Vacuum Rabi Splitting and Strong-Coupling Dynamics for Surface-Plasmon Polaritons and Rhodamine 6G Molecules

We report on strong coupling between surface-plasmon polaritons (SPP) and Rhodamine 6G (R6G) molecules, with double vacuum Rabi splitting energies up to 230 and 110 meV. In addition, we demonstrate the emission of all three energy branches of the strongly coupled SPP-exciton hybrid system, revealing...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Physical review letters Ročník 103; číslo 5; s. 053602
Hlavní autoři: Hakala, T. K., Toppari, J. J., Kuzyk, A., Pettersson, M., Tikkanen, H., Kunttu, H., Törmä, P.
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 31.07.2009
ISSN:0031-9007, 1079-7114
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We report on strong coupling between surface-plasmon polaritons (SPP) and Rhodamine 6G (R6G) molecules, with double vacuum Rabi splitting energies up to 230 and 110 meV. In addition, we demonstrate the emission of all three energy branches of the strongly coupled SPP-exciton hybrid system, revealing features of system dynamics that are not visible in conventional reflectometry. Finally, in analogy to tunable-Q microcavities, we show that the Rabi splitting can be controlled by adjusting the interaction time between waveguided SPPs and R6G deposited on top of the waveguide. The interaction time can be controlled with sub-fs precision by adjusting the length of the R6G area with standard lithography methods.
AbstractList We report on strong coupling between surface-plasmon polaritons (SPP) and Rhodamine 6G (R6G) molecules, with double vacuum Rabi splitting energies up to 230 and 110 meV. In addition, we demonstrate the emission of all three energy branches of the strongly coupled SPP-exciton hybrid system, revealing features of system dynamics that are not visible in conventional reflectometry. Finally, in analogy to tunable-Q microcavities, we show that the Rabi splitting can be controlled by adjusting the interaction time between waveguided SPPs and R6G deposited on top of the waveguide. The interaction time can be controlled with sub-fs precision by adjusting the length of the R6G area with standard lithography methods.We report on strong coupling between surface-plasmon polaritons (SPP) and Rhodamine 6G (R6G) molecules, with double vacuum Rabi splitting energies up to 230 and 110 meV. In addition, we demonstrate the emission of all three energy branches of the strongly coupled SPP-exciton hybrid system, revealing features of system dynamics that are not visible in conventional reflectometry. Finally, in analogy to tunable-Q microcavities, we show that the Rabi splitting can be controlled by adjusting the interaction time between waveguided SPPs and R6G deposited on top of the waveguide. The interaction time can be controlled with sub-fs precision by adjusting the length of the R6G area with standard lithography methods.
We report on strong coupling between surface-plasmon polaritons (SPP) and Rhodamine 6G (R6G) molecules, with double vacuum Rabi splitting energies up to 230 and 110 meV. In addition, we demonstrate the emission of all three energy branches of the strongly coupled SPP-exciton hybrid system, revealing features of system dynamics that are not visible in conventional reflectometry. Finally, in analogy to tunable-Q microcavities, we show that the Rabi splitting can be controlled by adjusting the interaction time between waveguided SPPs and R6G deposited on top of the waveguide. The interaction time can be controlled with sub-fs precision by adjusting the length of the R6G area with standard lithography methods.
ArticleNumber 053602
Author Kuzyk, A.
Törmä, P.
Toppari, J. J.
Pettersson, M.
Hakala, T. K.
Tikkanen, H.
Kunttu, H.
Author_xml – sequence: 1
  givenname: T. K.
  surname: Hakala
  fullname: Hakala, T. K.
– sequence: 2
  givenname: J. J.
  surname: Toppari
  fullname: Toppari, J. J.
– sequence: 3
  givenname: A.
  surname: Kuzyk
  fullname: Kuzyk, A.
– sequence: 4
  givenname: M.
  surname: Pettersson
  fullname: Pettersson, M.
