BranchAnalysis2D/3D automates morphometry analyses of branching structures
•An open-source algorithm for analysis of branching structures is presented.•Algorithm output matches output from human observers using existing analysis tools.•The algorithm is faster than human observers using other analysis tools.•BranchAnalysis2D/3D automation decreases investigator bias.•Branch...
Saved in:
| Published in: | Journal of neuroscience methods Vol. 294; pp. 1 - 6 |
|---|---|
| Main Authors: | , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Netherlands
Elsevier B.V
15.01.2018
|
| Subjects: | |
| ISSN: | 0165-0270, 1872-678X, 1872-678X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •An open-source algorithm for analysis of branching structures is presented.•Algorithm output matches output from human observers using existing analysis tools.•The algorithm is faster than human observers using other analysis tools.•BranchAnalysis2D/3D automation decreases investigator bias.•BranchAnalysis2D/3D can be used to measure any branching structure.
Morphometric analyses of biological features have become increasingly common in recent years with such analyses being subject to a large degree of observer bias, variability, and time consumption. While commercial software packages exist to perform these analyses, they are expensive, require extensive user training, and are usually dependent on the observer tracing the morphology.
To address these issues, we have developed a broadly applicable, no-cost ImageJ plugin we call ‘BranchAnalysis2D/3D’, to perform morphometric analyses of structures with branching morphologies, such as neuronal dendritic spines, vascular morphology, and primary cilia.
Our BranchAnalysis2D/3D algorithm allows for rapid quantification of the length and thickness of branching morphologies, independent of user tracing, in both 2D and 3D data sets.
We validated the performance of BranchAnalysis2D/3D against pre-existing software packages using trained human observers and images from brain and retina. We found that the BranchAnalysis2D/3D algorithm outputs results similar to available software (i.e., Metamorph, AngioTool, Neurolucida), while allowing faster analysis times and unbiased quantification.
BranchAnalysis2D/3D allows inexperienced observers to output results like a trained observer but more efficiently, thereby increasing the consistency, speed, and reliability of morphometric analyses. |
|---|---|
| AbstractList | Morphometric analyses of biological features have become increasingly common in recent years with such analyses being subject to a large degree of observer bias, variability, and time consumption. While commercial software packages exist to perform these analyses, they are expensive, require extensive user training, and are usually dependent on the observer tracing the morphology.BACKGROUNDMorphometric analyses of biological features have become increasingly common in recent years with such analyses being subject to a large degree of observer bias, variability, and time consumption. While commercial software packages exist to perform these analyses, they are expensive, require extensive user training, and are usually dependent on the observer tracing the morphology.To address these issues, we have developed a broadly applicable, no-cost ImageJ plugin we call 'BranchAnalysis2D/3D', to perform morphometric analyses of structures with branching morphologies, such as neuronal dendritic spines, vascular morphology, and primary cilia.NEW METHODTo address these issues, we have developed a broadly applicable, no-cost ImageJ plugin we call 