Approximate dynamic programming for the military inventory routing problem

The United States Army can benefit from effectively utilizing cargo unmanned aerial vehicles (CUAVs) to perform resupply operations in combat environments to reduce the use of manned (ground and aerial) resupply that incurs risk to personnel. We formulate a Markov decision process (MDP) model of an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of operations research Jg. 288; H. 1; S. 391 - 416
Hauptverfasser: McKenna, Rebekah S., Robbins, Matthew J., Lunday, Brian J., McCormack, Ian M.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.05.2020
Springer
Springer Nature B.V
Schlagworte:
ISSN:0254-5330, 1572-9338
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The United States Army can benefit from effectively utilizing cargo unmanned aerial vehicles (CUAVs) to perform resupply operations in combat environments to reduce the use of manned (ground and aerial) resupply that incurs risk to personnel. We formulate a Markov decision process (MDP) model of an inventory routing problem (IRP) with vehicle loss and direct delivery, which we label the military IRP (MILIRP). The objective of the MILIRP is to determine CUAV dispatching and routing policies for the resupply of geographically dispersed units operating in an austere, combat environment. The large size of the problem instance motivating this research renders dynamic programming algorithms inappropriate, so we utilize approximate dynamic programming (ADP) methods to attain improved policies (relative to a benchmark policy) via an approximate policy iteration algorithmic strategy utilizing least squares temporal differencing for policy evaluation. We examine a representative problem instance motivated by resupply operations experienced by the United States Army in Afghanistan both to demonstrate the applicability of our MDP model and to examine the efficacy of our proposed ADP solution methodology. A designed computational experiment enables the examination of selected problem features and algorithmic features vis-à-vis the quality of solutions attained by our ADP policies. Results indicate that a 4-crew, 8-CUAV unit is able to resupply 57% of the demand from an 800-person organization over a 3-month time horizon when using the ADP policy, a notable improvement over the 18% attained using a benchmark policy. Such results inform the development of procedures governing the design, development, and utilization of CUAV assets for the resupply of dispersed ground combat forces.
AbstractList The United States Army can benefit from effectively utilizing cargo unmanned aerial vehicles (CUAVs) to perform resupply operations in combat environments to reduce the use of manned (ground and aerial) resupply that incurs risk to personnel. We formulate a Markov decision process (MDP) model of an inventory routing problem (IRP) with vehicle loss and direct delivery, which we label the military IRP (MILIRP). The objective of the MILIRP is to determine CUAV dispatching and routing policies for the resupply of geographically dispersed units operating in an austere, combat environment. The large size of the problem instance motivating this research renders dynamic programming algorithms inappropriate, so we utilize approximate dynamic programming (ADP) methods to attain improved policies (relative to a benchmark policy) via an approximate policy iteration algorithmic strategy utilizing least squares temporal differencing for policy evaluation. We examine a representative problem instance motivated by resupply operations experienced by the United States Army in Afghanistan both to demonstrate the applicability of our MDP model and to examine the efficacy of our proposed ADP solution methodology. A designed computational experiment enables the examination of selected problem features and algorithmic features vis-à-vis the quality of solutions attained by our ADP policies. Results indicate that a 4-crew, 8-CUAV unit is able to resupply 57% of the demand from an 800-person organization over a 3-month time horizon when using the ADP policy, a notable improvement over the 18% attained using a benchmark policy. Such results inform the development of procedures governing the design, development, and utilization of CUAV assets for the resupply of dispersed ground combat forces.
Audience Academic
Author McCormack, Ian M.
Lunday, Brian J.
McKenna, Rebekah S.
Robbins, Matthew J.
Author_xml – sequence: 1
  givenname: Rebekah S.
  surname: McKenna
  fullname: McKenna, Rebekah S.
  organization: Department of Operational Sciences, Air Force Institute of Technology
– sequence: 2
  givenname: Matthew J.
  orcidid: 0000-0002-1718-6839
  surname: Robbins
  fullname: Robbins, Matthew J.
  email: matthew.robbins@afit.edu
  organization: Department of Operational Sciences, Air Force Institute of Technology
– sequence: 3
  givenname: Brian J.
  orcidid: 0000-0001-5191-4361
  surname: Lunday
  fullname: Lunday, Brian J.
  organization: Department of Operational Sciences, Air Force Institute of Technology
– sequence: 4
  givenname: Ian M.
  surname: McCormack
  fullname: McCormack, Ian M.
