Automatic machine learning model for enhanced partition and identification of breast disorders in breast MRI scan

The rapid identification and categorisation of breast cancers using low-contrast MRI images presents a significant challenge due to the disease's prevalence among women of all ages. Nowadays, it is very difficult to classify and generalise models from low-contrast MRI datasets due to the preval...

Full description

Saved in:
Bibliographic Details
Published in:Computer methods in biomechanics and biomedical engineering. Vol. 12; no. 1
Main Authors: Singh, Harendra, Rana, Arun Kumar, Giri, Jayant, Shah, Mohd Asif, Mallik, Saurav, Sathish, T.
Format: Journal Article
Language:English
Published: Taylor & Francis 31.12.2024
Taylor & Francis Group
Subjects:
ISSN:2168-1163, 2168-1171
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The rapid identification and categorisation of breast cancers using low-contrast MRI images presents a significant challenge due to the disease's prevalence among women of all ages. Nowadays, it is very difficult to classify and generalise models from low-contrast MRI datasets due to the prevalence of class imbalance caused by a wide range of symptoms and untrustworthy data sources. Using ensemble learning with optimised k-means helps with these problems; it reduces overfitting and improves reliability by using methods like k-means clustering, frog feap algorithm (FLA), boosting, and bagging to balance datasets and show the complexity of symptoms. In this research, we present a new strategy that makes use of a hybrid optimised K-Means algorithm combined with the FLA, along with thresholding and morphological approaches, and ensemble learning. There are two main stages to our work. In the initial phase, we preprocess low-contrast MRI images and delineate the breast tumour area from the segmented MRI images. Furthermore, we employ Discrete Wavelet Transformation (DWT) to extract the most salient features. In the next step, the retrieved features will be used as input parameters for an ensemble-learned breast tumour classifier. To determine whether a low-contrast breast tumour MRI picture has a benign or malignant tumour after model training, we use a variety of classifiers, such as k-nearest neighbours (KNN), decision trees (DT), gradient boosting (GB), random forests (RF), and artificial neural networks (ANN). Through a voting mechanism that averages the accuracy of all models, our suggested framework achieves a remarkable 98.8% accuracy rate. In addition, proposed model is quite efficient & reliable to detect the kind of breast tumour or cancer with a sensitivity of 98.02% and a specificity of 97.5%.
AbstractList The rapid identification and categorisation of breast cancers using low-contrast MRI images presents a significant challenge due to the disease's prevalence among women of all ages. Nowadays, it is very difficult to classify and generalise models from low-contrast MRI datasets due to the prevalence of class imbalance caused by a wide range of symptoms and untrustworthy data sources. Using ensemble learning with optimised k-means helps with these problems; it reduces overfitting and improves reliability by using methods like k-means clustering, frog feap algorithm (FLA), boosting, and bagging to balance datasets and show the complexity of symptoms. In this research, we present a new strategy that makes use of a hybrid optimised K-Means algorithm combined with the FLA, along with thresholding and morphological approaches, and ensemble learning. There are two main stages to our work. In the initial phase, we preprocess low-contrast MRI images and delineate the breast tumour area from the segmented MRI images. Furthermore, we employ Discrete Wavelet Transformation (DWT) to extract the most salient features. In the next step, the retrieved features will be used as input parameters for an ensemble-learned breast tumour classifier. To determine whether a low-contrast breast tumour MRI picture has a benign or malignant tumour after model training, we use a variety of classifiers, such as k-nearest neighbours (KNN), decision trees (DT), gradient boosting (GB), random forests (RF), and artificial neural networks (ANN). Through a voting mechanism that averages the accuracy of all models, our suggested framework achieves a remarkable 98.8% accuracy rate. In addition, proposed model is quite efficient & reliable to detect the kind of breast tumour or cancer with a sensitivity of 98.02% and a specificity of 97.5%.
Author Shah, Mohd Asif
Rana, Arun Kumar
Sathish, T.