'BranchAnalysis2D/3D', to perform morphometric analyses of structures with branching morphologies, such as neuronal dendritic spines, vascular morphology, and primary cilia.Our BranchAnalysis2D/3D algorithm allows for rapid quantification of the length and thickness of branching morphologies, independent of user tracing, in both 2D and 3D data sets.RESULTSOur BranchAnalysis2D/3D algorithm allows for rapid quantification of the length and thickness of branching morphologies, independent of user tracing, in both 2D and 3D data sets.We validated the performance of BranchAnalysis2D/3D against pre-existing software packages using trained human observers and images from brain and retina. We found that the BranchAnalysis2D/3D algorithm outputs results similar to available software (i.e., Metamorph, AngioTool, Neurolucida), while allowing faster analysis times and unbiased quantification.COMPARISON WITH EXISTING METHODSWe validated the performance of BranchAnalysis2D/3D against pre-existing software packages using trained human observers and images from brain and retina. We found that the BranchAnalysis2D/3D algorithm outputs results similar to available software (i.e., Metamorph, AngioTool, Neurolucida), while allowing faster analysis times and unbiased quantification.BranchAnalysis2D/3D allows inexperienced observers to output results like a trained observer but more efficiently, thereby increasing the consistency, speed, and reliability of morphometric analyses.CONCLUSIONSBranchAnalysis2D/3D allows inexperienced observers to output results like a trained observer but more efficiently, thereby increasing the consistency, speed, and reliability of morphometric analyses. •An open-source algorithm for analysis of branching structures is presented.•Algorithm output matches output from human observers using existing analysis tools.•The algorithm is faster than human observers using other analysis tools.•BranchAnalysis2D/3D automation decreases investigator bias.•BranchAnalysis2D/3D can be used to measure any branching structure. Morphometric analyses of biological features have become increasingly common in recent years with such analyses being subject to a large degree of observer bias, variability, and time consumption. While commercial software packages exist to perform these analyses, they are expensive, require extensive user training, and are usually dependent on the observer tracing the morphology. To address these issues, we have developed a broadly applicable, no-cost ImageJ plugin we call ‘BranchAnalysis2D/3D’, to perform morphometric analyses of structures with branching morphologies, such as neuronal dendritic spines, vascular morphology, and primary cilia. Our BranchAnalysis2D/3D algorithm allows for rapid quantification of the length and thickness of branching morphologies, independent of user tracing, in both 2D and 3D data sets. We validated the performance of BranchAnalysis2D/3D against pre-existing software packages using trained human observers and images from brain and retina. We found that the BranchAnalysis2D/3D algorithm outputs results similar to available software (i.e., Metamorph, AngioTool, Neurolucida), while allowing faster analysis times and unbiased quantification. BranchAnalysis2D/3D allows inexperienced observers to output results like a trained observer but more efficiently, thereby increasing the consistency, speed, and reliability of morphometric analyses. Morphometric analyses of biological features have become increasingly common in recent years with such analyses being subject to a large degree of observer bias, variability, and time consumption. While