– sequence: 5
  givenname: H.
  surname: Tikkanen
  fullname: Tikkanen, H.
– sequence: 6
  givenname: H.
  surname: Kunttu
  fullname: Kunttu, H.
– sequence: 7
  givenname: P.
  surname: Törmä
  fullname: Törmä, P.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19792498$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9PGzEQxa2KqgTar4B86m2D_8UbS1yqQAEpqFHS9mpNvDa48trB9lbKt2dpoEI99DR6T783I807QUcxRYvQGSVTSgk_Xz3sy9r-Xtpap6OekhmXhL1DE0pa1bSUiiM0IYTTRhHSHqOTUn4RQiiT8w_omKpWMaHmExR-ghmGHq9h6_FmF3ytPt5jiB3e1JzifbNIw2iP3uU-Qu9NwS5lvBmyA2ObVYDSp4hXKUD2NcXyJ7t-SN0IR4vlNb5LwZoh2PIRvXcQiv30Mk_Rj69X3xc3zfLb9e3iy7IxgvHaUDmzgoEiRgiqAJilYKmSHRXbOe8cCGVmHZO848YZ1lE3d3JrCHAQLRWOn6LPh727nB4HW6rufTE2BIg2DUXLVraCsXYEz17AYdvbTu-y7yHv9et_RuDiAJicSsnWaeMrVJ9izeCDpkQ_16Hf1KGf9aGOMS7_if-98P_gEyvElB8
CitedBy_id crossref_primary_10_1016_j_optlastec_2023_109476
crossref_primary_10_1002_adma_201304071
crossref_primary_10_1088_1674_1056_ac40fc
crossref_primary_10_1209_0295_5075_ac2454
crossref_primary_10_1002_ange_201107033
crossref_primary_10_1103_PhysRevX_5_041022
crossref_primary_10_1515_nanoph_2025_0036
crossref_primary_10_1021_acs_jpcc_5c01891
crossref_primary_10_1109_JFLEX_2023_3283500
crossref_primary_10_1007_s11082_016_0794_5
crossref_primary_10_3390_s16050642
crossref_primary_10_1016_j_jphotochemrev_2014_10_001
crossref_primary_10_1016_j_molstruc_2012_05_036
crossref_primary_10_1186_1556_276X_7_191
crossref_primary_10_1002_pssb_201800045
crossref_primary_10_1088_1361_648X_aaf8e5
crossref_primary_10_1002_adfm_201801761
crossref_primary_10_1063_1_4998444
crossref_primary_10_1002_adom_201901002
crossref_primary_10_1063_1_4881717
crossref_primary_10_1002_adfm_201601452
crossref_primary_10_1038_ncomms13687
crossref_primary_10_1038_s41467_018_06450_4
crossref_primary_10_1088_1361_6528_ab5dd0
crossref_primary_10_1007_s12596_024_01905_y
crossref_primary_10_1021_acsnano_5c05690
crossref_primary_10_1515_nanoph_2020_0660
crossref_primary_10_1002_adom_201600857
crossref_primary_10_1140_epjd_e2014_50539_x
crossref_primary_10_1038_s41567_019_0436_5
crossref_primary_10_1088_0031_8949_90_2_025502
crossref_primary_10_1002_adom_201600188
crossref_primary_10_1021_acs_jpcc_5c04588
crossref_primary_10_1016_j_physb_2019_05_034
crossref_primary_10_1016_j_snb_2024_135748
crossref_primary_10_1515_nanoph_2018_0188
crossref_primary_10_1002_adma_202510402
crossref_primary_10_1002_cphc_201200734
crossref_primary_10_1515_nanoph_2023_0710
crossref_primary_10_1038_s41598_024_67019_4
crossref_primary_10_1103_PhysRevApplied_10_024011
crossref_primary_10_1002_lpor_201700176
crossref_primary_10_1007_s11468_015_0047_7
crossref_primary_10_1007_s11433_022_2029_9
crossref_primary_10_1038_ncomms6981
crossref_primary_10_1016_j_optcom_2014_06_069
crossref_primary_10_1088_0034_4885_78_1_013901
crossref_primary_10_1515_nanoph_2016_0163
crossref_primary_10_3390_s21165262
crossref_primary_10_1002_ange_201301861
