eng. Mater. doi: 10.4028/www.scientific.net/KEM.718.57 – volume: 270 start-page: 150 year: 2013 ident: ref_19 article-title: Corrosion Resistance of CrN Thin Films Produced by Dc Magnetron Sputtering publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2012.12.148 – volume: 894 start-page: 162139 year: 2022 ident: ref_9 article-title: Hard and Tough CrN Coatings Strengthened by High-Density Distorted Coherent Grain Boundaries publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2021.162139 – volume: 17 start-page: 746 year: 2018 ident: ref_42 article-title: On the Physical Vapour Deposition (PVD): Evolution of Magnetron Sputtering Processes for Industrial Applications publication-title: Procedia Manuf. doi: 10.1016/j.promfg.2018.10.125 – volume: 518 start-page: 5558 year: 2010 ident: ref_98 article-title: Structure and Properties of High Power Impulse Magnetron Sputtering and DC Magnetron Sputtering CrN and TiN Films Deposited in an Industrial Scale Unit publication-title: Thin Solid Films doi: 10.1016/j.tsf.2010.05.062 – volume: 218 start-page: 117212 year: 2021 ident: ref_5 article-title: Superhardness Induced by Grain Boundary Vertical Sliding in (001)-Textured ZrB2 and TiB2 Nano Films publication-title: Acta Mater. doi: 10.1016/j.actamat.2021.117212 – volume: 454 start-page: 129176 year: 2023 ident: ref_87 article-title: On the Effect of Cr/CrN Nanolayered Coating Deposited by Arc-PVD Method on Axial Fretting Fatigue Behavior of Al7075-T6 Alloy publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2022.129176 – volume: 17 start-page: 961 year: 2022 ident: ref_47 article-title: Thermal Stability, Mechanical Properties, and Tribological Performance of TiAlXN Coatings: Understanding the Effects of Alloying Additions publication-title: J. Mater. Res. Technol. doi: 10.1016/j.jmrt.2022.01.005 – volume: 354 start-page: 194 year: 2018 ident: ref_139 article-title: Corrosion Resistance and Antifouling Activities of Silver-Doped CrN Coatings Deposited by Magnetron Sputtering publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2018.09.006 – volume: 38 start-page: 3046 year: 2010 ident: ref_49 article-title: CrNx Films Prepared by DC Magnetron Sputtering and High-Power Pulsed Magnetron Sputtering: A Comparative Study publication-title: IEEE Trans. Plasma Sci. doi: 10.1109/TPS.2010.2071885 – volume: 5 start-page: 15224 year: 2018 ident: ref_67 article-title: Preparation and Characterization of CrN Thin Film by DC Reactive Magnetron Sputtering publication-title: Mater. Today Proc. doi: 10.1016/j.matpr.2018.04.087 – volume: 198 start-page: 109365 year: 2021 ident: ref_76 article-title: Evolution of Stress Fields during Crack Growth and Arrest in a Brittle-Ductile CrN-Cr Clamped-Cantilever Analysed by X-Ray Nanodiffraction and Modelling publication-title: Mater. Des. doi: 10.1016/j.matdes.2020.109365 – volume: 280 start-page: 128540 year: 2020 ident: ref_46 article-title: Design of Hard Coatings Deposited by HiPIMS and DcMS publication-title: Mater. Lett. doi: 10.1016/j.matlet.2020.128540 – volume: 23 start-page: 18 year: 2004 ident: ref_109 article-title: Ionization of Sputtered Metals in High Power Pulsed Magnetron Sputtering publication-title: J. Vac. Sci. Technol. A doi: 10.1116/1.1818135 – volume: 428 start-page: 404 year: 2018 ident: ref_6 article-title: Structural, Mechanical and Tribocorrosion Behaviour in Artificial Seawater of CrN/AlN Nano-Multilayer Coatings on F690 Steel Substrates publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2017.09.166 – volume: 38 start-page: 114 year: 2020 ident: ref_43 article-title: Nanostructural Metallic Materials: Structures and Mechanical Properties publication-title: Mater. Today doi: 10.1016/j.mattod.2020.04.005 – volume: 15 start-page: 2922 year: 2015 ident: ref_153 article-title: In Situ Study of Defect Migration Kinetics and Self-Healing of Twin Boundaries in Heavy Ion Irradiated Nanotwinned Metals publication-title: Nano Lett. doi: 10.1021/nl504677z – volume: 167 start-page: 17 year: 2010 ident: ref_28 article-title: Nanostructured CrN Thin Films Prepared by Reactive Pulsed DC Magnetron Sputtering publication-title: Mater. Sci. Eng. B doi: 10.1016/j.mseb.2010.01.021 – volume: 141 start-page: 120 year: 2017 ident: ref_74 article-title: Benefits of Energetic Ion Bombardment for Tailoring Stress and Microstructural Evolution during Growth of Cu Thin Films publication-title: Acta Mater. doi: 10.1016/j.actamat.2017.09.007 – ident: ref_129 doi: 10.1007/978-3-030-52071-7 – volume: 163 start-page: 267 year: 2003 ident: ref_17 article-title: High Power Pulsed Magnetron Sputtered CrNx Films publication-title: Surf. Coat. Technol. doi: 10.1016/S0257-8972(02)00479-6 – volume: 185 start-page: 329 year: 2004 ident: ref_66 article-title: Phase Formation and Structure of Magnetron Sputtered Chromium Nitride Films: In-Situ and Ex-Situ Studies publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2003.12.026 – volume: 156 start-page: 108206 year: 2021 ident: ref_161 article-title: Effects of Ion Irradiation on Cr, CrN, and TiAlCrN Coated Zircaloy-4 for Accident Tolerant Fuel Claddings publication-title: Ann. Nucl. Energy doi: 10.1016/j.anucene.2021.108206 – volume: 678 start-page: 012163 year: 2019 ident: ref_130 article-title: Al Content Effects on Mechanical and Tribological Properties of Cr/CrN/CrAlN Multilayer Nanocomposite Coatings publication-title: IOP Conf. Ser. Mater. Sci. Eng. doi: 10.1088/1757-899X/678/1/012163 – volume: 160 start-page: 131 year: 2015 ident: ref_11 article-title: A Mechanical and Tribological Study of Cr/CrN Multilayer Coatings publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2015.04.015 – volume: 1 start-page: 16019 year: 2016 ident: ref_122 article-title: Stabilizing Nanostructures in Metals Using Grain and Twin Boundary Architectures publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2016.19 – volume: 32 start-page: 104072 year: 2022 ident: ref_68 article-title: Microstructure, Fractal Geometry and Corrosion Properties of CrN Thin Films: The Effect of Shot Number and Angular Position publication-title: Mater. Today Commun. doi: 10.1016/j.mtcomm.2022.104072 – volume: 111 start-page: 053304 year: 2012 ident: ref_50 article-title: Drifting Localization of Ionization Runaway: Unraveling the Nature of Anomalous Transport in High Power Impulse Magnetron Sputtering publication-title: J. Appl. Phys. doi: 10.1063/1.3692978 – volume: 231 start-page: 357 year: 2013 ident: ref_14 article-title: Improvement of Tribological Performance of CrN Coating via Multilayering with VN publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2012.03.010 – volume: 355–356 start-page: 465 year: 1999 ident: ref_69 article-title: Microstructure of CrN Coatings Produced by PVD Techniques publication-title: Thin Solid Films doi: 10.1016/S0040-6090(99)00552-0 – volume: 188 start-page: 108478 year: 2020 ident: ref_83 article-title: Nanoscale Evolution of Stress Concentrations and Crack Morphology in Multilayered CrN