commercial software packages exist to perform these analyses, they are expensive, require extensive user training, and are usually dependent on the observer tracing the morphology. To address these issues, we have developed a broadly applicable, no-cost ImageJ plugin we call 'BranchAnalysis2D/3D', to perform morphometric analyses of structures with branching morphologies, such as neuronal dendritic spines, vascular morphology, and primary cilia. Our BranchAnalysis2D/3D algorithm allows for rapid quantification of the length and thickness of branching morphologies, independent of user tracing, in both 2D and 3D data sets. We validated the performance of BranchAnalysis2D/3D against pre-existing software packages using trained human observers and images from brain and retina. We found that the BranchAnalysis2D/3D algorithm outputs results similar to available software (i.e., Metamorph, AngioTool, Neurolucida), while allowing faster analysis times and unbiased quantification. BranchAnalysis2D/3D allows inexperienced observers to output results like a trained observer but more efficiently, thereby increasing the consistency, speed, and reliability of morphometric analyses. |
| Author | Srinivasan, Aditya Sheen, Volney L. Pumiglia, Kevin M. Ferland, Russell J. Muñoz-Estrada, Jesús Bourgeois, Justin R. Nalwalk, Julia W. |
| AuthorAffiliation | 2 Department of Regenerative Cell and Cancer Cell Biology, Albany Medical College, Albany, NY 12208 3 Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115 1 Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY 12208 4 Department of Neurology, Albany Medical College, Albany, NY 12208 |
| AuthorAffiliation_xml | – name: 3 Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115 – name: 1 Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY 12208 – name: 2 Department of Regenerative Cell and Cancer Cell Biology, Albany Medical College, Albany, NY 12208 – name: 4 Department of Neurology, Albany Medical College, Albany, NY 12208 |
| Author_xml | – sequence: 1 givenname: Aditya surname: Srinivasan fullname: Srinivasan, Aditya email: sriniva1@amc.edu organization: Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY 12208, United States – sequence: 2 givenname: Jesús surname: Muñoz-Estrada fullname: Muñoz-Estrada, Jesús organization: Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY 12208, United States – sequence: 3 givenname: Justin R. surname: Bourgeois fullname: Bourgeois, Justin R. organization: Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY 12208, United States – sequence: 4 givenname: Julia W. surname: Nalwalk fullname: Nalwalk, Julia W. organization: Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY 12208, United States – sequence: 5 givenname: Kevin M. surname: Pumiglia fullname: Pumiglia, Kevin M. organization: Department of Regenerative Cell and Cancer Cell Biology, Albany Medical College, Albany, NY 12208, United States – sequence: 6 givenname: Volney L. surname: Sheen fullname: Sheen, Volney L. organization: Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, United States – sequence: 7 givenname: Russell J. surname: Ferland fullname: Ferland, Russell J. email: ferlanr@amc.edu organization: Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY 12208, United States |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29061345$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFUV1LHDEUDWLRVfsXZB77Mms-JskOSKnVVluEvljoW0gyd9wsM8k2yQj775t13WL74tOBe88HnHOCDn3wgNA5wXOCibhYzVcephHyck4xkeU4L3CAZmQhaS3k4tchmhUirzGV-BidpLTCGDctFkfomBYgrOEz9P1z1N4ur7weNsklenPBbio95TDqDKkaQ1wvQ4mJm0o_c8ox9JV5Vjn_WKUcJ5unCOkMvev1kOD9C56in1-_PFzf1fc_br9dX93XtqEs14x3wnJr2oXWGveiN9wY2nErNNVEtky2TScYmL4zFCQjmHdcMMpb03NMMTtFH3e-68mM0FnwOepBraMbddyooJ369-PdUj2GJ8WlFFg0xeDDi0EMvydIWY0uWRgG7SFMSZGWc1wqbEShnr_O-huyL7AQLncEG0NKEXplXdbZhW20GxTBaruXWqn9Xmq71_ZeoMjFf_J9wpvCTzshlKafHESVrANvoXMRbFZdcG9Z_AFHrbZL |