crossref_primary_10_1515_nanoph_2024_0528
crossref_primary_10_1038_nphoton_2012_340
crossref_primary_10_1038_s41598_018_20880_6
crossref_primary_10_1002_smll_201500199
crossref_primary_10_1063_1_3313935
crossref_primary_10_1515_nanoph_2021_0246
crossref_primary_10_1088_1742_6596_400_4_042050
crossref_primary_10_1364_PRJ_375135
crossref_primary_10_1364_JOSAB_35_001475
crossref_primary_10_1002_lpor_201100041
crossref_primary_10_1038_srep03074
crossref_primary_10_1038_s41598_017_08221_5
crossref_primary_10_1515_nanoph_2019_0336
crossref_primary_10_1557_s43577_024_00850_2
crossref_primary_10_3389_fphy_2022_734841
crossref_primary_10_1038_ncomms8334
crossref_primary_10_1039_C2CS35367A
crossref_primary_10_1039_C9NR05044B
crossref_primary_10_1002_lpor_201900419
crossref_primary_10_1016_j_optcom_2015_04_016
crossref_primary_10_1063_1_3619845
crossref_primary_10_1002_anie_201301861
crossref_primary_10_1007_s11082_023_05530_0
crossref_primary_10_1016_j_molstruc_2012_04_012
crossref_primary_10_1039_D4NR03648D
crossref_primary_10_1039_C8SC00171E
crossref_primary_10_1021_ja910239b
crossref_primary_10_1364_JOSAB_30_000700
crossref_primary_10_1002_andp_201500317
crossref_primary_10_1002_cphc_201200914
crossref_primary_10_1557_s43577_024_00779_6
crossref_primary_10_1088_0022_3727_46_6_065302
crossref_primary_10_1016_j_spmi_2018_09_019
crossref_primary_10_1038_nphys3129
crossref_primary_10_1515_nanoph_2025_0129
crossref_primary_10_1186_s40580_023_00383_5
crossref_primary_10_1002_anie_201107033
crossref_primary_10_1038_lsa_2016_80
crossref_primary_10_1103_PhysRevA_107_L061503
crossref_primary_10_1063_1_4980043
crossref_primary_10_1038_s41467_024_46442_1
crossref_primary_10_3390_nano14020148
crossref_primary_10_1063_1_4724327
crossref_primary_10_1002_adom_202300980
crossref_primary_10_1088_0022_3727_47_21_213001
crossref_primary_10_1103_PhysRevB_103_045421
crossref_primary_10_1186_s43074_021_00043_z
crossref_primary_10_1364_OE_566027
crossref_primary_10_3390_electronics3020303
crossref_primary_10_1002_adom_201800275
crossref_primary_10_1039_D1SC05842H
crossref_primary_10_1021_nl1019408
crossref_primary_10_1088_2040_8986_aaadc7
crossref_primary_10_1002_adfm_202100889
crossref_primary_10_3390_app10051774
crossref_primary_10_1021_nl903455z
crossref_primary_10_1038_srep36165
crossref_primary_10_1016_j_coelec_2020_07_005
crossref_primary_10_1515_nanoph_2017_0059
crossref_primary_10_1021_acsanm_5c02896
crossref_primary_10_1002_adom_202500155
crossref_primary_10_1039_C4FD00197D
crossref_primary_10_1515_nanoph_2023_0879
crossref_primary_10_1080_23746149_2020_1749884
crossref_primary_10_3390_opt5010008
crossref_primary_10_1515_nanoph_2020_0118
crossref_primary_10_1515_nanoph_2022_0701
crossref_primary_10_3390_nano12081242
crossref_primary_10_1038_s41467_021_24221_6
crossref_primary_10_1038_s41598_017_03305_8
crossref_primary_10_1134_S0030400X18110085