Coating during Indentation: Experiment and Simulation publication-title: Mater. Des. doi: 10.1016/j.matdes.2020.108478 – volume: 258 start-page: 878 year: 2014 ident: ref_127 article-title: Tribological and Corrosion Behavior of CrN Coatings: Roles of Substrate and Deposition Defects publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2014.07.063 – volume: 544 start-page: 515 year: 2013 ident: ref_25 article-title: A Comparative Study of the Oxidation Behavior of Cr2N and CrN Coatings publication-title: Thin Solid Films doi: 10.1016/j.tsf.2013.01.031 – volume: 204 start-page: 111313 year: 2022 ident: ref_132 article-title: Failure Mechanisms of CrN and CrAlN Coatings for Solid Particle Erosion Resistance publication-title: Vacuum doi: 10.1016/j.vacuum.2022.111313 – volume: 722 start-page: 138578 year: 2021 ident: ref_106 article-title: Fully Dense, Highly Conductive Nanocrystalline TiN Diffusion Barrier on Steel via Reactive High Power Impulse Magnetron Sputtering publication-title: Thin Solid Films doi: 10.1016/j.tsf.2021.138578 – volume: 445 start-page: 128713 year: 2022 ident: ref_81 article-title: Residual Stress and Tribological Behavior of Hydrogen-Free Al-DLC Films Prepared by HiPIMS under Different Bias Voltages publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2022.128713 – volume: 257 start-page: 308 year: 2014 ident: ref_39 article-title: A Review Comparing Cathodic Arcs and High Power Impulse Magnetron Sputtering (HiPIMS) publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2014.08.043 – volume: 121 start-page: 171101 year: 2017 ident: ref_58 article-title: Tutorial: Reactive High Power Impulse Magnetron Sputtering (R-HiPIMS) publication-title: J. Appl. Phys. doi: 10.1063/1.4978350 – volume: 114 start-page: 154 year: 2016 ident: ref_133 article-title: Comparison of Size Dependent Strengthening Mechanisms in Ag/Fe and Ag/Ni Multilayers publication-title: Acta Mater. doi: 10.1016/j.actamat.2016.05.030 – volume: 5 start-page: e01370 year: 2019 ident: ref_157 article-title: A Comparative Investigation on Structure Evolution of ZrN and CrN Coatings against Ion Irradiation publication-title: Heliyon doi: 10.1016/j.heliyon.2019.e01370 – volume: 112 start-page: 162 year: 2016 ident: ref_75 article-title: Design, Fabrication and Characterization of Multilayer Cr-CrN Thin Coatings with Tailored Residual Stress Profiles publication-title: Mater. Des. doi: 10.1016/j.matdes.2016.09.058 – volume: 115 start-page: 222 year: 1999 ident: ref_79 article-title: Structure, Mechanical and Tribological Properties of Nitrogen-Containing Chromium Coatings Prepared by Reactive Magnetron Sputtering publication-title: Surf. Coat. Technol. doi: 10.1016/S0257-8972(99)00240-6 – volume: 305 start-page: 165 year: 2016 ident: ref_163 article-title: Ion Irradiation Tolerance of Ti Si N Nanocomposite Coating publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2016.08.044 – volume: 517 start-page: 1251 year: 2008 ident: ref_115 article-title: Mechanical Properties and Oxidation Behaviour of (Al,Cr)N and (Al,Cr,Si)N Coatings for Cutting Tools Deposited by HPPMS publication-title: Thin Solid Films doi: 10.1016/j.tsf.2008.06.050 – volume: 268 start-page: 2883 year: 2010 ident: ref_164 article-title: Ion-Beam Irradiation Effects on Reactively Sputtered CrN Thin Films publication-title: Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. doi: 10.1016/j.nimb.2010.03.027 – volume: 6 start-page: 3049 year: 1988 ident: ref_51 article-title: Deposition and Redeposition in Magnetrons publication-title: J. Vac. Sci. Technol. Vac. Surf. Films doi: 10.1116/1.575473 – volume: 107 start-page: 149 year: 1998 ident: ref_71 article-title: X-Ray Diffractometry Analysis of r.f.