| CitedBy_id | crossref_primary_10_1016_j_jneumeth_2019_108529 crossref_primary_10_3389_fcvm_2023_1147462 |
| Cites_doi | 10.1523/JNEUROSCI.15-01-00001.1995 10.1186/1471-2105-14-93 10.1006/cgip.1994.1042 10.1186/1756-6606-4-38 10.1016/j.brainres.2005.04.088 10.1038/nmeth.2019 10.1002/jemt.20829 10.1046/j.1365-2818.1997.1340694.x 10.1038/nprot.2010.113 10.1371/journal.pone.0027385 10.3791/2794 10.1017/S1431927607074430 10.1038/ncomms5342 |
| ContentType | Journal Article |
| Copyright | 2017 Elsevier B.V. Copyright © 2017 Elsevier B.V. All rights reserved. |
| Copyright_xml | – notice: 2017 Elsevier B.V. – notice: Copyright © 2017 Elsevier B.V. All rights reserved. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
| DOI | 10.1016/j.jneumeth.2017.10.017 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Anatomy & Physiology |
| EISSN | 1872-678X |
| EndPage | 6 |
| ExternalDocumentID | PMC5776064 29061345 10_1016_j_jneumeth_2017_10_017 S0165027017303734 |
| Genre | Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NINDS NIH HHS grantid: R01 NS092062 – fundername: NINDS NIH HHS grantid: R01 NS064283 |
| GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5RE 7-5 71M 8P~ 9JM AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAXLA AAXUO ABCQJ ABFNM ABFRF ABJNI ABMAC ABYKQ ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGUBO AGWIK AGYEJ AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W K-O KOM L7B M2V M41 MO0 MOBAO N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPCBC SSN SSZ T5K ~G- .55 .GJ 29L 53G 5VS 9DU AAQFI AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGHFR AGQPQ AHHHB AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HMQ HVGLF HZ~ R2- SEW SNS WUQ X7M ZGI ~HD CGR CUY CVF ECM EIF NPM SSH 7X8 5PM |
| ID | FETCH-LOGICAL-c423t-35d6c5cb98aaa0f6fb5bb2d5c6a2a1793794d63ebfdb2e73105d563259bf50203 |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000424853500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0165-0270 1872-678X |
| IngestDate | Tue Sep 30 16:46:14 EDT 2025 Mon Sep 29 06:16:34 EDT 2025 Thu Apr 03 07:01:38 EDT 2025 Sat Nov 29 07:25:08 EST 2025 Tue Nov 18 22:30:07 EST 2025 Fri Feb 23 02:46:01 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Branching morphology Morphometry Primary cilia Spines Vasculature |
| Language | English |
| License | Copyright © 2017 Elsevier B.V. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c423t-35d6c5cb98aaa0f6fb5bb2d5c6a2a1793794d63ebfdb2e73105d563259bf50203 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 29061345 |
| PQID | 1955067846 |
| PQPubID | 23479 |
| PageCount | 6 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5776064 proquest_miscellaneous_1955067846 pubmed_primary_29061345 crossref_citationtrail_10_1016_j_jneumeth_2017_10_017 crossref_primary_10_1016_j_jneumeth_2017_10_017 elsevier_sciencedirect_doi_10_1016_j_jneumeth_2017_10_017 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-01-15 |
| PublicationDateYYYYMMDD | 2018-01-15 |
| PublicationDate_xml | – month: 01 year: 2018 text: 2018-01-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationPlace | Netherlands |
| PublicationPlace_xml | – name: Netherlands |
| PublicationTitle | Journal of neuroscience methods |
| PublicationTitleAlternate | J Neurosci Methods |