crossref_primary_10_1134_S0030400X16060060
crossref_primary_10_1016_j_optcom_2025_131903
crossref_primary_10_1038_s41598_018_19382_2
crossref_primary_10_1063_1_3614543
crossref_primary_10_1007_s11468_017_0626_x
crossref_primary_10_1021_acs_jpcc_5c01547
Cites_doi 10.1038/nphys227
10.1038/25692
10.1063/1.1517714
10.1063/1.2695682
10.1103/PhysRevLett.93.036404
10.1103/PhysRevB.67.085311
10.1126/science.288.5471.1620
10.1103/PhysRevLett.69.3314
10.1016/S0009-2614(97)00971-8
10.1088/0268-1242/13/7/003
10.1103/PhysRevLett.97.266808
10.1103/PhysRevLett.101.226806
10.1007/BF00640391
10.1103/PhysRevB.78.045320
10.1038/nature03119
10.1063/1.2987726
10.1021/nl070284m
10.1088/1367-2630/10/6/065017
10.1063/1.443834
10.1016/j.jlumin.2004.08.031
10.1103/PhysRevLett.93.186404
10.1038/nature02969
10.1103/PhysRevB.71.035424
10.1021/nl8024278
10.1364/OE.15.009908
10.1063/1.1506018
10.1103/PhysRevB.24.4843
10.1016/j.orgel.2006.05.005
10.1515/zna-1968-1247
10.1016/j.physrep.2004.11.001
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1103/PhysRevLett.103.053602
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1079-7114
ExternalDocumentID 19792498
10_1103_PhysRevLett_103_053602
Genre Journal Article
GroupedDBID ---
-DZ
-~X
123
186
2-P
29O
3MX
3O-
41~
5VS
6TJ
85S
8NH
8WZ
9M8
A6W
AAYJJ
AAYXX
ABSSX
ABUFD
ACBEA
ACGFO
ACKIV
ACNCT
ADXHL
AECSF
AENEX
AEQTI
AETEA
AFFNX
AFGMR
AGDNE
AJQPL
ALMA_UNASSIGNED_HOLDINGS
APKKM
AUAIK
CITATION
CS3
D0L
DU5
EBS
EJD
ER.
F5P
H~9
MVM
N9A
NEJ
NHB
NPBMV
OHT
OK1
P0-
P2P
RNS
ROL
S7W
SJN
T9H
TN5
UBC
UBE
VOH
WH7
XOL
XSW
YNT
YYP
ZCG
ZPR
ZY4
~02
NPM
7X8
ID FETCH-LOGICAL-c423t-165e42a90c4419aa2e1ae196d14b83dfa49c5d263d3cfc2d1f8f6bc0a3a4714f3
IEDL.DBID 3MX
ISICitedReferencesCount 277
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000268618300032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0031-9007
IngestDate Sun Nov 09 10:36:45 EST 2025
Mon Jul 21 05:56:33 EDT 2025
Sat Nov 29 06:39:01 EST 2025
Tue Nov 18 22:18:31 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License http://link.aps.org/licenses/aps-default-license
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c423t-165e42a90c4419aa2e1ae196d14b83dfa49c5d263d3cfc2d1f8f6bc0a3a4714f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://link.aps.org/pdf/10.1103/PhysRevLett.103.053602
PMID 19792498
PQID 67674227
PQPubID 23479
ParticipantIDs proquest_miscellaneous_67674227
pubmed_primary_19792498
crossref_citationtrail_10_1103_PhysRevLett_103_053602
crossref_primary_10_1103_PhysRevLett_103_053602
PublicationCentury 2000
PublicationDate 2009-07-31
PublicationDateYYYYMMDD 2009-07-31
PublicationDate_xml – month: 07
  year: 2009
  text: 2009-07-31
  day: 31
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Physical review letters
PublicationTitleAlternate Phys Rev Lett
PublicationYear 2009
References PhysRevLett.103.053602Cc25R1
PhysRevLett.103.053602Cc26R1