-Magnetron-Sputtered Chromium/Chromium Nitride Coatings publication-title: Surf. Coat. Technol. doi: 10.1016/S0257-8972(98)00586-6 – volume: 60 start-page: 5735 year: 2012 ident: ref_131 article-title: Designing Superhard, Self-Toughening CrAlN Coatings through Grain Boundary Engineering publication-title: Acta Mater. doi: 10.1016/j.actamat.2012.06.049 – volume: 143 start-page: 30 year: 2018 ident: ref_159 article-title: In Situ Studies on Irradiation Resistance of Nanoporous Au through Temperature-Jump Tests publication-title: Acta Mater. doi: 10.1016/j.actamat.2017.09.054 – volume: 15 start-page: 256 year: 2006 ident: ref_52 article-title: Experimental Investigation of Plasma Dynamics in Dc and Short-Pulse Magnetron Discharges publication-title: Plasma Sources Sci. Technol. doi: 10.1088/0963-0252/15/2/011 – volume: 207 start-page: 111405 year: 2023 ident: ref_136 article-title: Tensile Mechanism of Wear-Resistant Cr/CrN/Cr/CrAlN Multilayer Film publication-title: Vacuum doi: 10.1016/j.vacuum.2022.111405 – volume: 513 start-page: 1 year: 2006 ident: ref_40 article-title: Ionized Physical Vapor Deposition (IPVD): A Review of Technology and Applications publication-title: Thin Solid Films doi: 10.1016/j.tsf.2006.03.033 – ident: ref_147 doi: 10.1520/STP159720160011 – volume: 156 start-page: 117 year: 2019 ident: ref_143 article-title: An Interesting Oxidation Phenomenon of Cr Coatings on Zry-4 Substrates in High Temperature Steam Environment publication-title: Corros. Sci. doi: 10.1016/j.corsci.2019.05.017 – volume: 506 start-page: 86 year: 2011 ident: ref_3 article-title: Fullerene-like CSx: A First-Principles Study of Synthetic Growth publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2011.02.059 – volume: 192 start-page: 263 year: 2005 ident: ref_86 article-title: Relationship between Through-Thickness Residual Stress of CrN-PVD Coatings and Fatigue Nucleation Sites publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2004.05.032 – volume: 44 start-page: 11364 year: 2018 ident: ref_135 article-title: Study of the Structure, Properties, Scratch Resistance and Deformation Behaviour of Graded Cr-CrN-Cr(1-x)AlxN Coatings publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2018.03.187 – volume: 204 start-page: 1661 year: 2010 ident: ref_45 article-title: High Power Pulsed Magnetron Sputtering: A Review on Scientific and Engineering State of the Art publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2009.11.013 – volume: 491 start-page: 1 year: 2005 ident: ref_56 article-title: Control of Reactive Sputtering Processes publication-title: Thin Solid Films doi: 10.1016/j.tsf.2005.05.022 – volume: 340 start-page: 112 year: 2018 ident: ref_93 article-title: On the Effect of Substrate Oscillation on CrN Coatings Deposited by HiPIMS and DcMS publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2018.02.028 – volume: 43 start-page: 275204 year: 2010 ident: ref_103 article-title: Distance-Dependent Plasma Composition and Ion Energy in High Power Impulse Magnetron Sputtering publication-title: J. Phys. Appl. Phys. doi: 10.1088/0022-3727/43/27/275204 – volume: 46 start-page: 18373 year: 2020 ident: ref_36 article-title: Physical Vapor Deposition Technology for Coated Cutting Tools: A Review publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2020.04.168 – volume: 390 start-page: 497 year: 2016 ident: ref_60 article-title: Mass Spectrometry Analyzes to Highlight Differences between Short and Long HiPIMS Discharges publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2016.08.001 – volume: 349 start-page: 1130 year: 2018 ident: ref_102 article-title: Correlation of HPPMS Plasma and Coating Properties Using Artificial Neural Networks publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2018.06.065 – volume: 196 start-page: 175 year: 2020 ident: ref_155 article-title: He Ion Irradiation Response of a Gradient T91 Steel publication-title: Acta Mater. doi: 10.1016/j.actamat.2020.06.019 – volume: 218 start-page: 117095 year: 2021 ident: ref_4 article-title: Mechanical Properties of CrN-Based Superlattices: Impact of Magnetism publication-title: Acta Mater. doi: 10.1016/j.actamat.2021.117095 – volume: 183 start-page: 301 year: 2004 ident: ref_54 article-title: Fundamentals of Pulsed Plasmas for Materials Processing publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2003.09.049 – ident: ref_37 – volume: 44 start-page: 7723 year: 2018 ident: ref_138 article-title: Wear Behavior of Graded Cr-CrN-Cr(1−x)Al(x)N Coatings Synthesized by Closed-Field Unbalanced Magnetron Sputtering for Advanced Machining Operations publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2018.01.199 – volume: 401 start-page: 126235 year: 2020 ident: ref_15 article-title: Tailoring CrNx Stoichiometry and Functionality by Means of Reactive HiPIMS publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2020.126235 – volume: 64 start-page: 393 year: 2002 ident: ref_85 article-title: Residual Stress and Cracking in Thin PVD Coatings publication-title: Vacuum doi: 10.1016/S0042-207X(01)00327-X – volume: 308 start-page: 98 year: 2016 ident: ref_92 article-title: Evaluation of Stoney Equation for Determining the Internal Stress of DLC Thin Films Using an Optical Profiler publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2016.07.098 – volume: 44 start-page: 8138 year: 2018 ident: ref_137 article-title: Thermal Failure Mechanism of Multilayer Brittle TiN/CrAlN Films publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2018.01.260 – volume: 429 start-page: 127947 year: 2022 ident: ref_162 article-title: Interface Stability and Microstructural Evolution of the (Cr/CrN)24-Coated Zirconium Alloy under Different Thermal Shock Temperatures publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2021.127947 – volume: 27 start-page: 765 year: 2012 ident: ref_57 article-title: Reactive Magnetron Sputtering of Transparent Conductive Oxide Thin Films: Role of Energetic Particle (Ion) Bombardment publication-title: J. Mater. Res. doi: 10.1557/jmr.2011.428 – volume: 100 start-page: 082013 year: 2008 ident: ref_110 article-title: Ionization Mechanism in the High Power Impulse Magnetron Sputtering (HiPIMS) Discharge publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/100/8/082013 – volume: 205 start-page: 118 year: 2010 ident: ref_62 article-title: Microstructure Control of CrNx Films during High Power Impulse Magnetron Sputtering publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2010.06.016 – volume: 23 start-page: 025007 year: 2014 ident: ref_101 article-title: Asymmetric Particle Fluxes from Drifting Ionization Zones in Sputtering Magnetrons publication-title: Plasma Sources Sci. Technol. doi: 10.1088/0963-0252/23/2/025007 – volume: 374 start-page: 774 year: 