| PublicationYear | 2018 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Skiena (bib0055) 2008 Dickstein (bib0010) 2001 Srivastava, Woolfrey, Penzes (bib0060) 2011 Pitulescu, Schmidt, Benedito, Adams (bib0045) 2010; 5 Peng, Tang, Xiao, Bria, Zhou, Butler, Zhou, Gonzalez-Bellido, Oh, Chen, Mitra, Tsien, Zeng, Ascoli, Iannello, Hawrylycz, Myers, Long (bib0040) 2014; 5 Dougherty, Kunzelmann (bib0015) 2007; 13 Yang, Gonzalez-Bellido, Peng (bib0070) 2013; 14 Schindelin (bib0050) 2012; 9 Lee, Kashyap, Chu (bib0030) 1994; 56 Papa, Bundman, Greenberger, Segal (bib0035) 1995; 15 Zudaire, Gambardella, Kurcz, Vermeren (bib0075) 2011; 6 Swanger, Yao, Gross, Bassell (bib0065) 2011; 4 Hildebrand, Rüegsegger (bib0025) 1997; 185 Arganda-Carreras, Fernández-González, Muñoz-Barrutia, Ortiz-De-Solorzano (bib0005) 2010; 73 Ferland (bib0020) 2005; 1054 Arganda-Carreras (10.1016/j.jneumeth.2017.10.017_bib0005) 2010; 73 Srivastava (10.1016/j.jneumeth.2017.10.017_bib0060) 2011 Hildebrand (10.1016/j.jneumeth.2017.10.017_bib0025) 1997; 185 Peng (10.1016/j.jneumeth.2017.10.017_bib0040) 2014; 5 Skiena (10.1016/j.jneumeth.2017.10.017_bib0055) 2008 Zudaire (10.1016/j.jneumeth.2017.10.017_bib0075) 2011; 6 Dickstein (10.1016/j.jneumeth.2017.10.017_bib0010) 2001 Pitulescu (10.1016/j.jneumeth.2017.10.017_bib0045) 2010; 5 Yang (10.1016/j.jneumeth.2017.10.017_bib0070) 2013; 14 Papa (10.1016/j.jneumeth.2017.10.017_bib0035) 1995; 15 Lee (10.1016/j.jneumeth.2017.10.017_bib0030) 1994; 56 Dougherty (10.1016/j.jneumeth.2017.10.017_bib0015) 2007; 13 Ferland (10.1016/j.jneumeth.2017.10.017_bib0020) 2005; 1054 Schindelin (10.1016/j.jneumeth.2017.10.017_bib0050) 2012; 9 Swanger (10.1016/j.jneumeth.2017.10.017_bib0065) 2011; 4 |
| References_xml | – volume: 14 start-page: 93 year: 2013 ident: bib0070 article-title: A distance-field based automatic neuron tracing method publication-title: BMC Bioinf. – volume: 15 start-page: 1 year: 1995 end-page: 11 ident: bib0035 article-title: Morphological analysis of dendritic spine development in primary cultures of hippocampal neurons publication-title: J. Neurosci. Off. J. Soc. Neurosci. – volume: 56 start-page: 462 year: 1994 end-page: 478 ident: bib0030 article-title: Building skeleton models via 3-D medial surface axis thinning algorithms publication-title: CVGIP Graph. Models Image Process. – volume: 5 year: 2014 ident: bib0040 article-title: Virtual finger boosts three-dimensional imaging and microsurgery as well as terabyte volume image visualization and analysis publication-title: Nat. Commun. – volume: 13 start-page: 1678 year: 2007 end-page: 1679 ident: bib0015 article-title: Computing local thickness of 3D structures with ImageJ publication-title: Microsc. Microanal. – volume: 6 start-page: e27385 year: 2011 ident: bib0075 article-title: A computational tool for quantitative analysis of vascular networks publication-title: PLoS One – volume: 5 start-page: 1518 year: 2010 end-page: 1534 ident: bib0045 article-title: Inducible gene targeting in the neonatal vasculature and analysis of retinal angiogenesis in mice publication-title: Nat. Protoc. – volume: 1054 start-page: 9 year: 2005 end-page: 21 ident: bib0020 article-title: Characterization of Rho-GDIgamma and Rho-GDIalpha mRNA in the developing and mature brain with an analysis of mice with targeted deletions of Rho-GDIgamma publication-title: Brain Res. – year: 2008 ident: bib0055 article-title: The Algorithm Design Manual – year: 2011 ident: bib0060 article-title: Analysis of dendritic spine morphology in cultured CNS neurons publication-title: J. Vis. Exp. JoVE – volume: 4 start-page: 38 year: 2011 ident: bib0065 article-title: Automated 4D analysis of dendritic spine