PhysRevLett.103.053602Cc23R1
PhysRevLett.103.053602Cc24R1
PhysRevLett.103.053602Cc29R1
PhysRevLett.103.053602Cc28R1
PhysRevLett.103.053602Cc21R1
PhysRevLett.103.053602Cc22R1
PhysRevLett.103.053602Cc20R1
PhysRevLett.103.053602Cc1R1
PhysRevLett.103.053602Cc13R1
PhysRevLett.103.053602Cc2R1
PhysRevLett.103.053602Cc12R1
PhysRevLett.103.053602Cc3R1
PhysRevLett.103.053602Cc15R1
PhysRevLett.103.053602Cc4R1
E. Kretschmann (PhysRevLett.103.053602Cc8R1) 1968; 23A
PhysRevLett.103.053602Cc14R1
PhysRevLett.103.053602Cc5R1
PhysRevLett.103.053602Cc17R1
PhysRevLett.103.053602Cc6R1
PhysRevLett.103.053602Cc16R1
PhysRevLett.103.053602Cc7R1
PhysRevLett.103.053602Cc19R1
PhysRevLett.103.053602Cc18R1
PhysRevLett.103.053602Cc32R1
PhysRevLett.103.053602Cc11R1
PhysRevLett.103.053602Cc10R1
PhysRevLett.103.053602Cc31R1
PhysRevLett.103.053602Cc9R1
References_xml – ident: PhysRevLett.103.053602Cc2R1
  doi: 10.1038/nphys227
– ident: PhysRevLett.103.053602Cc3R1
  doi: 10.1038/25692
– ident: PhysRevLett.103.053602Cc18R1
  doi: 10.1063/1.1517714
– ident: PhysRevLett.103.053602Cc21R1
  doi: 10.1063/1.2695682
– ident: PhysRevLett.103.053602Cc5R1
  doi: 10.1103/PhysRevLett.93.036404
– ident: PhysRevLett.103.053602Cc23R1
  doi: 10.1103/PhysRevB.67.085311
– ident: PhysRevLett.103.053602Cc13R1
  doi: 10.1126/science.288.5471.1620
– ident: PhysRevLett.103.053602Cc1R1
  doi: 10.1103/PhysRevLett.69.3314
– ident: PhysRevLett.103.053602Cc29R1
  doi: 10.1016/S0009-2614(97)00971-8
– ident: PhysRevLett.103.053602Cc12R1
  doi: 10.1088/0268-1242/13/7/003
– ident: PhysRevLett.103.053602Cc15R1
  doi: 10.1103/PhysRevLett.97.266808
– ident: PhysRevLett.103.053602Cc20R1
  doi: 10.1103/PhysRevLett.101.226806
– ident: PhysRevLett.103.053602Cc28R1
  doi: 10.1007/BF00640391
– ident: PhysRevLett.103.053602Cc32R1
  doi: 10.1103/PhysRevB.78.045320
– ident: PhysRevLett.103.053602Cc25R1
  doi: 10.1038/nature03119
– ident: PhysRevLett.103.053602Cc11R1
  doi: 10.1063/1.2987726
– ident: PhysRevLett.103.053602Cc16R1
  doi: 10.1021/nl070284m
– ident: PhysRevLett.103.053602Cc22R1
  doi: 10.1088/1367-2630/10/6/065017
– ident: PhysRevLett.103.053602Cc7R1
  doi: 10.1063/1.443834
– ident: PhysRevLett.103.053602Cc31R1
  doi: 10.1016/j.jlumin.2004.08.031
– ident: PhysRevLett.103.053602Cc14R1
  doi: 10.1103/PhysRevLett.93.186404
– ident: PhysRevLett.103.053602Cc24R1
  doi: 10.1038/nature02969
– ident: PhysRevLett.103.053602Cc6R1
  doi: 10.1103/PhysRevB.71.035424
– ident: PhysRevLett.103.053602Cc17R1
  doi: 10.1021/nl8024278
– ident: PhysRevLett.103.053602Cc10R1
  doi: 10.1364/OE.15.009908
– ident: PhysRevLett.103.053602Cc26R1
  doi: 10.1063/1.1506018
– ident: PhysRevLett.103.053602Cc19R1
  doi: 10.1103/PhysRevB.24.4843
– ident: PhysRevLett.103.053602Cc4R1
  doi: 10.1016/j.orgel.2006.05.005
– volume: 23A
  start-page: 2135
  issn: 0372-9516
  year: 1968
  ident: PhysRevLett.103.053602Cc8R1
  publication-title: Z. Naturforsch.
