BranchAnalysis2D/3D automates morphometry analyses of branching structures

•An open-source algorithm for analysis of branching structures is presented.•Algorithm output matches output from human observers using existing analysis tools.•The algorithm is faster than human observers using other analysis tools.•BranchAnalysis2D/3D automation decreases investigator bias.•Branch...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neuroscience methods Jg. 294; S. 1 - 6
Hauptverfasser: Srinivasan, Aditya, Muñoz-Estrada, Jesús, Bourgeois, Justin R., Nalwalk, Julia W., Pumiglia, Kevin M., Sheen, Volney L., Ferland, Russell J.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Netherlands Elsevier B.V 15.01.2018
Schlagworte:
ISSN:0165-0270, 1872-678X, 1872-678X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •An open-source algorithm for analysis of branching structures is presented.•Algorithm output matches output from human observers using existing analysis tools.•The algorithm is faster than human observers using other analysis tools.•BranchAnalysis2D/3D automation decreases investigator bias.•BranchAnalysis2D/3D can be used to measure any branching structure. Morphometric analyses of biological features have become increasingly common in recent years with such analyses being subject to a large degree of observer bias, variability, and time consumption. While commercial software packages exist to perform these analyses, they are expensive, require extensive user training, and are usually dependent on the observer tracing the morphology. To address these issues, we have developed a broadly applicable, no-cost ImageJ plugin we call ‘BranchAnalysis2D/3D’, to perform morphometric analyses of structures with branching morphologies, such as neuronal dendritic spines, vascular morphology, and primary cilia. Our BranchAnalysis2D/3D algorithm allows for rapid quantification of the length and thickness of branching morphologies, independent of user tracing, in both 2D and 3D data sets. We validated the performance of BranchAnalysis2D/3D against pre-existing software packages using trained human observers and images from brain and retina. We found that the BranchAnalysis2D/3D algorithm outputs results similar to available software (i.e., Metamorph, AngioTool, Neurolucida), while allowing faster analysis times and unbiased quantification. BranchAnalysis2D/3D allows inexperienced observers to output results like a trained observer but more efficiently, thereby increasing the consistency, speed, and reliability of morphometric analyses.
AbstractList Morphometric analyses of biological features have become increasingly common in recent years with such analyses being subject to a large degree of observer bias, variability, and time consumption. While commercial software packages exist to perform these analyses, they are expensive, require extensive user training, and are usually dependent on the observer tracing the morphology.BACKGROUNDMorphometric analyses of biological features have become increasingly common in recent years with such analyses being subject to a large degree of observer bias, variability, and time consumption. While commercial software packages exist to perform these analyses, they are expensive, require extensive user training, and are usually dependent on the observer tracing the morphology.To address these issues, we have developed a broadly applicable, no-cost ImageJ plugin we call 'BranchAnalysis2D/3D', to perform morphometric analyses of structures with branching morphologies, such as neuronal dendritic spines, vascular morphology, and primary cilia.NEW METHODTo address these issues, we have developed a broadly applicable, no-cost ImageJ plugin we call 'BranchAnalysis2D/3D', to perform morphometric analyses of structures with branching morphologies, such as neuronal dendritic spines, vascular morphology, and primary cilia.Our BranchAnalysis2D/3D algorithm allows for rapid quantification of the length and thickness of branching morphologies, independent of user tracing, in both 2D and 3D data sets.RESULTSOur BranchAnalysis2D/3D algorithm allows for rapid quantification of the length and thickness of branching morphologies, independent of user tracing, in both 2D and 3D data sets.We validated the performance of BranchAnalysis2D/3D against pre-existing software packages using trained human observers and images from brain and retina. We found that the BranchAnalysis2D/3D algorithm outputs results similar to available software (i.e., Metamorph, AngioTool, Neurolucida), while allowing faster analysis times and unbiased quantification.COMPARISON WITH EXISTING METHODSWe validated the performance of BranchAnalysis2D/3D against pre-existing software packages using trained human observers and images from brain and retina. We found that the BranchAnalysis2D/3D algorithm outputs results similar to available software (i.e., Metamorph, AngioTool, Neurolucida), while allowing faster analysis times and unbiased quantification.BranchAnalysis2D/3D allows inexperienced observers to output results like a trained observer but more efficiently, thereby increasing the consistency, speed, and reliability of morphometric analyses.CONCLUSIONSBranchAnalysis2D/3D allows inexperienced observers to output results like a trained observer but more efficiently, thereby increasing the consistency, speed, and reliability of morphometric analyses.