  organization: Department of Operational Sciences, Air Force Institute of Technology
BookMark eNp9kUtr3DAUhUVJIJM0fyArQ7d1qqdlL4fQVwh0066FLF87CrY0leTS-fe50ykkKSUIPbh8RwfOOScnIQYg5IrRa0ap_pAZlbqrKcMtZNPV7RuyYUrzuhOiPSEbypWslRD0jJzn_EApZaxVG3K73e1S_O0XW6Aa9sEu3lU4mZJdFh-maoypKvdQLX72xaZ95cMvCCXiK8W1HBDE-xmWt-R0tHOGy7_3Bfnx6eP3my_13bfPX2-2d7WTXJRaDY71TSuUpiAVHUAPFmwHTTsqx61uLDiroXPONpR3qh_6QcHY9FJKxhwVF-Td8V_0_blCLuYhrimgpeGiY0w2rHtGTXYG48MYS7Ju8dmZbcMZp7rVLVLX_6FwDYBBYMajx_kLwftngn7NPkDGI_vpvuTJrjm_xNsj7lLMOcFoHKZYfAzo42fDqDn0Z479GezP_OnPHKT8H-kuYU1p_7pIHEUZ4TBBesrmFdUjAouvcg
CitedBy_id crossref_primary_10_1007_s10479_025_06738_x
crossref_primary_10_1016_j_trc_2024_104892
crossref_primary_10_1016_j_cor_2025_107164
crossref_primary_10_1016_j_ejor_2022_06_031
crossref_primary_10_1007_s10479_024_06158_3
crossref_primary_10_1016_j_cor_2024_106717
crossref_primary_10_1016_j_jtrangeo_2025_104209
Cites_doi 10.1287/trsc.1030.0041
10.1287/ijoc.1090.0351
10.1016/j.ejor.2016.11.023
10.1016/j.ejor.2016.04.017
10.1287/trsc.36.1.94.574
10.1002/9781118029176
10.1057/jors.2010.19
10.1287/trsc.2013.0472
10.1007/s11768-011-1005-3
10.1007/BF02430363
10.1007/BFb0009019
10.1109/CDC.1997.652501
ContentType Journal Article
Copyright This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply. 2019
COPYRIGHT 2020 Springer
This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply. 2019.
Copyright_xml – notice: This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply. 2019
– notice: COPYRIGHT 2020 Springer
– notice: This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply. 2019.
DBID AAYXX
CITATION
N95
3V.
7TA
7TB
7WY
7WZ
7XB
87Z
88I
8AL
8AO
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FR3
FRNLG
F~G
GNUQQ
HCIFZ
JG9
JQ2
K60
K6~
K7-
KR7
L.-
L6V
M0C
M0N
M2P
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1007/s10479-019-03469-8
DatabaseName CrossRef
Business Insights Essentials
ProQuest Central (Corporate)
Materials Business File
Mechanical & Transportation Engineering Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
Civil Engineering Abstracts
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ABI/INFORM Global
Computing Database
Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
Materials Research Database
ProQuest Business Collection (Alumni Edition)
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
Materials Business File
ProQuest One Applied & Life Sciences
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
ABI/INFORM Complete (Alumni Edition)
Civil Engineering Abstracts
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList

Materials Research Database
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Business
EISSN 1572-9338
EndPage 416
ExternalDocumentID A621207878
10_1007_s10479_019_03469_8
GeographicLocations United States
United States--US
GeographicLocations_xml – name: United States
– name: United States--US
GroupedDBID -4X
-57
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
23M
28-
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
7WY
88I
8AO
8FE
8FG
8FL
8TC
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHQJS
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYQZM
AZFZN
AZQEC
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EBLON
EBO
EBS
EBU
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAO
IEA
IHE
IJ-
IKXTQ
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M0N
M2P
M4Y
M7S
MA-
N2Q
N95
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9M