Giri, Jayant
Singh, Harendra
Mallik, Saurav
Author_xml – sequence: 1
  givenname: Harendra
  surname: Singh
  fullname: Singh, Harendra
  organization: G.L. Bajaj Institute of Technology and Management
– sequence: 2
  givenname: Arun Kumar
  surname: Rana
  fullname: Rana, Arun Kumar
  organization: Galgotias College of Engineering of Technology
– sequence: 3
  givenname: Jayant
  surname: Giri
  fullname: Giri, Jayant
  email: jayantpgiri@gmail.com
  organization: Yeshwantrao Chavan College of Engineering
– sequence: 4
  givenname: Mohd Asif
  surname: Shah
  fullname: Shah, Mohd Asif
  email: drmohdasifshah@kdu.edu.et
  organization: Kabridahar University
– sequence: 5
  givenname: Saurav
  surname: Mallik
  fullname: Mallik, Saurav
  organization: Harvard T H Chan School of Public Health
– sequence: 6
  givenname: T.
  surname: Sathish
  fullname: Sathish, T.
  organization: Saveetha School of Engineering
BookMark eNqFkd9KHTEQxkOxoFUfQcgLnNPNn02y9KYirT2gCGKvw-wkq5HdxCYp4tu7e46nF17UucnwDd83GX5fyEFM0RNyxpo1a0zzlTNlGFNizRsu11xoo4X8RI4WfcWYZgf_eiUOyWkpj81cRimh2iPy5_xvTRPUgHQCfAjR09FDjiHe0yk5P9IhZerjA0T0jj5BrqGGFClER4PzsYYhIGylNNA-eyiVulBSdj4XGuJeu77d0IIQT8jnAcbiT9_eY_L754-7i1-rq5vLzcX51QolF3XFZIdouG87ZKAZqs4ZrZkCLXuUCMoJhS3oeaBwHjneIe9703rfeW1AHJPNLtcleLRPOUyQX2yCYLdCyvd2OQZHb42Tbt7TGSO1VL3r-cAl15K5gXVGLlnfdlmYUynZDxZD3R5dM4TRssYuMOwehl1g2DcYs7t9597_5iPf950vxBnCBM8pj85WeBlTHvIMJBQr_h_xChACo80
CitedBy_id crossref_primary_10_1016_j_rineng_2025_106918
crossref_primary_10_1177_18479790251315317
Cites_doi 10.3390/JIMAGING6060039
10.1016/j.eswa.2023.122898
10.1109/ICAECC.2014.7002427
10.4015/S1016237221500204
10.1016/j.bspc.2023.105002
10.1007/s00521-023-08909-y
10.13140/RG.2.2.35232.12800
10.1109/EBBT.2018.8391453
10.1109/ICCIT51783.2020.9392705
10.1109/TCBB.2023.3258455
10.1109/TASE.2023.3309629
10.1109/STA.2014.7086694
10.1016/j.inffus.2023.102016
10.1109/ic-ETITE47903.2020.367
10.1007/s12553-022-00699-y
10.1007/s00530-022-00918-6
10.4015/S1016237224500078
10.1109/ICCKE48569.2019.8964794
10.1007/s12539-021-00499-4
10.37391/IJEER.090202
10.37391/ijeer.100257
10.1007/s00521-013-1437-4
10.1016/j.eswa.2023.121371
10.1109/IC4ME2.2018.8465663
10.21203/rs.3.rs-2013877/v1
10.17577/ijertv7is100092
10.1109/ICICT48043.2020.9112464
10.17148/ijireeice.2017.5103
10.1109/IS3C.2018.00119
10.1016/j.bspc.2021.102682
10.1007/978-981-15-0751-9_7
10.1016/j.bspc.2021.103009
10.1007/978-981-10-4166-2
10.1109/TEM.2021.3065699
10.1109/BIBE50027.2020.00151
10.1007/978-3-642-35594-3_47
10.1080/21681163.2021.1897884
10.1109/I-SMAC49090.2020.9243323
10.20965/jaciii.2008.p0218
10.1007/978-981-16-8403-6_18
10.1109/TIPTEKNO.2016.7863129
10.1109/ICCCNT49239.2020.9225451
10.5120/ijca2016912177
10.1007/978-981-16-5689-7_10
10.3390/healthcare8020111
10.1155/2022/6715406
10.1007/978-981-16-2094-2_61
ContentType Journal Article
Copyright 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2024
Copyright_xml – notice: 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2024
DBID 0YH
AAYXX
CITATION
DOA
DOI 10.1080/21681163.2024.2378734
DatabaseName Taylor & Francis Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 0YH
  name: Taylor & Francis Open Access
  url: https://www.tandfonline.com
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2168-1171
ExternalDocumentID oai_doaj_org_article_8d4d59c9884746bdb2f242741df1984a