•An open-source algorithm for analysis of branching structures is presented.•Algorithm output matches output from human observers using existing analysis tools.•The algorithm is faster than human observers using other analysis tools.•BranchAnalysis2D/3D automation decreases investigator bias.•BranchAnalysis2D/3D can be used to measure any branching structure. Morphometric analyses of biological features have become increasingly common in recent years with such analyses being subject to a large degree of observer bias, variability, and time consumption. While commercial software packages exist to perform these analyses, they are expensive, require extensive user training, and are usually dependent on the observer tracing the morphology. To address these issues, we have developed a broadly applicable, no-cost ImageJ plugin we call ‘BranchAnalysis2D/3D’, to perform morphometric analyses of structures with branching morphologies, such as neuronal dendritic spines, vascular morphology, and primary cilia. Our BranchAnalysis2D/3D algorithm allows for rapid quantification of the length and thickness of branching morphologies, independent of user tracing, in both 2D and 3D data sets. We validated the performance of BranchAnalysis2D/3D against pre-existing software packages using trained human observers and images from brain and retina. We found that the BranchAnalysis2D/3D algorithm outputs results similar to available software (i.e., Metamorph, AngioTool, Neurolucida), while allowing faster analysis times and unbiased quantification. BranchAnalysis2D/3D allows inexperienced observers to output results like a trained observer but more efficiently, thereby increasing the consistency, speed, and reliability of morphometric analyses.
Morphometric analyses of biological features have become increasingly common in recent years with such analyses being subject to a large degree of observer bias, variability, and time consumption. While commercial software packages exist to perform these analyses, they are expensive, require extensive user training, and are usually dependent on the observer tracing the morphology. To address these issues, we have developed a broadly applicable, no-cost ImageJ plugin we call 'BranchAnalysis2D/3D', to perform morphometric analyses of structures with branching morphologies, such as neuronal dendritic spines, vascular morphology, and primary cilia. Our BranchAnalysis2D/3D algorithm allows for rapid quantification of the length and thickness of branching morphologies, independent of user tracing, in both 2D and 3D data sets. We validated the performance of BranchAnalysis2D/3D against pre-existing software packages using trained human observers and images from brain and retina. We found that the BranchAnalysis2D/3D algorithm outputs results similar to available software (i.e., Metamorph, AngioTool, Neurolucida), while allowing faster analysis times and unbiased quantification. BranchAnalysis2D/3D allows inexperienced observers to output results like a trained observer but more efficiently, thereby increasing the consistency, speed, and reliability of morphometric analyses.
Author Srinivasan, Aditya
Sheen, Volney L.
Pumiglia, Kevin M.
Ferland, Russell J.
Muñoz-Estrada, Jesús
Bourgeois, Justin R.
Nalwalk, Julia W.
