Self‐Assembly Growth of Twisted Bilayer Graphene on Liquid Cu
Twisted bilayer graphene (tBLG) possesses various novel physical properties. Most of tBLG are fabricated by using artificial methods of stacking or folding single‐layer graphene. Chemical vapor deposition (CVD) has been verified that it holds great potential for preparation of large‐size high‐qualit...
Saved in:
| Published in: | Advanced materials interfaces Vol. 10; no. 3 |
|---|---|
| Main Authors: | , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Weinheim
John Wiley & Sons, Inc
01.01.2023
Wiley-VCH |
| Subjects: | |
| ISSN: | 2196-7350, 2196-7350 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Twisted bilayer graphene (tBLG) possesses various novel physical properties. Most of tBLG are fabricated by using artificial methods of stacking or folding single‐layer graphene. Chemical vapor deposition (CVD) has been verified that it holds great potential for preparation of large‐size high‐quality graphene. Therefore, it is significant for preparing tBLG in situ by using CVD technology. In this work, a novel approach is developed to directly prepare tBLGs on liquid Cu substrate. When the growth temperature exceeds a certain critical value, the state of aligned high‐quality single‐layer graphene domains grown on liquid Cu will be broken. Then, tBLG with twisted double‐layer regions is prepared in situ by rotating and intercalating between graphene domains. Experimental observations suggest that the liquid phase of Cu substrate and gas flow play a crucial role for the formation of tBLGs. These results demonstrate that the liquid Cu is an ideal potential substrate for preparing tBLGs with a full range of twisted angles and studying the formation mechanism of layer‐stacked materials.
Twisted bilayer graphene (tBLG) is prepared by chemical vapor deposition on liquid Cu. When the growth temperature exceeds a certain critical value, the state of aligned high‐quality single‐layer graphene domains grown on liquid Cu is broken. Then, tBLG with twisted double‐layer regions is obtained in situ by rotating and intercalating between graphene domains. |
|---|---|
| AbstractList | Twisted bilayer graphene (tBLG) possesses various novel physical properties. Most of tBLG are fabricated by using artificial methods of stacking or folding single‐layer graphene. Chemical vapor deposition (CVD) has been verified that it holds great potential for preparation of large‐size high‐quality graphene. Therefore, it is significant for preparing tBLG in situ by using CVD technology. In this work, a novel approach is developed to directly prepare tBLGs on liquid Cu substrate. When the growth temperature exceeds a certain critical value, the state of aligned high‐quality single‐layer graphene domains grown on liquid Cu will be broken. Then, tBLG with twisted double‐layer regions is prepared in situ by rotating and intercalating between graphene domains. Experimental observations suggest that the liquid phase of Cu substrate and gas flow play a crucial role for the formation of tBLGs. These results demonstrate that the liquid Cu is an ideal potential substrate for preparing tBLGs with a full range of twisted angles and studying the formation mechanism of layer‐stacked materials. Twisted bilayer graphene (tBLG) possesses various novel physical properties. Most of tBLG are fabricated by using artificial methods of stacking or folding single‐layer graphene. Chemical vapor deposition (CVD) has been verified that it holds great potential for preparation of large‐size high‐quality graphene. Therefore, it is significant for preparing tBLG in situ by using CVD technology. In this work, a novel approach is developed to directly prepare tBLGs on liquid Cu substrate. When the growth temperature exceeds a certain critical value, the