10_1080_21681163_2024_2378734
2378734
Genre Research Article
GroupedDBID 0BK
0YH
30N
4.4
AAJMT
ABLIJ
ABPAQ
ABXYU
ACGFS
ADCVX
ADGTB
ADMLS
AEISY
AFRVT
AGDLA
AHDZW
AIJEM
AIYEW
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQTUD
ARCSS
BLEHA
CCCUG
EBS
EUPTU
GROUPED_DOAJ
GTTXZ
H13
HZ~
KYCEM
LJTGL
M4Z
O9-
ROSJB
SNACF
SOJIQ
TDBHL
TFL
TFT
TFW
TTHFI
TUROJ
AAYXX
CITATION
ID FETCH-LOGICAL-c423t-149cc82e59c1a71c69d87716a74bc4ca6d36c5a7c696cd87d29c2bb85ee9e78a3
IEDL.DBID DOA
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001289436400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2168-1163
IngestDate Fri Oct 03 12:40:14 EDT 2025
Sat Nov 29 07:24:55 EST 2025
Tue Nov 18 22:12:40 EST 2025
Mon Oct 20 23:44:40 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License open-access: http://creativecommons.org/licenses/by/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c423t-149cc82e59c1a71c69d87716a74bc4ca6d36c5a7c696cd87d29c2bb85ee9e78a3
OpenAccessLink https://doaj.org/article/8d4d59c9884746bdb2f242741df1984a
ParticipantIDs doaj_primary_oai_doaj_org_article_8d4d59c9884746bdb2f242741df1984a
crossref_primary_10_1080_21681163_2024_2378734
informaworld_taylorfrancis_310_1080_21681163_2024_2378734
crossref_citationtrail_10_1080_21681163_2024_2378734
PublicationCentury 2000
PublicationDate 2024-12-31
PublicationDateYYYYMMDD 2024-12-31
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-31
  day: 31
PublicationDecade 2020
PublicationTitle Computer methods in biomechanics and biomedical engineering.
PublicationYear 2024
Publisher Taylor & Francis
Taylor & Francis Group
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Group
References e_1_3_2_28_1
e_1_3_2_49_1
e_1_3_2_20_1
e_1_3_2_41_1
e_1_3_2_22_1
e_1_3_2_24_1
e_1_3_2_45_1
e_1_3_2_26_1
e_1_3_2_47_1
Singh H (e_1_3_2_44_1) 2021; 12
e_1_3_2_16_1
e_1_3_2_39_1
e_1_3_2_9_1
e_1_3_2_18_1
e_1_3_2_7_1
e_1_3_2_31_1
e_1_3_2_54_1
e_1_3_2_10_1
e_1_3_2_33_1
e_1_3_2_52_1
e_1_3_2_12_1
e_1_3_2_35_1
e_1_3_2_5_1
e_1_3_2_14_1
e_1_3_2_37_1
e_1_3_2_3_1
e_1_3_2_50_1
Yarabarla MK (e_1_3_2_53_1) 2019; 2168
e_1_3_2_27_1
e_1_3_2_29_1
Singh H (e_1_3_2_42_1) 2017
e_1_3_2_21_1
e_1_3_2_23_1
e_1_3_2_46_1
Chanchlani A (e_1_3_2_13_1) 2017; 3
e_1_3_2_25_1
e_1_3_2_48_1
e_1_3_2_40_1
Singh H (e_1_3_2_43_1) 2021; 6
e_1_3_2_17_1
e_1_3_2_38_1
e_1_3_2_19_1
e_1_3_2_2_1
Aswathy SU (e_1_3_2_8_1) 2017; 10
e_1_3_2_30_1
e_1_3_2_11_1
e_1_3_2_32_1
e_1_3_2_6_1
e_1_3_2_34_1
e_1_3_2_4_1
e_1_3_2_15_1
e_1_3_2_36_1
e_1_3_2_51_1
References_xml – ident: e_1_3_2_7_1
  doi: 10.3390/JIMAGING6060039
– ident: e_1_3_2_32_1
  doi: 10.1016/j.eswa.2023.122898
– ident: e_1_3_2_36_1
  doi: 10.1109/ICAECC.2014.7002427
– ident: e_1_3_2_16_1
  doi: 10.4015/S1016237221500204
– ident: e_1_3_2_21_1
  doi: 10.1016/j.bspc.2023.105002
– ident: e_1_3_2_20_1
  doi: 10.1007/s00521-023-08909-y
– start-page: 73
  volume-title: Proceedings of second international conference on smart energy and communication ICSEC 2020 (Algorithms for intelligent systems)
  year: 2017
  ident: e_1_3_2_42_1
– ident: e_1_3_2_3_1
  doi: 10.13140/RG.2.2.35232.12800
– ident: e_1_3_2_5_1
  doi: 10.1109/EBBT.2018.8391453
– ident: e_1_3_2_37_1
  doi: 10.1109/ICCIT51783.2020.9392705
– ident: e_1_3_2_51_1
  doi: 10.1109/TCBB.2023.3258455
– ident: e_1_3_2_31_1
  doi: 10.1109/TASE.2023.3309629
– ident: e_1_3_2_30_1