AuthorAffiliation 2 Department of Regenerative Cell and Cancer Cell Biology, Albany Medical College, Albany, NY 12208
3 Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115
1 Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY 12208
4 Department of Neurology, Albany Medical College, Albany, NY 12208
AuthorAffiliation_xml – name: 3 Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115
– name: 1 Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY 12208
– name: 2 Department of Regenerative Cell and Cancer Cell Biology, Albany Medical College, Albany, NY 12208
– name: 4 Department of Neurology, Albany Medical College, Albany, NY 12208
Author_xml – sequence: 1
  givenname: Aditya
  surname: Srinivasan
  fullname: Srinivasan, Aditya
  email: sriniva1@amc.edu
  organization: Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY 12208, United States
– sequence: 2
  givenname: Jesús
  surname: Muñoz-Estrada
  fullname: Muñoz-Estrada, Jesús
  organization: Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY 12208, United States
– sequence: 3
  givenname: Justin R.
  surname: Bourgeois
  fullname: Bourgeois, Justin R.
  organization: Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY 12208, United States
– sequence: 4
  givenname: Julia W.
  surname: Nalwalk
  fullname: Nalwalk, Julia W.
  organization: Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY 12208, United States
– sequence: 5
  givenname: Kevin M.
  surname: Pumiglia
  fullname: Pumiglia, Kevin M.
  organization: Department of Regenerative Cell and Cancer Cell Biology, Albany Medical College, Albany, NY 12208, United States
– sequence: 6
  givenname: Volney L.
  surname: Sheen
  fullname: Sheen, Volney L.
  organization: Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, United States
– sequence: 7
  givenname: Russell J.
  surname: Ferland
  fullname: Ferland, Russell J.
  email: ferlanr@amc.edu
  organization: Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY 12208, United States
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29061345$$D View this record in MEDLINE/PubMed
BookMark eNqFUV1LHDEUDWLRVfsXZB77Mms-JskOSKnVVluEvljoW0gyd9wsM8k2yQj775t13WL74tOBe88HnHOCDn3wgNA5wXOCibhYzVcephHyck4xkeU4L3CAZmQhaS3k4tchmhUirzGV-BidpLTCGDctFkfomBYgrOEz9P1z1N4ur7weNsklenPBbio95TDqDKkaQ1wvQ4mJm0o_c8ox9JV5Vjn_WKUcJ5unCOkMvev1kOD9C56in1-_PFzf1fc_br9dX93XtqEs14x3wnJr2oXWGveiN9wY2nErNNVEtky2TScYmL4zFCQjmHdcMMpb03NMMTtFH3e-68mM0FnwOepBraMbddyooJ369-PdUj2GJ8WlFFg0xeDDi0EMvydIWY0uWRgG7SFMSZGWc1wqbEShnr_O-huyL7AQLncEG0NKEXplXdbZhW20GxTBaruXWqn9Xmq71_ZeoMjFf_J9wpvCTzshlKafHESVrANvoXMRbFZdcG9Z_AFHrbZL
CitedBy_id crossref_primary_10_1016_j_jneumeth_2019_108529
crossref_primary_10_3389_fcvm_2023_1147462
Cites_doi 10.1523/JNEUROSCI.15-01-00001.1995
10.1186/1471-2105-14-93
10.1006/cgip.1994.1042
10.1186/1756-6606-4-38
10.1016/j.brainres.2005.04.088
10.1038/nmeth.2019
10.1002/jemt.20829
10.1046/j.1365-2818.1997.1340694.x
10.1038/nprot.2010.113
10.1371/journal.pone.0027385
10.3791/2794
10.1017/S1431927607074430
10.1038/ncomms5342
ContentType Journal Article
Copyright 2017 Elsevier B.V.
Copyright © 2017 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2017 Elsevier B.V.