2019 ident: ref_134 article-title: Structural and Mechanical Properties of Carbon Incorporation in DC/HiPIMS CrAlN Coatings publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2019.06.053 – volume: 10 start-page: 015125 year: 2020 ident: ref_48 article-title: The Superior Properties of CrN Coatings Prepared by High Power Pulsed Reactive Magnetron Sputtering publication-title: AIP Adv. doi: 10.1063/1.5132783 – volume: 508 start-page: 191 year: 2010 ident: ref_128 article-title: A Comparative Study of CrAlN Films Synthesized by Dc and Pulsed Dc Reactive Magnetron Facing Target Sputtering System with Different Pulse Frequencies publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2010.08.042 – volume: 250 start-page: 52 year: 2014 ident: ref_35 article-title: Correlation between Mass-Spectrometer Measurements and Thin Film Characteristics Using DcMS and HiPIMS Discharges publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2014.02.030 – volume: 203 start-page: 3254 year: 2009 ident: ref_24 article-title: High Temperature Tribology of CrN and Multilayered Cr/CrN Coatings publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2009.04.005 – volume: 572 start-page: 224 year: 2014 ident: ref_91 article-title: A Critical Comparison between XRD and FIB Residual Stress Measurement Techniques in Thin Films publication-title: Thin Solid Films doi: 10.1016/j.tsf.2014.09.053 – volume: 351 start-page: 332 year: 2015 ident: ref_7 article-title: Wear and Corrosion Resistance of CrN/TiN Superlattice Coatings Deposited by a Combined Deep Oscillation Magnetron Sputtering and Pulsed Dc Magnetron Sputtering publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2015.05.110 – volume: 195 start-page: 109023 year: 2020 ident: ref_84 article-title: Nanoscale Stress Distributions and Microstructural Changes at Scratch Track Cross-Sections of a Deformed Brittle-Ductile CrN-Cr Bilayer publication-title: Mater. Des. doi: 10.1016/j.matdes.2020.109023 – volume: 377 start-page: 124887 year: 2019 ident: ref_105 article-title: Energy Flux Measurements during Magnetron Sputter Deposition Processes publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2019.08.016 – volume: 24 start-page: 035018 year: 2015 ident: ref_113 article-title: Ionization of Sputtered Ti, Al, and C Coupled with Plasma Characterization in HiPIMS publication-title: Plasma Sources Sci. Technol. doi: 10.1088/0963-0252/24/3/035018 – volume: 48 start-page: 25901 year: 2023 ident: ref_21 article-title: Corrosion Resistance of CrN Film Deposited by High-Power Impulse Magnetron Sputtering on SS304 in a Simulated Environment for Proton Exchange Membrane Fuel Cells publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2023.03.265 – volume: 47 start-page: 1215 year: 2019 ident: ref_107 article-title: Gas Breakdown and Discharge Formation in High-Power Impulse Magnetron Sputtering publication-title: IEEE Trans. Plasma Sci. doi: 10.1109/TPS.2018.2889696 – volume: 123 start-page: 043302 year: 2018 ident: ref_31 article-title: Plasma Studies of a Linear Magnetron Operating in the Range from DC to HiPIMS publication-title: J. Appl. Phys. doi: 10.1063/1.5017857 – volume: 52 start-page: 1269 year: 2005 ident: ref_118 article-title: A Quantitative Study of the Hardness of a Superhard Nanocrystalline Titanium Nitride/Silicon Nitride Coating publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2005.02.024 – volume: 806 start-page: 953 year: 2019 ident: ref_10 article-title: Nanostructured Porous