  doi: 10.1109/STA.2014.7086694
– ident: e_1_3_2_49_1
  doi: 10.1016/j.inffus.2023.102016
– ident: e_1_3_2_28_1
  doi: 10.1109/ic-ETITE47903.2020.367
– ident: e_1_3_2_40_1
  doi: 10.1007/s12553-022-00699-y
– ident: e_1_3_2_41_1
  doi: 10.1007/s00530-022-00918-6
– ident: e_1_3_2_33_1
  doi: 10.4015/S1016237224500078
– ident: e_1_3_2_6_1
  doi: 10.1109/ICCKE48569.2019.8964794
– ident: e_1_3_2_12_1
  doi: 10.1007/s12539-021-00499-4
– ident: e_1_3_2_46_1
  doi: 10.37391/IJEER.090202
– ident: e_1_3_2_45_1
  doi: 10.37391/ijeer.100257
– ident: e_1_3_2_34_1
  doi: 10.1007/s00521-013-1437-4
– ident: e_1_3_2_22_1
  doi: 10.1016/j.eswa.2023.121371
– volume: 6
  start-page: 2091
  issue: 3
  year: 2021
  ident: e_1_3_2_43_1
  article-title: Brain tumor segmentation and dimension determination using clustering approach
  publication-title: Int J Mech Eng (IJME)
– ident: e_1_3_2_24_1
  doi: 10.1109/IC4ME2.2018.8465663
– ident: e_1_3_2_25_1
  doi: 10.21203/rs.3.rs-2013877/v1
– ident: e_1_3_2_2_1
  doi: 10.17577/ijertv7is100092
– ident: e_1_3_2_48_1
  doi: 10.1109/ICICT48043.2020.9112464
– ident: e_1_3_2_39_1
  doi: 10.17148/ijireeice.2017.5103
– volume: 10
  start-page: 22
  issue: 2
  year: 2017
  ident: e_1_3_2_8_1
  article-title: MRI brain tumor segmentation using genetic algorithm with SVM classifier
  publication-title: J of Electr And Commu Eng
– ident: e_1_3_2_15_1
  doi: 10.1109/IS3C.2018.00119
– ident: e_1_3_2_29_1
  doi: 10.1016/j.bspc.2021.102682
– ident: e_1_3_2_38_1
  doi: 10.1007/978-981-15-0751-9_7
– ident: e_1_3_2_17_1
  doi: 10.1016/j.bspc.2021.103009
– ident: e_1_3_2_50_1
  doi: 10.1007/978-981-10-4166-2
– ident: e_1_3_2_11_1
  doi: 10.1109/TEM.2021.3065699
– ident: e_1_3_2_26_1
  doi: 10.1109/BIBE50027.2020.00151
– volume: 3
  start-page: 303
  issue: 3
  year: 2017
  ident: e_1_3_2_13_1
  article-title: Tumor detection in brain MRI using clustering and segmentation algorithm
  publication-title: Int J of Adv Res And Inno Ideas In Edu
– ident: e_1_3_2_23_1
  doi: 10.1007/978-3-642-35594-3_47
– ident: e_1_3_2_54_1
  doi: 10.1080/21681163.2021.1897884
– ident: e_1_3_2_18_1
  doi: 10.1109/I-SMAC49090.2020.9243323
– ident: e_1_3_2_52_1
  doi: 10.20965/jaciii.2008.p0218
– ident: e_1_3_2_19_1
  doi: 10.1007/978-981-16-8403-6_18
– ident: e_1_3_2_9_1
  doi: 10.1109/TIPTEKNO.2016.7863129
– ident: e_1_3_2_27_1
  doi: 10.1109/ICCCNT49239.2020.9225451
– volume: 2168
  start-page: 23
  year: 2019
  ident: e_1_3_2_53_1
  article-title: Breast cancer classification using random forest algorithm
  publication-title: Pro Int Conf Trends Electr Inf (ICOEI 2019)
– ident: e_1_3_2_47_1
  doi: 10.5120/ijca2016912177
– ident: e_1_3_2_14_1
  doi: 10.1007/978-981-16-5689-7_10
– ident: e_1_3_2_4_1
  doi: 10.3390/healthcare8020111
– volume: 12
  start-page: 575
  issue: 10
  year: 2021
  ident: e_1_3_2_44_1
  article-title: Benign and malignant tumor classification from MRI images using modified convolution neural network approach
  publication-title: Turk J Comput Mathe Edu (TRUCOMAT)
– ident: e_1_3_2_10_1
  doi: 10.1155/2022/6715406
– ident: e_1_3_2_35_1
  doi: 10.1007/978-981-16-2094-2_61
SSID ssj0000866365
Score 2.624107
Snippet The rapid identification and categorisation of breast cancers using low-contrast MRI images presents a significant challenge due to the disease's prevalence...