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
QWB
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZD
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SBE
SCF
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z88
Z8N
Z8U
Z92
ZL0
ZMTXR
ZYFGU
~8M
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
ICD
PHGZM
PHGZT
PQGLB
7TA
7TB
7XB
8AL
8FD
8FK
FR3
JG9
JQ2
KR7
L.-
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c423t-5dc1b683570e450de7daea9e68f5c2a76aeca7e9cca60295bdbd5ef6b44411c03
IEDL.DBID RSV
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000499965600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0254-5330
IngestDate Wed Nov 05 14:51:00 EST 2025
Sat Nov 29 13:14:50 EST 2025
Sat Nov 29 10:25:03 EST 2025
Sat Nov 29 08:24:17 EST 2025
Sat Nov 29 02:36:40 EST 2025
Tue Nov 18 22:31:40 EST 2025
Fri Feb 21 02:36:55 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Approximate dynamic programming
Inventory routing problem
Least squares temporal differences
Markov decision processes
Military
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c423t-5dc1b683570e450de7daea9e68f5c2a76aeca7e9cca60295bdbd5ef6b44411c03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1718-6839
0000-0001-5191-4361
PQID 2391146190
PQPubID 25585
PageCount 26
ParticipantIDs proquest_journals_2391146190
gale_infotracmisc_A621207878
gale_infotracacademiconefile_A621207878
gale_businessinsightsgauss_A621207878
crossref_citationtrail_10_1007_s10479_019_03469_8
crossref_primary_10_1007_s10479_019_03469_8
springer_journals_10_1007_s10479_019_03469_8
PublicationCentury 2000
PublicationDate 20200500
2020-05-00
20200501
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 5
  year: 2020
  text: 20200500
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Annals of operations research
PublicationTitleAbbrev Ann Oper Res
PublicationYear 2020
Publisher Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
References Coelho, Cordeau, Laporte (CR6) 2012; 48
Kleywegt, Nori, Savelsbergh (CR13) 2002; 36
Barr, Golden, Kelly, Resende, Stewart, William (CR1) 1995; 1
CR19
CR18
CR17
Lagoudakis, Parr (CR15) 2003; 4
CR16
Rettke, Robbins, Lunday (CR24) 2016; 254
Kleywegt, Nori, Savelsbergh (CR14) 2004; 38
CR12
CR11
CR10
Powell (CR22) 2011
Söderström, Stoica (CR26) 1983
Davis, Robbins, Lunday (CR7) 2017; 259
Bertsekas (CR4) 2017
CR8
Mu, Fu, Lysgaard, Eglese (CR21) 2010; 62
CR28
Bertsekas (CR3) 2012
CR9
CR27
Bertsekas (CR2) 2011; 9
CR20
Bradtke, Barto (CR5) 1996; 22
Powell (CR23) 2012; 13
Ruszczynski (CR25) 2010; 22
3469_CR16
3469_CR11
3469_CR12
3469_CR10
DP Bertsekas (3469_CR4) 2017
WB Powell (3469_CR23) 2012; 13
AJ Kleywegt (3469_CR13) 2002; 36
A Ruszczynski (3469_CR25) 2010; 22
AJ Rettke (3469_CR24) 2016; 254
MT Davis (3469_CR7) 2017; 259
3469_CR9
3469_CR8
3469_CR19
3469_CR17
LC Coelho (3469_CR6) 2012; 48
3469_CR18
MG Lagoudakis (3469_CR15) 2003; 4
3469_CR27
TD Söderström (3469_CR26) 1983
DP Bertsekas (3469_CR2) 2011; 9
3469_CR20
WB Powell (3469_CR22) 2011
DP Bertsekas (3469_CR3) 2012
S Mu (3469_CR21) 2010; 62
SJ Bradtke (3469_CR5) 1996; 22
AJ Kleywegt (3469_CR14) 2004; 38
RS Barr (3469_CR1) 1995; 1
3469_CR28
References_xml – ident: CR18
– volume: 38
  start-page: 42
  issue: 1
  year: 2004
  end-page: 70
  ident: CR14
  article-title: Dynamic programming approximations for a stochastic inventory routing problem
  publication-title: Transportation Science
  doi: 10.1287/trsc.1030.0041
– volume: 4