morphology: applications to stimulus-induced spine remodeling and pharmacological rescue in a disease model publication-title: Mol. Brain – volume: 185 start-page: 67 year: 1997 end-page: 75 ident: bib0025 article-title: A new method for the model-independent assessment of thickness in three-dimensional images publication-title: J. Microsc. – volume: 73 start-page: 1019 year: 2010 end-page: 1029 ident: bib0005 article-title: 3D reconstruction of histological sections: application to mammary gland tissue publication-title: Microsc. Res. Tech. – year: 2001 ident: bib0010 article-title: Automatic dendritic spine quantification from confocal data with Neurolucida 360 publication-title: Current Protocols in Neuroscience – volume: 9 start-page: 676 year: 2012 end-page: 682 ident: bib0050 article-title: Fiji: an open-source platform for biological-image analysis publication-title: Nat. Methods – volume: 15 start-page: 1 year: 1995 ident: 10.1016/j.jneumeth.2017.10.017_bib0035 article-title: Morphological analysis of dendritic spine development in primary cultures of hippocampal neurons publication-title: J. Neurosci. Off. J. Soc. Neurosci. doi: 10.1523/JNEUROSCI.15-01-00001.1995 – volume: 14 start-page: 93 year: 2013 ident: 10.1016/j.jneumeth.2017.10.017_bib0070 article-title: A distance-field based automatic neuron tracing method publication-title: BMC Bioinf. doi: 10.1186/1471-2105-14-93 – volume: 56 start-page: 462 year: 1994 ident: 10.1016/j.jneumeth.2017.10.017_bib0030 article-title: Building skeleton models via 3-D medial surface axis thinning algorithms publication-title: CVGIP Graph. Models Image Process. doi: 10.1006/cgip.1994.1042 – volume: 4 start-page: 38 year: 2011 ident: 10.1016/j.jneumeth.2017.10.017_bib0065 article-title: Automated 4D analysis of dendritic spine morphology: applications to stimulus-induced spine remodeling and pharmacological rescue in a disease model publication-title: Mol. Brain doi: 10.1186/1756-6606-4-38 – volume: 1054 start-page: 9 year: 2005 ident: 10.1016/j.jneumeth.2017.10.017_bib0020 article-title: Characterization of Rho-GDIgamma and Rho-GDIalpha mRNA in the developing and mature brain with an analysis of mice with targeted deletions of Rho-GDIgamma publication-title: Brain Res. doi: 10.1016/j.brainres.2005.04.088 – volume: 9 start-page: 676 year: 2012 ident: 10.1016/j.jneumeth.2017.10.017_bib0050 article-title: Fiji: an open-source platform for biological-image analysis publication-title: Nat. Methods doi: 10.1038/nmeth.2019 – volume: 73 start-page: 1019 year: 2010 ident: 10.1016/j.jneumeth.2017.10.017_bib0005 article-title: 3D reconstruction of histological sections: application to mammary gland tissue publication-title: Microsc. Res. Tech. doi: 10.1002/jemt.20829 – volume: 185 start-page: 67 year: 1997 ident: 10.1016/j.jneumeth.2017.10.017_bib0025 article-title: A new method for the model-independent assessment of thickness in three-dimensional images publication-title: J. Microsc. doi: 10.1046/j.1365-2818.1997.1340694.x – volume: 5 start-page: 1518 year: 2010 ident: 10.1016/j.jneumeth.2017.10.017_bib0045 article-title: Inducible gene targeting in the neonatal vasculature and analysis of retinal angiogenesis in mice publication-title: Nat. Protoc. doi: 10.1038/nprot.2010.113 – volume: 6 start-page: e27385 year: 2011 ident: 10.1016/j.jneumeth.2017.10.017_bib0075 article-title: A computational tool for quantitative analysis of vascular networks publication-title: PLoS One doi: 10.1371/journal.pone.0027385 – year: 2011 ident: 10.1016/j.jneumeth.2017.10.017_bib0060 article-title: Analysis of dendritic spine morphology in cultured CNS