The rapid identification and categorisation of breast cancers using low-contrast MRI images presents a significant challenge due to the disease’s prevalence...
SourceID doaj
crossref
informaworld
SourceType Open Website
Enrichment Source
Index Database
Publisher
SubjectTerms Breast cancer
ensemble-learning
feature extraction
frog leap algorithm
Optimized k-means clustering
SummonAdditionalLinks – databaseName: Taylor & Francis Open Access
  dbid: 0YH
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6-DnrwLa4vcvDa1aRpmx5VlBVURFTWU8mr64J2123X3-8kTZdVUA96KTTplGlm0swXJt8gdKiViIkgIrDHHAOmhQiEgUukqQCIzWLuNvQfr5KbG97tprc-m7D0aZUWQ-c1UYT7V9vJLWTZZMQdURJzAnEEoDvK2jQEnwvZLJqnAE0s_jp-6ky2WSBij0NXUNJKBVasOcfz3Zs-rVCOyP8LjenUAnSx8g-qr6JlH33ik9pd1tCMKdbR0hQn4QZ6OxlXA8fjil9doqXBvrJED7uyORhUxKZ4dqkDeGhdzxoXg064r33ykbM3HuRY2qT3CmtP8lniftG0Xd9d4hIsu4keLs7vzzqBr8sQKAi-qgBAlVKcmihVRCRExanmCeAukTCpGBhfh7GKRAIdsYIuTVNFpeSRMalJuAi30FwxKMw2wjKhkmoiVQiBEAst_JKaUaEYwEadixZijS0y5UnLbe2Ml4x4btNmRDM7opkf0RZqT8SGNWvHbwKn1tCThy3ptmsYjHqZn8MZ10zDN6ccVnQWSy1pDgEOhGQ6JylnoGw67SZZ5fZc8rpAShb-qMDOH2R30aK9rekn99BcNRqbfbSg3qt-OTpw8-ED0cYFxg
  priority: 102
  providerName: Taylor & Francis
Title Automatic machine learning model for enhanced partition and identification of breast disorders in breast MRI scan
URI https://www.tandfonline.com/doi/abs/10.1080/21681163.2024.2378734
https://doaj.org/article/8d4d59c9884746bdb2f242741df1984a
Volume 12
WOSCitedRecordID wos001289436400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2168-1171
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000866365
  issn: 2168-1163
  databaseCode: DOA
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVAWR
  databaseName: Taylor & Francis Journals Complete
  customDbUrl:
  eissn: 2168-1171
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000866365
  issn: 2168-1163
  databaseCode: TFW
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
– providerCode: PRVAWR
  databaseName: Taylor & Francis Open Access
  customDbUrl:
  eissn: 2168-1171
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000866365
  issn: 2168-1163
  databaseCode: 0YH