  start-page: 1107
  year: 2003
  end-page: 1149
  ident: CR15
  article-title: Least-squares policy iteration
  publication-title: The Journal of Machine Learning Research
– ident: CR16
– ident: CR12
– volume: 22
  start-page: 20
  issue: 1
  year: 2010
  end-page: 22
  ident: CR25
  article-title: Commentary-post-decision states and separable approximations are powerful tools of approximate dynamic programming
  publication-title: INFORMS Journal on Computing
  doi: 10.1287/ijoc.1090.0351
– volume: 259
  start-page: 873
  issue: 3
  year: 2017
  end-page: 886
  ident: CR7
  article-title: Approximate dynamic programming for missile defense interceptor fire control
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2016.11.023
– ident: CR10
– volume: 254
  start-page: 824
  issue: 3
  year: 2016
  end-page: 839
  ident: CR24
  article-title: Approximate dynamic programming for the dispatch of military medical evacuation assets
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2016.04.017
– ident: CR8
– ident: CR27
– volume: 36
  start-page: 94
  issue: 1
  year: 2002
  ident: CR13
  article-title: The stochastic inventory routing problem with direct deliveries
  publication-title: Transportation Science
  doi: 10.1287/trsc.36.1.94.574
– year: 2012
  ident: CR3
  publication-title: Dynamic programming and optimal control
– ident: CR19
– volume: 22
  start-page: 33
  issue: 1–3
  year: 1996
  end-page: 57
  ident: CR5
  article-title: Linear least-squares algorithms for temporal difference learning
  publication-title: Machine Learning
– year: 2011
  ident: CR22
  publication-title: Approximate dynamic programming: solving the curses of dimensionality
  doi: 10.1002/9781118029176
– ident: CR17
– volume: 62
  start-page: 742
  year: 2010
  end-page: 749
  ident: CR21
  article-title: Disruption management of the vehicle routing problem with vehicle breakdown
  publication-title: Journal of the Operational Research Society
  doi: 10.1057/jors.2010.19
– year: 2017
  ident: CR4
  publication-title: Dynamic programming and optimal control
– ident: CR11
– volume: 48
  start-page: 1
  issue: 1
  year: 2012
  end-page: 19
  ident: CR6
  article-title: Thirty years of inventory routing
  publication-title: Transportation Science
  doi: 10.1287/trsc.2013.0472
– ident: CR9
– volume: 9
  start-page: 310
  issue: 3
  year: 2011
  end-page: 335
  ident: CR2
  article-title: Approximate policy iteration: A survey and some new methods
  publication-title: Journal of Control Theory and Applications
  doi: 10.1007/s11768-011-1005-3
– volume: 1
  start-page: 9
  issue: 1
  year: 1995
  end-page: 32
  ident: CR1
  article-title: Designing and reporting on computational experiments with heuristic methods
  publication-title: Journal of Heuristics
  doi: 10.1007/BF02430363
– volume: 13
  start-page: 1
  issue: 2
  year: 2012
  end-page: 38
  ident: CR23
  article-title: Perspectives of approximate dynamic programming
  publication-title: Annals of Operations Research
– ident: CR28
– year: 1983
  ident: CR26
  publication-title: Instrumental variable methods for system identification
  doi: 10.1007/BFb0009019
– ident: CR20
– ident: 3469_CR19
– ident: 3469_CR9
– volume: 36
  start-page: 94
  issue: 1
  year: 2002
  ident: 3469_CR13
  publication-title: Transportation Science
  doi: 10.1287/trsc.36.1.94.574
– ident: 3469_CR17
– volume: 259
  start-page: 873
  issue: 3
  year: 2017
  ident: 3469_CR7