state of aligned high‐quality single‐layer graphene domains grown on liquid Cu will be broken. Then, tBLG with twisted double‐layer regions is prepared in situ by rotating and intercalating between graphene domains. Experimental observations suggest that the liquid phase of Cu substrate and gas flow play a crucial role for the formation of tBLGs. These results demonstrate that the liquid Cu is an ideal potential substrate for preparing tBLGs with a full range of twisted angles and studying the formation mechanism of layer‐stacked materials. Twisted bilayer graphene (tBLG) is prepared by chemical vapor deposition on liquid Cu. When the growth temperature exceeds a certain critical value, the state of aligned high‐quality single‐layer graphene domains grown on liquid Cu is broken. Then, tBLG with twisted double‐layer regions is obtained in situ by rotating and intercalating between graphene domains. Abstract Twisted bilayer graphene (tBLG) possesses various novel physical properties. Most of tBLG are fabricated by using artificial methods of stacking or folding single‐layer graphene. Chemical vapor deposition (CVD) has been verified that it holds great potential for preparation of large‐size high‐quality graphene. Therefore, it is significant for preparing tBLG in situ by using CVD technology. In this work, a novel approach is developed to directly prepare tBLGs on liquid Cu substrate. When the growth temperature exceeds a certain critical value, the state of aligned high‐quality single‐layer graphene domains grown on liquid Cu will be broken. Then, tBLG with twisted double‐layer regions is prepared in situ by rotating and intercalating between graphene domains. Experimental observations suggest that the liquid phase of Cu substrate and gas flow play a crucial role for the formation of tBLGs. These results demonstrate that the liquid Cu is an ideal potential substrate for preparing tBLGs with a full range of twisted angles and studying the formation mechanism of layer‐stacked materials. |
| Author | Wang, Liping Li, Dong Yu, Gui Liu, Shan Liu, Mengya Xue, Xudong Zhou, Xiahong |
| Author_xml | – sequence: 1 givenname: Xudong surname: Xue fullname: Xue, Xudong organization: Chinese Academy of Sciences – sequence: 2 givenname: Xiahong surname: Zhou fullname: Zhou, Xiahong organization: University of Chinese Academy of Sciences – sequence: 3 givenname: Dong surname: Li fullname: Li, Dong organization: University of Chinese Academy of Sciences – sequence: 4 givenname: Mengya surname: Liu fullname: Liu, Mengya organization: Chinese Academy of Sciences – sequence: 5 givenname: Shan surname: Liu fullname: Liu, Shan organization: University of Chinese Academy of Sciences – sequence: 6 givenname: Liping surname: Wang fullname: Wang, Liping email: lpwang@mater.ustb.edu.cn organization: University of Science and Technology Beijing – sequence: 7 givenname: Gui orcidid: 0000-0001-8324-397X surname: Yu fullname: Yu, Gui email: yugui@iccas.ac.cn organization: University of Chinese Academy of Sciences |
| BookMark | eNqFkMFOGzEQhq0KpALl2vNKnBPssdeOT1UIhUYK6qH0bNneMTjarIO9UZRbH4Fn5Em6NBVFlRCnGc3M9_-j_5gcdKlDQj4zOmaUwrltVnEMFIAyKdUHcgRMy5HiNT141X8kp6UsKaWMAYMJPyJffmAbnn49TkvBlWt31XVO2_6-SqG63cbSY1NdxNbuMA8bu77HDqvUVYv4sIlNNdt8IofBtgVP_9YT8vPq6-3s22jx_Xo-my5GXgBXI0BnVXAaHLcN9UpNrHBaIzgpMFgOtQ1C-oCMeQec--CACqcAOdYTCfyEzPe6TbJLs85xZfPOJBvNn0HKd8bmPvoWjVYUOZ8or6gSUnCtGm-Z0FxJqX0tB62zvdY6p4cNlt4s0yZ3w_sGlGJMcV7r4Wq8v_I5lZIxvLgyap4zN8-Zm5fMB0D8B_jY2z6mrs82tm9jeo9tY4u7d0zM9PJm_o_9DViWltw |
| CitedBy_id | crossref_primary_10_1002_adma_202312125 crossref_primary_10_1088_2399_1984_acf0a9 crossref_primary_10_1088_2053_1591_adcff5 crossref_primary_10_1002_adma_202506242 crossref_primary_10_1002_smll_202500628 crossref_primary_10_1002_jrs_6735 crossref_primary_10_1063_5_0170550 |