– notice: Copyright © 2017 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.jneumeth.2017.10.017
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1872-678X
EndPage 6
ExternalDocumentID PMC5776064
29061345
10_1016_j_jneumeth_2017_10_017
S0165027017303734
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: R01 NS092062
– fundername: NINDS NIH HHS
  grantid: R01 NS064283
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5RE
7-5
71M
8P~
9JM
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAXLA
AAXUO
ABCQJ
ABFNM
ABFRF
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGUBO
AGWIK
AGYEJ
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KOM
L7B
M2V
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPCBC
SSN
SSZ
T5K
~G-
.55
.GJ
29L
53G
5VS
9DU
AAQFI
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGHFR
AGQPQ
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HMQ
HVGLF
HZ~
R2-
SEW
SNS
WUQ
X7M
ZGI
~HD
CGR
CUY
CVF
ECM
EIF
NPM
SSH
7X8
5PM
ID FETCH-LOGICAL-c423t-35d6c5cb98aaa0f6fb5bb2d5c6a2a1793794d63ebfdb2e73105d563259bf50203
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000424853500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0165-0270
1872-678X
IngestDate Tue Sep 30 16:46:14 EDT 2025
Mon Sep 29 06:16:34 EDT 2025
Thu Apr 03 07:01:38 EDT 2025
Sat Nov 29 07:25:08 EST 2025
Tue Nov 18 22:30:07 EST 2025
Fri Feb 23 02:46:01 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Branching morphology
Morphometry
Primary cilia
Spines
Vasculature
Language English
License Copyright © 2017 Elsevier B.V. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c423t-35d6c5cb98aaa0f6fb5bb2d5c6a2a1793794d63ebfdb2e73105d563259bf50203
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 29061345
PQID 1955067846
PQPubID 23479
PageCount 6
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5776064
proquest_miscellaneous_1955067846
pubmed_primary_29061345
crossref_citationtrail_10_1016_j_jneumeth_2017_10_017
crossref_primary_10_1016_j_jneumeth_2017_10_017
elsevier_sciencedirect_doi_10_1016_j_jneumeth_2017_10_017
PublicationCentury 2000
PublicationDate 2018-01-15
PublicationDateYYYYMMDD 2018-01-15
PublicationDate_xml – month: 01
  year: 2018
  text: 2018-01-15
  day: 15
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Journal of neuroscience methods
PublicationTitleAlternate J Neurosci Methods
PublicationYear 2018
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Skiena (bib0055) 2008
Dickstein (bib0010) 2001
Srivastava, Woolfrey, Penzes (bib0060) 2011
Pitulescu, Schmidt, Benedito, Adams (bib0045) 2010; 5
Peng, Tang, Xiao, Bria, Zhou, Butler, Zhou, Gonzalez-Bellido, Oh, Chen, Mitra, Tsien, Zeng, Ascoli, Iannello, Hawrylycz, Myers, Long (bib0040) 2014; 5
Dougherty, Kunzelmann (bib0015) 2007; 13
Yang, Gonzalez-Bellido, Peng (bib0070) 2013; 14
Schindelin (bib0050) 2012; 9
Lee, Kashyap, Chu (bib0030) 1994; 56
Papa, Bundman, Greenberger, Segal (bib0035) 1995; 15
Zudaire, Gambardella, Kurcz, Vermeren (bib0075) 2011; 6
Swanger, Yao, Gross, Bassell (bib0065) 2011; 4
Hildebrand, Rüegsegger (bib0025) 1997; 185
Arganda-Carreras, Fernández-González, Muñoz-Barrutia, Ortiz-De-Solorzano (bib0005) 2010; 73
Ferland (bib0020) 2005; 1054
Arganda-Carreras (10.1016/j.jneumeth.2017.10.017_bib0005) 2010; 73
Srivastava (10.1016/j.jneumeth.2017.10.017_bib0060) 2011
Hildebrand (10.1016/j.jneumeth.2017.10.017_bib0025) 1997; 185
Peng (10.1016/j.jneumeth.2017.10.017_bib0040) 2014; 5
Skiena (10.1016/j.jneumeth.2017.10.017_bib0055) 2008
Zudaire (10.1016/j.jneumeth.2017.10.017_bib0075) 2011; 6
Dickstein (10.1016/j.jneumeth.2017.10.017_bib0010) 2001
Pitulescu (10.1016/j.jneumeth.2017.10.017_bib0045) 2010; 5
Yang (10.1016/j.jneumeth.2017.10.017_bib0070) 2013; 14
Papa (10.1016/j.jneumeth.2017.10.017_bib0035) 1995; 15
Lee (10.1016/j.jneumeth.2017.10.017_bib0030) 1994; 56
Dougherty (10.1016/j.jneumeth.2017.10.017_bib0015) 2007; 13
Ferland (10.1016/j.jneumeth.2017.10.017_bib0020) 2005; 1054
Schindelin (10.1016/j.jneumeth.2017.10.017_bib0050) 2012; 9
Swanger (10.1016/j.jneumeth.2017.10.017_bib0065) 2011; 4
References_xml – volume: 14
  start-page: 93
  year: 2013
  ident: bib0070
  article-title: A distance-field based automatic neuron tracing method
  publication-title: BMC Bioinf.