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2016.11.023
– volume: 254
  start-page: 824
  issue: 3
  year: 2016
  ident: 3469_CR24
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2016.04.017
– volume: 4
  start-page: 1107
  year: 2003
  ident: 3469_CR15
  publication-title: The Journal of Machine Learning Research
– ident: 3469_CR10
– ident: 3469_CR27
  doi: 10.1109/CDC.1997.652501
– volume: 13
  start-page: 1
  issue: 2
  year: 2012
  ident: 3469_CR23
  publication-title: Annals of Operations Research
– volume: 1
  start-page: 9
  issue: 1
  year: 1995
  ident: 3469_CR1
  publication-title: Journal of Heuristics
  doi: 10.1007/BF02430363
– volume: 38
  start-page: 42
  issue: 1
  year: 2004
  ident: 3469_CR14
  publication-title: Transportation Science
  doi: 10.1287/trsc.1030.0041
– volume-title: Approximate dynamic programming: solving the curses of dimensionality
  year: 2011
  ident: 3469_CR22
  doi: 10.1002/9781118029176
– volume-title: Instrumental variable methods for system identification
  year: 1983
  ident: 3469_CR26
  doi: 10.1007/BFb0009019
– volume: 62
  start-page: 742
  year: 2010
  ident: 3469_CR21
  publication-title: Journal of the Operational Research Society
  doi: 10.1057/jors.2010.19
– ident: 3469_CR20
– ident: 3469_CR16
– ident: 3469_CR8
– ident: 3469_CR18
– volume-title: Dynamic programming and optimal control
  year: 2012
  ident: 3469_CR3
– ident: 3469_CR12
– volume: 9
  start-page: 310
  issue: 3
  year: 2011
  ident: 3469_CR2
  publication-title: Journal of Control Theory and Applications
  doi: 10.1007/s11768-011-1005-3
– volume: 22
  start-page: 20
  issue: 1
  year: 2010
  ident: 3469_CR25
  publication-title: INFORMS Journal on Computing
  doi: 10.1287/ijoc.1090.0351
– volume: 22
  start-page: 33
  issue: 1–3
  year: 1996
  ident: 3469_CR5
  publication-title: Machine Learning
– ident: 3469_CR11
– ident: 3469_CR28
– volume-title: Dynamic programming and optimal control
  year: 2017
  ident: 3469_CR4
– volume: 48
  start-page: 1
  issue: 1
  year: 2012
  ident: 3469_CR6
  publication-title: Transportation Science
  doi: 10.1287/trsc.2013.0472
SSID ssj0001185
Score 2.3435051
Snippet The United States Army can benefit from effectively utilizing cargo unmanned aerial vehicles (CUAVs) to perform resupply operations in combat environments to...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 391
SubjectTerms Algorithms
Approximation
Approximation theory
Benchmarks
Business and Management
Combinatorics
Dispersion
Dynamic programming
Inventory control
Iterative methods
Management
Markov processes
Methods
Military
Military supplies
Operations research
Operations Research/Decision Theory
Original Research
Policies
Route planning
Theory of Computation
Unmanned aerial vehicles
SummonAdditionalLinks – databaseName: ABI/INFORM Collection
  dbid: 7WY
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1BT9swFH5iBU3ssI5uiG4w-TC0A7No3DiOT1M1gdAOaAfQ2MlybBdVGi00LWL_fu-5Dl2Z4MKhUaW8RI7e83tfnM_vA_gk86HQldBcOBUlzDy33mkuSxtKORQi9KsoNqFOT8uLC_0jLbjViVbZ5MSYqP3E0Rr5oehr2kCL9evr9Q0n1Sj6upokNF7AOhZqSQoG6uev-0yM4DlSGPEliBOLMm2aSVvnckVMIfz18RWRlyuF6WF6_u87aSw_x-3nDvwNvE7Akw0WkbIFa2HcgZcN770D7UbfgaXp3oFX_zQrfAvfB9R-_G6EEDcwvxCyZ4nedYUWDOEvQzjJrmLj7-kfNoqE9gn-m07mRK9mSb7mHZwfH519O-FJiYE7hFszLr3LqgLBmuqFXPZ8UN4Gq0NRDqUTVhU2OKuCxnAoekLLyldehmFR5Yi2Mtfrb0NrPBmHHWBSBJ8VWruKwIt3paqojAblCmd9nnUha9xgXGpTTmoZv82ywTK5zqDrTHSdKbtwcH_N9aJJx5PW--Rdk1Q-8VDTOkh9aed1bQYFFnPETQrtPkc7muk4AmfThgV8DuqZtWK5u2KJM9Stnm4iw6QMUZtlWHThSxNby9OPD__903f7AJuClgQiJ3MXWrPpPOzBhrudjerpxzg__gJZOBVZ
