Volatility in the stock market: ANN versus parametric models
Forecasting and adequately measuring equity returns volatility is crucial for portfolio selection and trading strategies. Implied volatility is often considered to be informationally superior to the realized volatility. When available, implied volatility is largely used by practitioners and investor...
Uložené v:
| Vydané v: | Annals of operations research Ročník 299; číslo 1-2; s. 1101 - 1127 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Springer US
01.04.2021
Springer Springer Nature B.V |
| Predmet: | |
| ISSN: | 0254-5330, 1572-9338 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Forecasting and adequately measuring equity returns volatility is crucial for portfolio selection and trading strategies. Implied volatility is often considered to be informationally superior to the realized volatility. When available, implied volatility is largely used by practitioners and investors to forecast future volatility. To this extent we want to identify the best approach to track equity returns implied volatility using parametric and ANN approaches. Using daily equity prices and stock market indices traded on major international Exchanges we estimate time varying volatility using the E-GARCH approach, the Heston model and a novel ANN framework to replicate the corresponding implied volatility. Overall the ANN approach results the most accurate to track the equity returns implied volatility. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0254-5330 1572-9338 |
| DOI: | 10.1007/s10479-019-03374-0 |