Automatic machine learning model for enhanced partition and identification of breast disorders in breast MRI scan
The rapid identification and categorisation of breast cancers using low-contrast MRI images presents a significant challenge due to the disease's prevalence among women of all ages. Nowadays, it is very difficult to classify and generalise models from low-contrast MRI datasets due to the preval...
Saved in:
| Published in: | Computer methods in biomechanics and biomedical engineering. Vol. 12; no. 1 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Taylor & Francis
31.12.2024
Taylor & Francis Group |
| Subjects: | |
| ISSN: | 2168-1163, 2168-1171 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The rapid identification and categorisation of breast cancers using low-contrast MRI images presents a significant challenge due to the disease's prevalence among women of all ages. Nowadays, it is very difficult to classify and generalise models from low-contrast MRI datasets due to the prevalence of class imbalance caused by a wide range of symptoms and untrustworthy data sources. Using ensemble learning with optimised k-means helps with these problems; it reduces overfitting and improves reliability by using methods like k-means clustering, frog feap algorithm (FLA), boosting, and bagging to balance datasets and show the complexity of symptoms. In this research, we present a new strategy that makes use of a hybrid optimised K-Means algorithm combined with the FLA, along with thresholding and morphological approaches, and ensemble learning. There are two main stages to our work. In the initial phase, we preprocess low-contrast MRI images and delineate the breast tumour area from the segmented MRI images. Furthermore, we employ Discrete Wavelet Transformation (DWT) to extract the most salient features. In the next step, the retrieved features will be used as input parameters for an ensemble-learned breast tumour classifier. To determine whether a low-contrast breast tumour MRI picture has a benign or malignant tumour after model training, we use a variety of classifiers, such as k-nearest neighbours (KNN), decision trees (DT), gradient boosting (GB), random forests (RF), and artificial neural networks (ANN). Through a voting mechanism that averages the accuracy of all models, our suggested framework achieves a remarkable 98.8% accuracy rate. In addition, proposed model is quite efficient & reliable to detect the kind of breast tumour or cancer with a sensitivity of 98.02% and a specificity of 97.5%. |
|---|---|
| AbstractList | The rapid identification and categorisation of breast cancers using low-contrast MRI images presents a significant challenge due to the disease's prevalence among women of all ages. Nowadays, it is very difficult to classify and generalise models from low-contrast MRI datasets due to the prevalence of class imbalance caused by a wide range of symptoms and untrustworthy data sources. Using ensemble learning with optimised k-means helps with these problems; it reduces overfitting and improves reliability by using methods like k-means clustering, frog feap algorithm (FLA), boosting, and bagging to balance datasets and show the complexity of