n-channel entropy-constrained multiple-description lattice vector quantization

In this paper, we derive analytical expressions for the central and side quantizers which, under high-resolution assumptions, minimize the expected distortion of a symmetric multiple-description lattice vector quantization (MD-LVQ) system subject to entropy constraints on the side descriptions for g...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on information theory Vol. 52; no. 5; pp. 1956 - 1973
Main Authors: Ostergaard, J., Jensen, J., Heusdens, R.
Format: Journal Article
Language:English
Published: New York, NY IEEE 01.05.2006
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0018-9448, 1557-9654
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, we derive analytical expressions for the central and side quantizers which, under high-resolution assumptions, minimize the expected distortion of a symmetric multiple-description lattice vector quantization (MD-LVQ) system subject to entropy constraints on the side descriptions for given packet-loss probabilities. We consider a special case of the general n-channel symmetric multiple-description problem where only a single parameter controls the redundancy tradeoffs between the central and the side distortions. Previous work on two-channel MD-LVQ showed that the distortions of the side quantizers can be expressed through the normalized second moment of a sphere. We show here that this is also the case for three-channel MD-LVQ. Furthermore, we conjecture that this is true for the general n-channel MD-LVQ. For given source, target rate, and packet-loss probabilities we find the optimal number of descriptions and construct the MD-LVQ system that minimizes the expected distortion. We verify theoretical expressions by numerical simulations and show in a practical setup that significant performance improvements can be achieved over state-of-the-art two-channel MD-LVQ by using three-channel MD-LVQ.
Bibliography:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2006.872847