| Cites_doi | 10.1038/nature26160 10.1002/advs.202103170 10.1021/acs.chemmater.6b03672 10.1021/acs.chemmater.6b01137 10.1002/smll.201805395 10.1021/acsnano.6b02046 10.1021/jacs.9b05705 10.1063/1.3467496 10.1073/pnas.1200339109 10.1021/acs.chemmater.8b03998 10.1088/2053-1583/ab31bd 10.1126/sciadv.abc5555 10.1021/nl301137k 10.1002/adma.200803016 10.1103/PhysRevLett.99.256802 10.1063/1.3691952 10.1038/nnano.2015.322 10.1038/ncomms1702 10.1021/nn302918x 10.1021/nl902948m 10.1021/nn3059828 10.1126/science.aax7864 10.1038/s41524-020-0281-1 10.1038/s41565-019-0622-8 10.1002/adma.201800996 10.1063/1.2768624 10.1002/adma.201404541 10.1002/pssr.201900605 10.1021/acs.nanolett.6b04459 10.1038/s41467-021-22533-1 10.1038/s41586-022-04520-8 10.1038/nature26154 10.1002/adma.201001068 10.1002/adma.201505123 10.1021/nn203700w 10.1002/adma.201405887 10.1038/s41557-021-00865-1 10.1021/jp806045u |
| ContentType | Journal Article |
| Copyright | 2022 The Authors. Advanced Materials Interfaces published by Wiley‐VCH GmbH 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2022 The Authors. Advanced Materials Interfaces published by Wiley‐VCH GmbH – notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M DOA |
| DOI | 10.1002/admi.202201667 |
| DatabaseName | Wiley Online Library Open Access CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
| DatabaseTitleList | CrossRef Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 2196-7350 |
| EndPage | n/a |
| ExternalDocumentID | oai_doaj_org_article_970e3387c707464397dca14937669c56 10_1002_admi_202201667 ADMI202201667 |
| Genre | article |
| GrantInformation_xml | – fundername: Strategic Priority Research Program of the Chinese Academy of Sciences funderid: XDB30000000 – fundername: Beijing National Laboratory for Molecular Sciences funderid: BNLMS‐ CXXM‐202101 – fundername: National Natural Science Foundation of China funderid: 52172054; 22021002 |
| GroupedDBID | 0R~ 1OC 24P 33P AAESR AAHHS AAIHA AAXRX AAZKR ABCUV ABJCF ACAHQ ACCFJ ACCMX ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AENEX AEQDE AFBPY AIACR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB ARCSS AVUZU AZVAB BMXJE BRXPI DCZOG DPXWK EBS G-S GODZA GROUPED_DOAJ LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY~ M~E O9- P2W R.K ROL WBKPD WOHZO WXSBR WYJ ZZTAW AAFWJ AAMMB AAYXX ABJNI ADMLS AEFGJ AFFHD AFKRA AFPKN AGXDD AIDQK AIDYY AIURR ARAPS BENPR BFHJK BGLVJ CCPQU CITATION EJD HCIFZ KB. M7S PDBOC PHGZM PHGZT PQGLB PTHSS SUPJJ 7SR 7U5 8BQ 8FD JG9 L7M |
| ID | FETCH-LOGICAL-c4237-2eba7fb92b3ad0c778a4b99e2b64efa325af46cfe11cb233cfb204b72e3e58623 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 9 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000895522000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2196-7350 |
| IngestDate | Fri Oct 03 12:53:48 EDT 2025 Fri Jul 25 11:47:23 EDT 2025 Sat Nov 29 07:24:20 EST 2025 Tue Nov 18 21:13:52 EST 2025 Wed Jan 22 16:24:20 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | Attribution |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4237-2eba7fb92b3ad0c778a4b99e2b64efa325af46cfe11cb233cfb204b72e3e58623 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-8324-397X |
| OpenAccessLink | https://doaj.org/article/970e3387c707464397dca14937669c56 |
| PQID | 2771173359 |
| PQPubID | 2034582 |
| PageCount | 6 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_970e3387c707464397dca14937669c56 proquest_journals_2771173359 crossref_primary_10_1002_admi_202201667 crossref_citationtrail_10_1002_admi_202201667 wiley_primary_10_1002_admi_202201667_ADMI202201667 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-01-01 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Weinheim |
| PublicationPlace_xml | – name: Weinheim |
| PublicationTitle | Advanced materials interfaces |