symptoms. In this research, we present a new strategy that makes use of a hybrid optimised K-Means algorithm combined with the FLA, along with thresholding and morphological approaches, and ensemble learning. There are two main stages to our work. In the initial phase, we preprocess low-contrast MRI images and delineate the breast tumour area from the segmented MRI images. Furthermore, we employ Discrete Wavelet Transformation (DWT) to extract the most salient features. In the next step, the retrieved features will be used as input parameters for an ensemble-learned breast tumour classifier. To determine whether a low-contrast breast tumour MRI picture has a benign or malignant tumour after model training, we use a variety of classifiers, such as k-nearest neighbours (KNN), decision trees (DT), gradient boosting (GB), random forests (RF), and artificial neural networks (ANN). Through a voting mechanism that averages the accuracy of all models, our suggested framework achieves a remarkable 98.8% accuracy rate. In addition, proposed model is quite efficient & reliable to detect the kind of breast tumour or cancer with a sensitivity of 98.02% and a specificity of 97.5%. |
| Author | Shah, Mohd Asif Rana, Arun Kumar Sathish, T. Giri, Jayant Singh, Harendra Mallik, Saurav |
| Author_xml | – sequence: 1 givenname: Harendra surname: Singh fullname: Singh, Harendra organization: G.L. Bajaj Institute of Technology and Management – sequence: 2 givenname: Arun Kumar surname: Rana fullname: Rana, Arun Kumar organization: Galgotias College of Engineering of Technology – sequence: 3 givenname: Jayant surname: Giri fullname: Giri, Jayant email: jayantpgiri@gmail.com organization: Yeshwantrao Chavan College of Engineering – sequence: 4 givenname: Mohd Asif surname: Shah fullname: Shah, Mohd Asif email: drmohdasifshah@kdu.edu.et organization: Kabridahar University – sequence: 5 givenname: Saurav surname: Mallik fullname: Mallik, Saurav organization: Harvard T H Chan School of Public Health – sequence: 6 givenname: T. surname: Sathish fullname: Sathish, T. organization: Saveetha School of Engineering |
| BookMark | eNqFkd9KHTEQxkOxoFUfQcgLnNPNn02y9KYirT2gCGKvw-wkq5HdxCYp4tu7e46nF17UucnwDd83GX5fyEFM0RNyxpo1a0zzlTNlGFNizRsu11xoo4X8RI4WfcWYZgf_eiUOyWkpj81cRimh2iPy5_xvTRPUgHQCfAjR09FDjiHe0yk5P9IhZerjA0T0jj5BrqGGFClER4PzsYYhIGylNNA-eyiVulBSdj4XGuJeu77d0IIQT8jnAcbiT9_eY_L754-7i1-rq5vLzcX51QolF3XFZIdouG87ZKAZqs4ZrZkCLXuUCMoJhS3oeaBwHjneIe9703rfeW1AHJPNLtcleLRPOUyQX2yCYLdCyvd2OQZHb42Tbt7TGSO1VL3r-cAl15K5gXVGLlnfdlmYUynZDxZD3R5dM4TRssYuMOwehl1g2DcYs7t9597_5iPf950vxBnCBM8pj85WeBlTHvIMJBQr_h_xChACo80 |
| CitedBy_id | crossref_primary_10_1016_j_rineng_2025_106918 crossref_primary_10_1177_18479790251315317 |
| Cites_doi | 10.3390/JIMAGING6060039 10.1016/j.eswa.2023.122898 10.1109/ICAECC.2014.7002427 10.4015/S1016237221500204 10.1016/j.bspc.2023.105002 10.1007/s00521-023-08909-y 10.13140/RG.2.2.35232.12800 10.1109/EBBT.2018.8391453 10.1109/ICCIT51783.2020.9392705 10.1109/TCBB.2023.3258455 10.1109/TASE.2023.3309629 10.1109/STA.2014.7086694 10.1016/j.inffus.2023.102016 10.1109/ic-ETITE47903.2020.367 10.1007/s12553-022-00699-y 10.1007/s00530-022-00918-6 10.4015/S1016237224500078 10.1109/ICCKE48569.2019.8964794 