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELagYoAB8RTlJQ-saRvHSZyxIKoiQYVQgTJFfgUqQVralN_P2XGqwEAXFg-X2HLuTr77HPs7hC6U5JHPfe6Za44eVZx7XEMTKsIBYtOI2Q39p9t4MGCjUXJfK_VlzoSV9MCl4tpMURUmMmGwjNJIKEEyiCoQB1UGeJna1KgTJzUwZddgBpHU1pEkfgQwCbKO6voO67SNzIgAHhLaIgE4bUB_BCbL3_-LvbQWd3o7aNsljLhbTnQXrel8D23VaAT30Wd3UUws9Sr-sGcjNXbFIF6xrXSDYXis8zf7tx9PzUcbe2CeKzxW7ryQNRGeZFiYc-oFVo6Xc47HeSW7e7jBczDGAXrsXQ-v-p4rpeBJyJcKD3CQlIxo0KTPY19GiWIxQCUeUyEp2EsFkQx5DA8iCY8USSQRgoVaJzpmPDhEjXyS6yOERUwEUb6QAeQuNDCISShKuKSA9FTGm4hWekyl4xk35S7eU9_RkVbqT436U6f-Jmotu01Loo1VHS6NkZYvG55sKwDvSZ33pKu8p4mSuonTwm6TZGVNkzT4cwLH_zGBE7RpxiypI09Ro5gt9BnakF_FeD47R-udl_65dW1oh73nbxgG9v4
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELaAIlEOtIWi8qwPvQZkx0mcI1RdgVj2UG2Bm-VXYKWSpbuhv58Zx1ktSMABLjnYmWjsGWceGn9DyA9ndc400wlec0yE0zrRHh6Z4xpCbJHLkNC_6BeDgby6KufvwmBZJcbQVQsUEf7VeLgxGd2VxB1ylksGjgSEd1wc8BSULhWL5EMGthbx84e9y1meBVz2PA0dJZEqQbLuIs9zX3pkogKS_xMc0zkL1Pv0Hrx_JmvR_6RHrcJ8IQu-Xierc6iEG-Tf0X0zDkiu9DaUWnoae0tc09A4hwKP1Nc3oXiA3qHyoXgpMEVHLpYfBYnTcUUNlr031EWYzykd1d3Y-e9TOgXZfiV_er-GP0-S2JkhseB-NQmEVdZK7rPSMl0wm5dOFhB56UIYK0D8Ls1tpguYyC1MOV5abozMvC99IXW6SZbqce2_EWoKbrhjxqbgCokUAzDjBNdWQODoKr1FRCcMZSNsOXbP-KtYRDftdlThjqq4o1vkYEZ21-J2vEZwjJKevYyw22FgPLlW8RQr6YSDNZcSbLrIjTO8AhcHnDJXsVIKYLac1xPVhKxL1bZIUemLDGy_gfY7WTkZnvdV_3RwtkM-4lQLRrlLlprJvd8jy_Z_M5pO9sPheADjfwnw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nb9MwFLe2bprGga8x0TGYD1xTZMd1nGMZVKvoqgoV6M3yV0YlSEuT8vfz7DhVmTQ4bJcc7Lzo2e85_j3r-fcQemuN4kQRlfhrjgmzSiXKwaNvqYIQm3ERDvS_jrPJRMzn-TRmE1YxrdLH0EVDFBH-1X5xr2zRZsS9o4QLAjgCojvKejQFn0vZPjoA6My9k8-G37bHLIDYeRoKSnqpxIu193ju-tJfO1Qg8r9FY7qzAQ2fPIDqT9HjiD7xoHGXZ2jPlc_Rox1OwhP0a7Cpl4HHFf8MiZYOx8oSNziUzcGgInbl95A6gFfe9bxxMeiEFzYmHwV742WBtU96r7GNJJ8VXpRt2_XnEa7Asi_Ql-HH2eVVEusyJAbAV51AUGWMoK6fG6IyYnhuRQZxl8qYNgyMb1Nu-iqDDm6gy9LcUK1F37ncZUKlp6hTLkv3EmGdUU0t0SYFIMRSH35py6gyDMJGW6guYq0tpImk5b52xg9JIrdpO6PSz6iMM9pFva3YqmHt-J_Ae2_o7cuedDs0LNc3Mq5hKSyzMOZcwI7OuLaaFgBwAJLZguSCgbL5rpvIOpy5FE2BFJn-U4Gze8heoKPph6EcjyafXqFj39MwUZ6jTr3euNfo0PyuF9X6TVgafwCx4Aii
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+machine+learning+model+for+enhanced+partition+and+identification+of+breast+disorders+in+breast+MRI+scan&rft.jtitle=Computer+methods+in+biomechanics+and+biomedical+engineering.&rft.au=Singh%2C+Harendra&rft.au=Rana%2C+Arun+Kumar&rft.au=Giri%2C+Jayant&rft.au=Shah%2C+Mohd+Asif&rft.date=2024-12-31&rft.issn=2168-1163&rft.eissn=2168-1171&rft.volume=12&rft.issue=1&rft_id=info:doi/10.1080%2F21681163.2024.2378734&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_21681163_2024_2378734
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-1163&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-1163&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-1163&client=summon