CrN Thin Films by Oblique Angle Magnetron Sputtering for Symmetric Supercapacitors publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2019.07.325 – volume: 204 start-page: 2159 year: 2010 ident: ref_100 article-title: Control of Reactive High Power Impulse Magnetron Sputtering Processes publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2009.11.040 – volume: 30 start-page: 030801 year: 2012 ident: ref_34 article-title: High Power Impulse Magnetron Sputtering Discharge publication-title: J. Vac. Sci. Technol. Vac. Surf. Films doi: 10.1116/1.3691832 – volume: 28 start-page: 783 year: 2010 ident: ref_55 article-title: Deposition Rates of High Power Impulse Magnetron Sputtering: Physics and Economics publication-title: J. Vac. Sci. Technol. Vac. Surf. Films doi: 10.1116/1.3299267 – volume: 30 start-page: 045006 year: 2021 ident: ref_53 article-title: Experimental Verification of Deposition Rate Increase, with Maintained High Ionized Flux Fraction, by Shortening the HiPIMS Pulse publication-title: Plasma Sources Sci. Technol. doi: 10.1088/1361-6595/abec27 – volume: 255 start-page: 43 year: 2014 ident: ref_41 article-title: Enhanced Ionization Sputtering: A Concept for Superior Industrial Coatings publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2013.11.040 – volume: 178 start-page: 508 year: 2020 ident: ref_121 article-title: Micro- and Mesoscale Mechanical Properties of an Ultra-Fine Grained CrFeMnNi High Entropy Alloy Produced by Large Strain Machining publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2019.11.042 – volume: 104 start-page: 227 year: 2016 ident: ref_89 article-title: Fracture Toughness Enhancement of Brittle Nanostructured Materials by Spatial Heterogeneity: A Micromechanical Proof for CrN/Cr and TiN/SiOx Multilayers publication-title: Mater. Des. doi: 10.1016/j.matdes.2016.05.029 – volume: 23 start-page: 330 year: 2005 ident: ref_63 article-title: Target Material Pathways Model for High Power Pulsed Magnetron Sputtering publication-title: J. Vac. Sci. Technol. Vac. Surf. Films doi: 10.1116/1.1865133 – volume: 76–77 start-page: 475 year: 1995 ident: ref_70 article-title: Wear and Friction Properties of Hard PVD Coatings publication-title: Surf. Coat. Technol. doi: 10.1016/0257-8972(95)02498-0 |
| SSID | ssj0000331829 |
| Score | 2.5046444 |
| SecondaryResourceType | review_article |
| Snippet | Chromium Nitride (CrN) coatings have widespread utilization across numerous industrial applications, primarily attributed to their excellent properties. Among... |
| SourceID | pubmedcentral proquest gale crossref |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 6303 |
| SubjectTerms | Atoms & subatomic particles Chromium nitride Coatings Coatings industry Comparative analysis Corrosion resistance Cost analysis Crystals Direct current Efficiency Energy Friction Industrial applications Ions Literature reviews Magnetron sputtering Mechanical properties Microstructure Nitrides Plasma Review Technology application |
| Title | Comparison of CrN Coatings Prepared Using High-Power Impulse Magnetron Sputtering and Direct Current Magnetron Sputtering |
| URI | https://www.proquest.com/docview/2869447280 https://www.proquest.com/docview/2870145180 https://pubmed.ncbi.nlm.nih.gov/PMC10532976 |
| Volume | 16 |