10.1007/s12539-021-00499-4 10.37391/IJEER.090202 10.37391/ijeer.100257 10.1007/s00521-013-1437-4 10.1016/j.eswa.2023.121371 10.1109/IC4ME2.2018.8465663 10.21203/rs.3.rs-2013877/v1 10.17577/ijertv7is100092 10.1109/ICICT48043.2020.9112464 10.17148/ijireeice.2017.5103 10.1109/IS3C.2018.00119 10.1016/j.bspc.2021.102682 10.1007/978-981-15-0751-9_7 10.1016/j.bspc.2021.103009 10.1007/978-981-10-4166-2 10.1109/TEM.2021.3065699 10.1109/BIBE50027.2020.00151 10.1007/978-3-642-35594-3_47 10.1080/21681163.2021.1897884 10.1109/I-SMAC49090.2020.9243323 10.20965/jaciii.2008.p0218 10.1007/978-981-16-8403-6_18 10.1109/TIPTEKNO.2016.7863129 10.1109/ICCCNT49239.2020.9225451 10.5120/ijca2016912177 10.1007/978-981-16-5689-7_10 10.3390/healthcare8020111 10.1155/2022/6715406 10.1007/978-981-16-2094-2_61 |
| ContentType | Journal Article |
| Copyright | 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2024 |
| Copyright_xml | – notice: 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2024 |
| DBID | 0YH AAYXX CITATION DOA |
| DOI | 10.1080/21681163.2024.2378734 |
| DatabaseName | Taylor & Francis Open Access CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 0YH name: Taylor & Francis Open Access url: https://www.tandfonline.com sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2168-1171 |
| ExternalDocumentID | oai_doaj_org_article_8d4d59c9884746bdb2f242741df1984a 10_1080_21681163_2024_2378734 2378734 |
| Genre | Research Article |
| GroupedDBID | 0BK 0YH 30N 4.4 AAJMT ABLIJ ABPAQ ABXYU ACGFS ADCVX ADGTB ADMLS AEISY AFRVT AGDLA AHDZW AIJEM AIYEW AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQTUD ARCSS BLEHA CCCUG EBS EUPTU GROUPED_DOAJ GTTXZ H13 HZ~ KYCEM LJTGL M4Z O9- ROSJB SNACF SOJIQ TDBHL TFL TFT TFW TTHFI TUROJ AAYXX CITATION |
| ID | FETCH-LOGICAL-c423t-149cc82e59c1a71c69d87716a74bc4ca6d36c5a7c696cd87d29c2bb85ee9e78a3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001289436400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2168-1163 |
| IngestDate | Fri Oct 03 12:40:14 EDT 2025 Sat Nov 29 07:24:55 EST 2025 Tue Nov 18 22:12:40 EST 2025 Mon Oct 20 23:44:40 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | open-access: http://creativecommons.org/licenses/by/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c423t-149cc82e59c1a71c69d87716a74bc4ca6d36c5a7c696cd87d29c2bb85ee9e78a3 |
| OpenAccessLink | https://doaj.org/article/8d4d59c9884746bdb2f242741df1984a |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_8d4d59c9884746bdb2f242741df1984a crossref_primary_10_1080_21681163_2024_2378734 informaworld_taylorfrancis_310_1080_21681163_2024_2378734 crossref_citationtrail_10_1080_21681163_2024_2378734 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-12-31 |
| PublicationDateYYYYMMDD | 2024-12-31 |
| PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-31 day: 31 |
| PublicationDecade | 2020 |
| PublicationTitle | Computer methods in biomechanics and biomedical engineering. |
| PublicationYear | 2024 |
| Publisher | Taylor & Francis Taylor & Francis Group |
| Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Group |