– volume: 15
  start-page: 1
  year: 1995
  end-page: 11
  ident: bib0035
  article-title: Morphological analysis of dendritic spine development in primary cultures of hippocampal neurons
  publication-title: J. Neurosci. Off. J. Soc. Neurosci.
– volume: 56
  start-page: 462
  year: 1994
  end-page: 478
  ident: bib0030
  article-title: Building skeleton models via 3-D medial surface axis thinning algorithms
  publication-title: CVGIP Graph. Models Image Process.
– volume: 5
  year: 2014
  ident: bib0040
  article-title: Virtual finger boosts three-dimensional imaging and microsurgery as well as terabyte volume image visualization and analysis
  publication-title: Nat. Commun.
– volume: 13
  start-page: 1678
  year: 2007
  end-page: 1679
  ident: bib0015
  article-title: Computing local thickness of 3D structures with ImageJ
  publication-title: Microsc. Microanal.
– volume: 6
  start-page: e27385
  year: 2011
  ident: bib0075
  article-title: A computational tool for quantitative analysis of vascular networks
  publication-title: PLoS One
– volume: 5
  start-page: 1518
  year: 2010
  end-page: 1534
  ident: bib0045
  article-title: Inducible gene targeting in the neonatal vasculature and analysis of retinal angiogenesis in mice
  publication-title: Nat. Protoc.
– volume: 1054
  start-page: 9
  year: 2005
  end-page: 21
  ident: bib0020
  article-title: Characterization of Rho-GDIgamma and Rho-GDIalpha mRNA in the developing and mature brain with an analysis of mice with targeted deletions of Rho-GDIgamma
  publication-title: Brain Res.
– year: 2008
  ident: bib0055
  article-title: The Algorithm Design Manual
– year: 2011
  ident: bib0060
  article-title: Analysis of dendritic spine morphology in cultured CNS neurons
  publication-title: J. Vis. Exp. JoVE
– volume: 4
  start-page: 38
  year: 2011
  ident: bib0065
  article-title: Automated 4D analysis of dendritic spine morphology: applications to stimulus-induced spine remodeling and pharmacological rescue in a disease model
  publication-title: Mol. Brain
– volume: 185
  start-page: 67
  year: 1997
  end-page: 75
  ident: bib0025
  article-title: A new method for the model-independent assessment of thickness in three-dimensional images
  publication-title: J. Microsc.
– volume: 73
  start-page: 1019
  year: 2010
  end-page: 1029
  ident: bib0005
  article-title: 3D reconstruction of histological sections: application to mammary gland tissue
  publication-title: Microsc. Res. Tech.