| WOSCitedRecordID | wos001073769400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1996-1944 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331829 issn: 1996-1944 databaseCode: M~E dateStart: 20080101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Materials Science Database customDbUrl: eissn: 1996-1944 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331829 issn: 1996-1944 databaseCode: KB. dateStart: 20080101 isFulltext: true titleUrlDefault: http://search.proquest.com/materialsscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1996-1944 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331829 issn: 1996-1944 databaseCode: BENPR dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1996-1944 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331829 issn: 1996-1944 databaseCode: PIMPY dateStart: 20080101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB7RXQ5w4F2xUFZGICEOYV3Hu7FPqF21okJdRTyk5RT5FahEk2UfSPx7ZhJv-lDFiUukyKPE0ozHn-3x9wG85qnz42B9Ir3HR-AhUS7wRBkhDQIIXjreiE1ks5maz3Uer0evYlnlNic2ibple6a6bUzCI1872jEfCTXRUpK00vvFr4Q0pOisNQpq7ECfiLd4D_r5yWn-rdtz4SlGsNAtS2mKq_3RuWkI49OtZlacl65n5-sVk5emoOP7_7fzD-BehKLsoI2dh3ArVI_g7iWCwsfwZ9rJFLK6ZNPljE1rQ5XSK5YvQ1O9zpqqA0YFI0lOmmvs5HyxwRmXnZrvVaCtdvZ50ehhk52pPGvzLIvcUDfaPYGvx0dfph-SKNaQOERk6yTj2iLaCKUrXZBBCWmNlJqHUmtrvSzR7whvAgaBS10pJsKWRrqJtwohnHbpLvSqugpPge2nLlgV7Nh7K63ItEqtzbT1gvjhxn4Ab7euKlxkMidBjZ8FrmjIrcWFWwfwqrNdtPwdN1q9IY8XNKjxS87EuwnYH6LHKg6yDNddmB3VAPa2Hi7iaF8VFw4dwMuuGccpHb6YKtQbsskaVWSyUVeCqesXMX1fbanOfjSM3_uk34HA8dm___4c7gjEYFTOIvge9NbLTXgBt93v9dlqOYSdbK6G0D88muWf8O3j4bthHCF_AWz8JHg |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLRJw4I1YKGAECHGI6jrejX1AqFqoump3tRJFKqfUr7SVaLLsA9Q_xW9kJq8-VHHrgUsuGTlO8nlmbI-_D-Atj53vBesj6T1eAg-RcoFHyghpMIHgmeOl2EQyHqv9fT1ZgT_NWRgqq2x8YumofeFojXxdqL6WksSUPk1_RqQaRburjYRGBYudcPobp2zzj8PP-H_fCbH1ZW-wHdWqApHD1GERJVxbDIshc5kLMighrZFS85Bpba2XGXYQ43DA3rrYZaIvbGak63urMNfQLsZ2b8CqRLDzDqxOhqPJ93ZVh8c4RoSueFDjWPP1E1NS0seNKlcd-S77_8s1meeC3Na9_-3z3Ie7dTrNNiv8P4CVkD-EO-dIFh_B6aCVWmRFxgazMRsUhqq952wyC2UFPisrJxgVvUQT0o1jw5PpErMGNjKHeaDtAvZ1Wmp6k53JPatiBav5ra60ewzfruXdn0AnL_LwFNhG7IJVwfa8t9KKRKvY2kRbL4jjrue78KEBQ-pqNnYSBfmR4qyMgJOeAacLb1rbacVBcqXVe8JUSo4JW3KmPl-B_SGKr3QzSXDuiB5edWGtwVBae6x5egagLrxub6OvoQ0kk4diSTZJqexMNuoCXNt-EVv5xTv58VHJWr5BGiSY_D7799Nfwa3tvdFuujsc7zyH2wJzSirPEXwNOovZMryAm-7X4ng-e1mPPQYH143nv1F1dKw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLULlwBuxUMAIEOIQbep4N_YBobLtilUhinhIvQW_UirRZNkHqH-NX8dMXn2o4tYDl1wycpzk88zYHn8fwIswsm7ojQuEc3jxoQ-k9WEgNRcaE4gwt2ElNhEnidzfV-ka_GnPwlBZZesTK0ftSktr5AMuR0oIElMa5E1ZRLozeTv7GZCCFO20tnIaNUT2_PFvnL4t3kx38F-_5Hyy-2X8PmgUBgKLacQyiENlMET63ObWCy-5MFoIFfpcKWOcyLGzGJM99txGNucjbnIt7MgZiXmHshG2ewXW4wgnPT1Yf7ebpJ-6FZ4wwvHCVc2JGkUqHBzpip4-ahW6mih4Phacr888FfAmN__nT3ULbjRpNtuux8VtWPPFHbh-inzxLhyPOwlGVuZsPE_YuNRUBb5g6dxXlfmsqqhgVAwTpKQnx6ZHsxVmE-yjPig8bSOwz7NK65vsdOFYHUNYw3t1od09-Hop734fekVZ-AfAtiLrjfRm6JwRhsdKRsbEyjhO3HdD14fXLTAy27C0k1jIjwxnawSi7AREfXje2c5qbpILrV4RvjJyWNiS1c25C-wPUX9l23GMc0r0_LIPmy2essaTLbITMPXhWXcbfRBtLOnClyuyiSvFZ7KRZ6Db9YtYzM_eKQ6_V2zmW6RNgknxw38__SlcQxBnH6bJ3iPY4JhqUtUODzeht5yv_GO4an8tDxfzJ80wZPDtsuH8F9UpfUY |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+CrN+Coatings+Prepared+Using+High-Power+Impulse+Magnetron+Sputtering+and+Direct+Current+Magnetron+Sputtering&rft.jtitle=Materials&rft.au=Bai%2C+Heda&rft.au=Li%2C+Jin&rft.au=Gao%2C+Jialai&rft.au=Ni%2C+Jinyang&rft.date=2023-09-20&rft.issn=1996-1944&rft.eissn=1996-1944&rft.volume=16&rft.issue=18&rft_id=info:doi/10.3390%2Fma16186303&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1944&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1944&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1944&client=summon |