neurons publication-title: J. Vis. Exp. JoVE doi: 10.3791/2794 – year: 2008 ident: 10.1016/j.jneumeth.2017.10.017_bib0055 – year: 2001 ident: 10.1016/j.jneumeth.2017.10.017_bib0010 article-title: Automatic dendritic spine quantification from confocal data with Neurolucida 360 – volume: 13 start-page: 1678 year: 2007 ident: 10.1016/j.jneumeth.2017.10.017_bib0015 article-title: Computing local thickness of 3D structures with ImageJ publication-title: Microsc. Microanal. doi: 10.1017/S1431927607074430 – volume: 5 year: 2014 ident: 10.1016/j.jneumeth.2017.10.017_bib0040 article-title: Virtual finger boosts three-dimensional imaging and microsurgery as well as terabyte volume image visualization and analysis publication-title: Nat. Commun. doi: 10.1038/ncomms5342 |
| SSID | ssj0004906 |
| Score | 2.2436733 |
| Snippet | •An open-source algorithm for analysis of branching structures is presented.•Algorithm output matches output from human observers using existing analysis... Morphometric analyses of biological features have become increasingly common in recent years with such analyses being subject to a large degree of observer... |
| SourceID | pubmedcentral proquest pubmed crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1 |
| SubjectTerms | Algorithms Animals Brain - cytology Branching morphology Imaging, Three-Dimensional - methods Mice Microscopy, Confocal - methods Morphometry Neurons - cytology Observer Variation Primary cilia Reproducibility of Results Retina - anatomy & histology Software Spines Vasculature |
| Title | BranchAnalysis2D/3D automates morphometry analyses of branching structures |
| URI | https://dx.doi.org/10.1016/j.jneumeth.2017.10.017 https://www.ncbi.nlm.nih.gov/pubmed/29061345 https://www.proquest.com/docview/1955067846 https://pubmed.ncbi.nlm.nih.gov/PMC5776064 |
| Volume | 294 |
| WOSCitedRecordID | wos000424853500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-678X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004906 issn: 0165-0270 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6DiFeJthglMsUJMRLla652I4fO1oEk5gQDNG3yE4cbaVNpt42-DP8Vc6JkzTtBmMPvKSVE1txvs_28fG5EPI6UAC0K1w79hVqqxiMORAjbCdRnvAjHvgyzpNN8JOTYDgUnxqNX6UvzHLM0zS4uhIX_xVqKAOw0XX2DnBXjUIB_AfQ4Qqww_WfgD_CVBlnZbARtw8tef22XMyzCcqV7UkGnzab6PkUQy_hUyburMrrGfUCxpRdTAvzwuuiay0Ipi5yUFei-Rc8ElrKmVGs9mKQ8uUKVTyXP3Kyn_YAVSyxMdSFmQqLeyuNfYbO2pkJf5DnG0vbnzuV3lqOL-X4e-ndLdvfOnXdhYNmc7bx3izVmQz9w03qkHI-doVfm1Gd2tLMbpzzjfph1BlB57HLaK_HO2iyZ7xC14Nsbyx-lUliae02Cst2QmwHCkP42SLbLqciaJLt3ofB8Hjleivy9K1VR2pO6De_0Z_kn-v7m00z3Zrcc_qQ7BSoWz1DtEekodNdsgf0Aj79sN5YuQlxfjazS-5_LCw19sjxJg0Pvb5VkdCqkdAqSWhliVWR0FqR8DH5-m5w-va9XeTtsCMQzue2R2MW0UiJQErZTViiqFJuTCMmXYkLAqwBMfO0SmLlag4bDBpT5sFGXCUUT8afkGaapfopsbTguhvJIGJ-4nuRo1ymOe8yHSsv4tptEVp-zTAqgtpjbpVx-Hc8W-SwqndhwrrcWkOUYIXFADNCZwg8vLXuqxLdEGZvPJKTqc4Ws9ARlKK86LMW2TdoV--DiRgcz6ctwtd4UD2AkeHX76TnZ3mEeMo5g73Gszv38jl5sBqnL0gToNYvyb1oOT-fTQ_IFh8GB8UQ-A2Xx-Do |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BranchAnalysis2D%2F3D+automates+morphometry+analyses+of+branching+structures&rft.jtitle=Journal+of+neuroscience+methods&rft.au=Srinivasan%2C+Aditya&rft.au=Mu%C3%B1oz-Estrada%2C+Jes%C3%BAs&rft.au=Bourgeois%2C+Justin+R.&rft.au=Nalwalk%2C+Julia+W.&rft.date=2018-01-15&rft.issn=0165-0270&rft.volume=294&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1016%2Fj.jneumeth.2017.10.017&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jneumeth_2017_10_017 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-0270&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-0270&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-0270&client=summon |