– year: 2001
  ident: bib0010
  article-title: Automatic dendritic spine quantification from confocal data with Neurolucida 360
  publication-title: Current Protocols in Neuroscience
– volume: 9
  start-page: 676
  year: 2012
  end-page: 682
  ident: bib0050
  article-title: Fiji: an open-source platform for biological-image analysis
  publication-title: Nat. Methods
– volume: 15
  start-page: 1
  year: 1995
  ident: 10.1016/j.jneumeth.2017.10.017_bib0035
  article-title: Morphological analysis of dendritic spine development in primary cultures of hippocampal neurons
  publication-title: J. Neurosci. Off. J. Soc. Neurosci.
  doi: 10.1523/JNEUROSCI.15-01-00001.1995
– volume: 14
  start-page: 93
  year: 2013
  ident: 10.1016/j.jneumeth.2017.10.017_bib0070
  article-title: A distance-field based automatic neuron tracing method
  publication-title: BMC Bioinf.
  doi: 10.1186/1471-2105-14-93
– volume: 56
  start-page: 462
  year: 1994
  ident: 10.1016/j.jneumeth.2017.10.017_bib0030
  article-title: Building skeleton models via 3-D medial surface axis thinning algorithms
  publication-title: CVGIP Graph. Models Image Process.
  doi: 10.1006/cgip.1994.1042
– volume: 4
  start-page: 38
  year: 2011
  ident: 10.1016/j.jneumeth.2017.10.017_bib0065
  article-title: Automated 4D analysis of dendritic spine morphology: applications to stimulus-induced spine remodeling and pharmacological rescue in a disease model
  publication-title: Mol. Brain
  doi: 10.1186/1756-6606-4-38
– volume: 1054
  start-page: 9
  year: 2005
  ident: 10.1016/j.jneumeth.2017.10.017_bib0020
  article-title: Characterization of Rho-GDIgamma and Rho-GDIalpha mRNA in the developing and mature brain with an analysis of mice with targeted deletions of Rho-GDIgamma
  publication-title: Brain Res.
  doi: 10.1016/j.brainres.2005.04.088
– volume: 9
  start-page: 676
  year: 2012
  ident: 10.1016/j.jneumeth.2017.10.017_bib0050
  article-title: Fiji: an open-source platform for biological-image analysis
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2019
– volume: 73
  start-page: 1019
  year: 2010
  ident: 10.1016/j.jneumeth.2017.10.017_bib0005
  article-title: 3D reconstruction of histological sections: application to mammary gland tissue
  publication-title: Microsc. Res. Tech.
  doi: 10.1002/jemt.20829
– volume: 185
  start-page: 67
  year: 1997
  ident: 10.1016/j.jneumeth.2017.10.017_bib0025
  article-title: A new method for the model-independent assessment of thickness in three-dimensional images
  publication-title: J. Microsc.
  doi: 10.1046/j.1365-2818.1997.1340694.x
– volume: 5
  start-page: 1518
  year: 2010
  ident: 10.1016/j.jneumeth.2017.10.017_bib0045
  article-title: Inducible gene targeting in the neonatal vasculature and analysis of retinal angiogenesis in mice
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2010.113
– volume: 6
  start-page: e27385
  year: 2011
  ident: 10.1016/j.jneumeth.2017.10.017_bib0075
  article-title: A computational tool for quantitative analysis of vascular networks
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0027385
– year: 2011
  ident: 10.1016/j.jneumeth.2017.10.017_bib0060
  article-title: Analysis of dendritic spine morphology in cultured CNS neurons
  publication-title: J. Vis. Exp. JoVE
  doi: 10.3791/2794
– year: 2008
  ident: 10.1016/j.jneumeth.2017.10.017_bib0055
– year: 2001
  ident: 10.1016/j.jneumeth.2017.10.017_bib0010
  article-title: Automatic dendritic spine quantification from confocal data with Neurolucida 360
– volume: 13
  start-page: 1678
  year: 2007
  ident: 10.1016/j.jneumeth.2017.10.017_bib0015
  article-title: Computing local thickness of 3D structures with ImageJ
  publication-title: Microsc. Microanal.
  doi: 10.1017/S1431927607074430
– volume: 5
  year: 2014
  ident: 10.1016/j.jneumeth.2017.10.017_bib0040
  article-title: Virtual finger boosts three-dimensional imaging and microsurgery as well as terabyte volume image visualization and analysis
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5342
SSID ssj0004906
Score 2.2436733
Snippet •An open-source algorithm for analysis of branching structures is presented.•Algorithm output matches output from human observers using existing analysis...