| References | e_1_3_2_28_1 e_1_3_2_49_1 e_1_3_2_20_1 e_1_3_2_41_1 e_1_3_2_22_1 e_1_3_2_24_1 e_1_3_2_45_1 e_1_3_2_26_1 e_1_3_2_47_1 Singh H (e_1_3_2_44_1) 2021; 12 e_1_3_2_16_1 e_1_3_2_39_1 e_1_3_2_9_1 e_1_3_2_18_1 e_1_3_2_7_1 e_1_3_2_31_1 e_1_3_2_54_1 e_1_3_2_10_1 e_1_3_2_33_1 e_1_3_2_52_1 e_1_3_2_12_1 e_1_3_2_35_1 e_1_3_2_5_1 e_1_3_2_14_1 e_1_3_2_37_1 e_1_3_2_3_1 e_1_3_2_50_1 Yarabarla MK (e_1_3_2_53_1) 2019; 2168 e_1_3_2_27_1 e_1_3_2_29_1 Singh H (e_1_3_2_42_1) 2017 e_1_3_2_21_1 e_1_3_2_23_1 e_1_3_2_46_1 Chanchlani A (e_1_3_2_13_1) 2017; 3 e_1_3_2_25_1 e_1_3_2_48_1 e_1_3_2_40_1 Singh H (e_1_3_2_43_1) 2021; 6 e_1_3_2_17_1 e_1_3_2_38_1 e_1_3_2_19_1 e_1_3_2_2_1 Aswathy SU (e_1_3_2_8_1) 2017; 10 e_1_3_2_30_1 e_1_3_2_11_1 e_1_3_2_32_1 e_1_3_2_6_1 e_1_3_2_34_1 e_1_3_2_4_1 e_1_3_2_15_1 e_1_3_2_36_1 e_1_3_2_51_1 |
| References_xml | – ident: e_1_3_2_7_1 doi: 10.3390/JIMAGING6060039 – ident: e_1_3_2_32_1 doi: 10.1016/j.eswa.2023.122898 – ident: e_1_3_2_36_1 doi: 10.1109/ICAECC.2014.7002427 – ident: e_1_3_2_16_1 doi: 10.4015/S1016237221500204 – ident: e_1_3_2_21_1 doi: 10.1016/j.bspc.2023.105002 – ident: e_1_3_2_20_1 doi: 10.1007/s00521-023-08909-y – start-page: 73 volume-title: Proceedings of second international conference on smart energy and communication ICSEC 2020 (Algorithms for intelligent systems) year: 2017 ident: e_1_3_2_42_1 – ident: e_1_3_2_3_1 doi: 10.13140/RG.2.2.35232.12800 – ident: e_1_3_2_5_1 doi: 10.1109/EBBT.2018.8391453 – ident: e_1_3_2_37_1 doi: 10.1109/ICCIT51783.2020.9392705 – ident: e_1_3_2_51_1 doi: 10.1109/TCBB.2023.3258455 – ident: e_1_3_2_31_1 doi: 10.1109/TASE.2023.3309629 – ident: e_1_3_2_30_1 doi: 10.1109/STA.2014.7086694 – ident: e_1_3_2_49_1 doi: 10.1016/j.inffus.2023.102016 – ident: e_1_3_2_28_1 doi: 10.1109/ic-ETITE47903.2020.367 – ident: e_1_3_2_40_1 doi: 10.1007/s12553-022-00699-y – ident: e_1_3_2_41_1 doi: 10.1007/s00530-022-00918-6 – ident: e_1_3_2_33_1 doi: 10.4015/S1016237224500078 – ident: e_1_3_2_6_1 doi: 10.1109/ICCKE48569.2019.8964794 – ident: e_1_3_2_12_1 doi: 10.1007/s12539-021-00499-4 – ident: e_1_3_2_46_1 doi: 10.37391/IJEER.090202 – ident: e_1_3_2_45_1 doi: 10.37391/ijeer.100257 – ident: e_1_3_2_34_1 doi: 10.1007/s00521-013-1437-4 – ident: e_1_3_2_22_1 doi: 10.1016/j.eswa.2023.121371 – volume: 6 start-page: 2091 issue: 3 year: 2021 ident: e_1_3_2_43_1 article-title: Brain tumor segmentation and dimension determination using clustering approach publication-title: Int J Mech Eng (IJME) – ident: e_1_3_2_24_1 doi: 10.1109/IC4ME2.2018.8465663 – ident: e_1_3_2_25_1 doi: 10.21203/rs.3.rs-2013877/v1 – ident: e_1_3_2_2_1 doi: 10.17577/ijertv7is100092 – ident: e_1_3_2_48_1 doi: 10.1109/ICICT48043.2020.9112464 – ident: e_1_3_2_39_1 doi: 10.17148/ijireeice.2017.5103 – volume: 10 start-page: 22 issue: 2 year: 2017 ident: e_1_3_2_8_1 article-title: MRI brain tumor segmentation using genetic algorithm with SVM classifier publication-title: J of Electr And Commu Eng – ident: e_1_3_2_15_1 doi: 10.1109/IS3C.2018.00119 – ident: e_1_3_2_29_1 doi: 10.1016/j.bspc.2021.102682 – ident: e_1_3_2_38_1 doi: 10.1007/978-981-15-0751-9_7 – ident: e_1_3_2_17_1 doi: 10.1016/j.bspc.2021.103009 – ident: e_1_3_2_50_1 doi: 10.1007/978-981-10-4166-2 – ident: e_1_3_2_11_1 doi: 10.1109/TEM.2021.3065699 – ident: e_1_3_2_26_1 doi: 10.1109/BIBE50027.2020.00151 – volume: 3 start-page: 303 issue: 3 year: 2017 ident: e_1_3_2_13_1 