  doi: 10.1515/zna-1968-1247
– ident: PhysRevLett.103.053602Cc9R1
  doi: 10.1016/j.physrep.2004.11.001
SSID ssj0001268
Score 2.4697397
Snippet We report on strong coupling between surface-plasmon polaritons (SPP) and Rhodamine 6G (R6G) molecules, with double vacuum Rabi splitting energies up to 230...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 053602
Title Vacuum Rabi Splitting and Strong-Coupling Dynamics for Surface-Plasmon Polaritons and Rhodamine 6G Molecules
URI https://www.ncbi.nlm.nih.gov/pubmed/19792498
https://www.proquest.com/docview/67674227
Volume 103
WOSCitedRecordID wos000268618300032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABR
  databaseName: American Physical Society Journals
  customDbUrl:
  eissn: 1079-7114
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001268
  issn: 0031-9007
  databaseCode: 3MX
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://journals.aps.org/
  providerName: American Physical Society
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELUqBBIX9qWsPnANJLbj2EfEegFVLaDeIscLVCopapp-P-O4bBIV4hIpkseJxuPxG8-G0IkzkjNLaCSdSCPmDIsUZ2CqOACnNClswYum2UR2fy_6fdlpofh3D34S0zMfCdm1U5_d4jPET0FqeKgeKZhvWUDv-p-qNyE8qF7q4w7ibJYSPH-an6fRHIjZHDXXq___yTW0MoOV-DzIwTpq2XIDLTXhnbraRMMnpev6FXdVMcA9wJ1NtDNWpcE9fxf-HF2Map-b-4wvQ4v6CgOaxb167JS2UQcwNsgr7nhDGHRAWTW03ZeRgcGlxfwG34VGu7baQo_XVw8Xt9Gsz0KkAUxNooSnlhElYw3YSCpFbKIs7EyTsEJQ4xSTOjWEU0O108QkTjhe6FhRBUcbc3QbLZSj0u4iLAVxQtOiSB1hVHEpNYz2ZV45IEOr2yj94HeuZ0XIfS-MYd4YIzHNv3Ey9--Bk2109kn3Fspw_Elx_LGcOewY7wZRpR3VVe5L1DFCsjbaCav8NaPMvDkq9v79tX20HNxM_tL3AC1MxrU9RIt6OhlU46NGSOGZ9cU7pCfmdw
linkProvider American Physical Society
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vacuum+Rabi+splitting+and+strong-coupling+dynamics+for+surface-plasmon+polaritons+and+rhodamine+6G+molecules&rft.jtitle=Physical+review+letters&rft.au=Hakala%2C+T+K&rft.au=Toppari%2C+J+J&rft.au=Kuzyk%2C+A&rft.au=Pettersson%2C+M&rft.date=2009-07-31&rft.issn=0031-9007&rft.volume=103&rft.issue=5&rft.spage=053602&rft_id=info:doi/10.1103%2FPhysRevLett.103.053602&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-9007&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-9007&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-9007&client=summon