Morphometric analyses of biological features have become increasingly common in recent years with such analyses being subject to a large degree of observer...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Algorithms
Animals
Brain - cytology
Branching morphology
Imaging, Three-Dimensional - methods
Mice
Microscopy, Confocal - methods
Morphometry
Neurons - cytology
Observer Variation
Primary cilia
Reproducibility of Results
Retina - anatomy & histology
Software
Spines
Vasculature
Title BranchAnalysis2D/3D automates morphometry analyses of branching structures
URI https://dx.doi.org/10.1016/j.jneumeth.2017.10.017
https://www.ncbi.nlm.nih.gov/pubmed/29061345
https://www.proquest.com/docview/1955067846
https://pubmed.ncbi.nlm.nih.gov/PMC5776064
Volume 294
WOSCitedRecordID wos000424853500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-678X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004906
  issn: 0165-0270
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELe6DqG9INj46IApSIiXKh2J6zh-7GgRTGJCbIi-RXbsaCttMvWLwd_DH8pdnKRZOzQQ4iWt3Dhx_Tuf7873QchLpan0RBK6UocaFBTmubAtGNBajQmUMjSmSV5sgp-chMOh-Nho_CxjYZZjnqbh1ZW4_K9QQxuAjaGzfwF39VBogO8AOlwBdrj-EfBHWCrjvEw24vfhSbTflot5NkG5sj3JYGqziZlPMfUS3mXzzqq8nzUvYE7ZxbRwL9wUXWtJME1Rg7oSzU_xSGgpZ9aw2tMg5csVqnguf-RlP9wBmli0ddQFToXNvZXFPsNg7cymP8jrjaXtT53Kbi3H3-T4axndLdtfOnXbhYduc66N3rQGtY2gGmvjDDBo3NYT6RjLl0Puu7CvDuuM2xfdGuv1ant4cOPmYO0Uo84IZgnnBh37eAd9-2z46Fri7VMcCI7DAy5IOe1ukW2fMxE2yXbv_WB4vIq_FXkN12rgtUj0m9_2OyFoU8lZ99WtCT9n98m9AnqnZ6ntAWmYdJfsAY0BUX13Xjm5H3F-QLNL7n4o3DX2yPE6LR7SvlNRolOjRKekRCdLnIoSnRUlPiSf3w7O3rxzi-IdbgwS-tylTAcxi5UIpZSvkyBRTClfsziQvsRdATYCHVCjEq18w0HLYJoFFLRxlTA8Hn9EmmmWmifEkYJq0BIMKDdxVwa-wCyaitLExL6SPGgRVs5mFBeZ7bHAyjgqXRhHUYlChChgO3y0yGHV79Lmdrm1hyjBiopVZiXPCGjs1r4vSnQjYOF4LidTky1mkScYQ6GxC__ksUW7Gg9WY_Bol7UIv0YH1Q2YHv76L-nFeZ4mnnEegMKx_w9jfkp2Vsv2GWkC6OY5uRMv5xez6QHZ4sPwoFgMvwDYvuWi
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BranchAnalysis2D%2F3D+automates+morphometry+analyses+of+branching+structures&rft.jtitle=Journal+of+neuroscience+methods&rft.au=Srinivasan%2C+Aditya&rft.au=Mu%C3%B1oz-Estrada%2C+Jes%C3%BAs&rft.au=Bourgeois%2C+Justin+R.&rft.au=Nalwalk%2C+Julia+W.&rft.date=2018-01-15&rft.pub=Elsevier+B.V&rft.issn=0165-0270&rft.eissn=1872-678X&rft.volume=294&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1016%2Fj.jneumeth.2017.10.017&rft.externalDocID=S0165027017303734
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-0270&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-0270&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-0270&client=summon