article-title: Tumor detection in brain MRI using clustering and segmentation algorithm publication-title: Int J of Adv Res And Inno Ideas In Edu – ident: e_1_3_2_23_1 doi: 10.1007/978-3-642-35594-3_47 – ident: e_1_3_2_54_1 doi: 10.1080/21681163.2021.1897884 – ident: e_1_3_2_18_1 doi: 10.1109/I-SMAC49090.2020.9243323 – ident: e_1_3_2_52_1 doi: 10.20965/jaciii.2008.p0218 – ident: e_1_3_2_19_1 doi: 10.1007/978-981-16-8403-6_18 – ident: e_1_3_2_9_1 doi: 10.1109/TIPTEKNO.2016.7863129 – ident: e_1_3_2_27_1 doi: 10.1109/ICCCNT49239.2020.9225451 – volume: 2168 start-page: 23 year: 2019 ident: e_1_3_2_53_1 article-title: Breast cancer classification using random forest algorithm publication-title: Pro Int Conf Trends Electr Inf (ICOEI 2019) – ident: e_1_3_2_47_1 doi: 10.5120/ijca2016912177 – ident: e_1_3_2_14_1 doi: 10.1007/978-981-16-5689-7_10 – ident: e_1_3_2_4_1 doi: 10.3390/healthcare8020111 – volume: 12 start-page: 575 issue: 10 year: 2021 ident: e_1_3_2_44_1 article-title: Benign and malignant tumor classification from MRI images using modified convolution neural network approach publication-title: Turk J Comput Mathe Edu (TRUCOMAT) – ident: e_1_3_2_10_1 doi: 10.1155/2022/6715406 – ident: e_1_3_2_35_1 doi: 10.1007/978-981-16-2094-2_61 |
| SSID | ssj0000866365 |
| Score | 2.624107 |
| Snippet | The rapid identification and categorisation of breast cancers using low-contrast MRI images presents a significant challenge due to the disease's prevalence... The rapid identification and categorisation of breast cancers using low-contrast MRI images presents a significant challenge due to the disease’s prevalence... |
| SourceID | doaj crossref informaworld |
| SourceType | Open Website Enrichment Source Index Database Publisher |
| SubjectTerms | Breast cancer ensemble-learning feature extraction frog leap algorithm Optimized k-means clustering |
| SummonAdditionalLinks | – databaseName: Taylor & Francis Open Access dbid: 0YH link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6-DnrwLa4vcvDa1aRpmx5VlBVURFTWU8mr64J2123X3-8kTZdVUA96KTTplGlm0swXJt8gdKiViIkgIrDHHAOmhQiEgUukqQCIzWLuNvQfr5KbG97tprc-m7D0aZUWQ-c1UYT7V9vJLWTZZMQdURJzAnEEoDvK2jQEnwvZLJqnAE0s_jp-6ky2WSBij0NXUNJKBVasOcfz3Zs-rVCOyP8LjenUAnSx8g-qr6JlH33ik9pd1tCMKdbR0hQn4QZ6OxlXA8fjil9doqXBvrJED7uyORhUxKZ4dqkDeGhdzxoXg064r33ykbM3HuRY2qT3CmtP8lniftG0Xd9d4hIsu4keLs7vzzqBr8sQKAi-qgBAlVKcmihVRCRExanmCeAukTCpGBhfh7GKRAIdsYIuTVNFpeSRMalJuAi30FwxKMw2wjKhkmoiVQiBEAst_JKaUaEYwEadixZijS0y5UnLbe2Ml4x4btNmRDM7opkf0RZqT8SGNWvHbwKn1tCThy3ptmsYjHqZn8MZ10zDN6ccVnQWSy1pDgEOhGQ6JylnoGw67SZZ5fZc8rpAShb-qMDOH2R30aK9rekn99BcNRqbfbSg3qt-OTpw8-ED0cYFxg priority: 102 providerName: Taylor & Francis |
| Title | Automatic machine learning model for enhanced partition and identification of breast disorders in breast MRI scan |
| URI | https://www.tandfonline.com/doi/abs/10.1080/21681163.2024.2378734 https://doaj.org/article/8d4d59c9884746bdb2f242741df1984a |
| Volume | 12 |