  priority: 102
  providerName: ProQuest
Title Approximate dynamic programming for the military inventory routing problem
URI https://link.springer.com/article/10.1007/s10479-019-03469-8
https://www.proquest.com/docview/2391146190
Volume 288
WOSCitedRecordID wos000499965600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1572-9338
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001185
  issn: 0254-5330
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-xDaHxsEFhomxUfgDxAJYSN47jxzJtQiCqivExeLEc20WVtnZqWgT_PXeus618SfCQUyJfIsefP9u_uwN4LIux0LXQXDgVQ5h5br3TXFY2VHIsROjXMdiEGg6r01M9SkZhTct2b48k40h9zditUMTtwauPizpebcCWJG8ztEY_-XA5_iJkjsRFXPpw4k4mU5nff2NtOvp5UP7ldDROOse7_5fdO7CTQCYbrFrFXbgRph241XLcO7DbxnJgqWt34PY1x4T34NWAXI1_myCcDcyvgtazROU6Rw2GUJchdGTn0cn3_DubRPL6DO_msyVRqVkKVXMf3h8fvTt8yVPUBe4QWi249C6vSwRmKguFzHxQ3garQ1mNpRNWlTY4q4LGqi8zoWXtay_DuKwLRFa5y_p7sDmdTcMDYFIEn5dau5qAineVqmnKDMqVzvoi70LeFr5xySU5RcY4M1fOlKkUDZaiiaVoqi48u3znYuWQ46_aT6hOTYroiaKhPY_mi102jRmUOHEjRlKo9zTqUa_GHDibjBPwP8g_1prmwZom9ka3nty2HpNGg8aIvibjb8ReXXjetpar5D9n_-G_qe_DtqDtgMjHPIDNxXwZHsFN93UxaeY92FAfP_Vg68XRcPQWn14rjvJNdkhSjEiqE5Qj-bkXe9QP6-gSrA
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Pb9MwFH4aAzE4MChDFAb4wMQBLBrnh-MDQhUwbXRUHIa0m-fYLqpE29G0QP8p_kbec52VgthtBw6JIuUlipPn58_O994H8DTPBkJVQnFhZZAwc9w4q3heGl_mAyF8WgWxCdnvlycn6uMG_GxyYYhW2cTEEKjdxNIa-UuRKkqgxfHr9dlXTqpR9He1kdBYukXPL77jlK1-dfgWv--eEPvvjt8c8KgqwC1ChxnPnU2qAoGH7Pgs7zgvnfFG-aIc5FYYWRhvjfQKm1Z0hMorV7ncD4oqQ-SQ2E6K970CV7O0LKhH9SQ_j_wI1gNlEiddnFibMUknpuplkphJuKU4JeXl2kD453Dw13_ZMNztb_9vL-o23IrAmnWXPeEObPhxC643vP4WbDf6FSyGsxbc_K0Y411436Xy6j-GCOE9c4uxGQ0ti_S1EVowhPcM4TIbhcLm0wUbBsL-BI-mkznRx1mU59mBT5fS1HuwOZ6M_X1gufAuKZSyFYEzZ0tZEUzw0hbWuCxpQ9J8dm1jGXZSA_miVwWkyVU0uooOrqLLNjw_v-ZsWYTkQus98iYdVUxxV9M6T_3ZzOtadwsEK4gLJdo9C3YUyfAJrIkJGdgOqgm2Zrm7ZokRyK6fbjxRxwhY65UbtuFF48ur0_9-_AcX3-0JbB0cfzjSR4f93kO4IWj5I_BPd2FzNp37R3DNfpsN6-nj0DcZnF62j_8CfEF01g
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Bb9MwFH4aG5q2A4PCRGGAD0wcwFrjxnF8QKiwVYyhqkIg7WYc25kqre1o2kH_Gr-OZ9dZKYjdduDQqFJeIrv98t5n53vvATznaclkwSRlRoQWZpZqayTluXY5Lxlz7SI0mxC9Xn56Kvtr8LPOhfGyytonBkdtx8bvkR-wtvQJtBi_Dsooi-gfdt9cfKO-g5R_01q301hA5MTNv-PyrXp9fIj_9T5j3aPP797T2GGAGqQRU8qtSYoMSYhouZS3rBNWOy1dlpfcMC0y7YwWTuI0sxaTvLCF5a7MihRZRGJabbzvLdgQODZc-G28Per1P13FAaTuQUCJSzDqNZwxZScm7qXC65Tw08YFKs1XwuKfweGvt7Qh-HV3_uef7S7ciZSbdBbPyD1Yc6MGbNaK_wbs1J0tSHR0Ddj-rUzjffjQ8YXXfwyQ3Dti5yM9HBgShW1DtCBI_AkSaTIMJc8nczIIUv4xfpuMZ15YTmLjngfw5Uamugvro_HIPQTCmbNJJqUpPG2zJheFJxBOmMxomyZNSGoIKBMLtPs-IedqWVraw0YhbFSAjcqb8PLqmotFeZJrrfc9slTsb4qHyu8AVWd6VlWqkyGNQcYo0O5FsPM-DkdgdEzVwHn4amErlnsrluibzOrpGpUq-sZKLSHZhFc1rpen_z38R9ff7RlsIrTVx-PeyWPYYn5fJAhT92B9Opm5J3DbXE4H1eRpfFAJfL1pkP8C6cB_KA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Approximate+dynamic+programming+for+the+military+inventory+routing+problem&rft.jtitle=Annals+of+operations+research&rft.au=McKenna%2C+Rebekah+S&rft.au=Robbins%2C+Matthew+J&rft.au=Lunday%2C+Brian+J&rft.au=McCormack%2C+Ian+M&rft.date=2020-05-01&rft.pub=Springer&rft.issn=0254-5330&rft.volume=288&rft.issue=1&rft.spage=391&rft_id=info:doi/10.1007%2Fs10479-019-03469-8&rft.externalDocID=A621207878
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0254-5330&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0254-5330&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0254-5330&client=summon