| WOSCitedRecordID | wos001289436400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2168-1171 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000866365 issn: 2168-1163 databaseCode: DOA dateStart: 20240101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVAWR databaseName: Taylor & Francis Journals Complete customDbUrl: eissn: 2168-1171 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000866365 issn: 2168-1163 databaseCode: TFW dateStart: 20130301 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis – providerCode: PRVAWR databaseName: Taylor & Francis Open Access customDbUrl: eissn: 2168-1171 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000866365 issn: 2168-1163 databaseCode: 0YH dateStart: 20240101 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELagYoAB8RTlJQ-saRvHSZyxIKoiQYVQgTJFfgUqQVralN_P2XGqwEAXFg-X2HLuTr77HPs7hC6U5JHPfe6Za44eVZx7XEMTKsIBYtOI2Q39p9t4MGCjUXJfK_VlzoSV9MCl4tpMURUmMmGwjNJIKEEyiCoQB1UGeJna1KgTJzUwZddgBpHU1pEkfgQwCbKO6voO67SNzIgAHhLaIgE4bUB_BCbL3_-LvbQWd3o7aNsljLhbTnQXrel8D23VaAT30Wd3UUws9Sr-sGcjNXbFIF6xrXSDYXis8zf7tx9PzUcbe2CeKzxW7ryQNRGeZFiYc-oFVo6Xc47HeSW7e7jBczDGAXrsXQ-v-p4rpeBJyJcKD3CQlIxo0KTPY19GiWIxQCUeUyEp2EsFkQx5DA8iCY8USSQRgoVaJzpmPDhEjXyS6yOERUwEUb6QAeQuNDCISShKuKSA9FTGm4hWekyl4xk35S7eU9_RkVbqT436U6f-Jmotu01Loo1VHS6NkZYvG55sKwDvSZ33pKu8p4mSuonTwm6TZGVNkzT4cwLH_zGBE7RpxiypI09Ro5gt9BnakF_FeD47R-udl_65dW1oh73nbxgG9v4 |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELaAIlEOtIWi8qwPvQZkx0mcI1RdgVj2UG2Bm-VXYKWSpbuhv58Zx1ktSMABLjnYmWjsGWceGn9DyA9ndc400wlec0yE0zrRHh6Z4xpCbJHLkNC_6BeDgby6KufvwmBZJcbQVQsUEf7VeLgxGd2VxB1ylksGjgSEd1wc8BSULhWL5EMGthbx84e9y1meBVz2PA0dJZEqQbLuIs9zX3pkogKS_xMc0zkL1Pv0Hrx_JmvR_6RHrcJ8IQu-Xierc6iEG-Tf0X0zDkiu9DaUWnoae0tc09A4hwKP1Nc3oXiA3qHyoXgpMEVHLpYfBYnTcUUNlr031EWYzykd1d3Y-e9TOgXZfiV_er-GP0-S2JkhseB-NQmEVdZK7rPSMl0wm5dOFhB56UIYK0D8Ls1tpguYyC1MOV5abozMvC99IXW6SZbqce2_EWoKbrhjxqbgCokUAzDjBNdWQODoKr1FRCcMZSNsOXbP-KtYRDftdlThjqq4o1vkYEZ21-J2vEZwjJKevYyw22FgPLlW8RQr6YSDNZcSbLrIjTO8AhcHnDJXsVIKYLac1xPVhKxL1bZIUemLDGy_gfY7WTkZnvdV_3RwtkM-4lQLRrlLlprJvd8jy_Z_M5pO9sPheADjfwnw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nb9MwFLe2bprGga8x0TGYD1xTZMd1nGMZVKvoqgoV6M3yV0YlSEuT8vfz7DhVmTQ4bJcc7Lzo2e85_j3r-fcQemuN4kQRlfhrjgmzSiXKwaNvqYIQm3ERDvS_jrPJRMzn-TRmE1YxrdLH0EVDFBH-1X5xr2zRZsS9o4QLAjgCojvKejQFn0vZPjoA6My9k8-G37bHLIDYeRoKSnqpxIu193ju-tJfO1Qg8r9FY7qzAQ2fPIDqT9HjiD7xoHGXZ2jPlc_Rox1OwhP0a7Cpl4HHFf8MiZYOx8oSNziUzcGgInbl95A6gFfe9bxxMeiEFzYmHwV742WBtU96r7GNJJ8VXpRt2_XnEa7Asi_Ql-HH2eVVEusyJAbAV51AUGWMoK6fG6IyYnhuRQZxl8qYNgyMb1Nu-iqDDm6gy9LcUK1F37ncZUKlp6hTLkv3EmGdUU0t0SYFIMRSH35py6gyDMJGW6guYq0tpImk5b52xg9JIrdpO6PSz6iMM9pFva3YqmHt-J_Ae2_o7cuedDs0LNc3Mq5hKSyzMOZcwI7OuLaaFgBwAJLZguSCgbL5rpvIOpy5FE2BFJn-U4Gze8heoKPph6EcjyafXqFj39MwUZ6jTr3euNfo0PyuF9X6TVgafwCx4Aii |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+machine+learning+model+for+enhanced+partition+and+identification+of+breast+disorders+in+breast+MRI+scan&rft.jtitle=Computer+methods+in+biomechanics+and+biomedical+engineering.&rft.au=Singh%2C+Harendra&rft.au=Rana%2C+Arun+Kumar&rft.au=Giri%2C+Jayant&rft.au=Shah%2C+Mohd+Asif&rft.date=2024-12-31&rft.issn=2168-1163&rft.eissn=2168-1171&rft.volume=12&rft.issue=1&rft_id=info:doi/10.1080%2F21681163.2024.2378734&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_21681163_2024_2378734 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-1163&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-1163&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-1163&client=summon |