| PublicationYear | 2023 |
| Publisher | John Wiley & Sons, Inc Wiley-VCH |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley-VCH |
| References | 2020; 6 2011 2012; 5 3 2012; 100 2015; 27 2021; 12 2009; 21 2018 2018 2020; 556 556 6 2019; 31 2016 2019 2020; 28 15 15 2016 2017; 10 17 2010; 39 2022 2022; 14 605 2007; 91 2020 2019 2022 2019; 14 365 9 6 2017; 29 2012; 6 2013; 7 2008; 112 2019; 141 2012; 12 2010 2016; 22 28 2012 2015; 109 27 2007 2010; 99 10 2016; 11 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_25_2 e_1_2_8_2_2 e_1_2_8_3_1 e_1_2_8_1_2 e_1_2_8_2_1 e_1_2_8_2_4 e_1_2_8_4_2 e_1_2_8_5_1 e_1_2_8_2_3 e_1_2_8_3_2 e_1_2_8_4_1 e_1_2_8_6_2 e_1_2_8_7_1 e_1_2_8_4_3 e_1_2_8_5_2 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_22_1 e_1_2_8_23_1 e_1_2_8_1_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_19_1 e_1_2_8_12_2 e_1_2_8_13_1 e_1_2_8_14_1 e_1_2_8_15_1 e_1_2_8_16_1 e_1_2_8_10_1 e_1_2_8_10_2 e_1_2_8_11_1 e_1_2_8_10_3 e_1_2_8_12_1 |
| References_xml | – volume: 91 year: 2007 publication-title: Appl. Phys. Lett. – volume: 141 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 14 year: 2020 publication-title: NPJ Comput. Mater. – volume: 112 year: 2008 publication-title: J. Phys. Chem. C – volume: 14 365 9 6 start-page: 1036 year: 2020 2019 2022 2019 publication-title: Phys. Status Solidi RRL Science Adv. Sci. 2D Mater. – volume: 6 start-page: 8241 year: 2012 publication-title: ACS Nano – volume: 27 start-page: 1376 year: 2015 publication-title: Adv. Mater. – volume: 100 year: 2012 publication-title: Appl. Phys. Lett. – volume: 39 year: 2010 publication-title: J. Phys. Chem. Ref. Data – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 10 17 start-page: 6725 1467 year: 2016 2017 publication-title: ACS Nano Nano Lett. – volume: 12 start-page: 3162 year: 2012 publication-title: Nano Lett. – volume: 22 28 start-page: 3906 4956 year: 2010 2016 publication-title: Adv. Mater. Adv. Mater. – volume: 14 605 start-page: 267 63 year: 2022 2022 publication-title: Nat. Chem. Nature – volume: 5 3 start-page: 9927 699 year: 2011 2012 publication-title: ACS Nano Nat. Commun. – volume: 28 15 15 start-page: 4583 289 year: 2016 2019 2020 publication-title: Chem. Mater. Small Nat. Nanotechnol. – volume: 99 10 start-page: 804 year: 2007 2010 publication-title: Phys. Rev. Lett. Nano Lett. – volume: 29 start-page: 1022 year: 2017 publication-title: Chem. Mater. – volume: 556 556 6 start-page: 80 43 5555 year: 2018 2018 2020 publication-title: Nature Nature Sci. Adv. – volume: 21 start-page: 2328 year: 2009 publication-title: Adv. Mater. – volume: 7 start-page: 2587 year: 2013 publication-title: ACS Nano – volume: 11 start-page: 426 year: 2016 publication-title: Nat. Nanotechnol. – volume: 109 27 start-page: 7992 2821 year: 2012 2015 publication-title: Proc. Natl. Acad. Sci. U. S. A. Adv. Mater. – volume: 12 start-page: 2391 year: 2021 publication-title: Nat. Commun. – volume: 31 start-page: 1231 year: 2019 publication-title: Chem. Mater. – ident: e_1_2_8_4_2 doi: 10.1038/nature26160 – ident: e_1_2_8_2_3 doi: 10.1002/advs.202103170 – ident: e_1_2_8_20_1 doi: 10.1021/acs.chemmater.6b03672 – ident: e_1_2_8_10_1 doi: 10.1021/acs.chemmater.6b01137 – ident: e_1_2_8_10_2 doi: 10.1002/smll.201805395 – ident: e_1_2_8_6_1 doi: 10.1021/acsnano.6b02046 – ident: e_1_2_8_13_1 doi: 10.1021/jacs.9b05705 – ident: e_1_2_8_19_1 doi: 10.1063/1.3467496 – ident: e_1_2_8_12_1 doi: 10.1073/pnas.1200339109 – ident: e_1_2_8_14_1 doi: 10.1021/acs.chemmater.8b03998 – ident: e_1_2_8_2_4 doi: 10.1088/2053-1583/ab31bd – ident: e_1_2_8_4_3 doi: 10.1126/sciadv.abc5555 – ident: e_1_2_8_18_1 doi: 10.1021/nl301137k – ident: e_1_2_8_23_1 doi: 10.1002/adma.200803016 – ident: e_1_2_8_3_1 doi: 10.1103/PhysRevLett.99.256802 – ident: e_1_2_8_7_1 doi: 10.1063/1.3691952 – ident: e_1_2_8_9_1 doi: 10.1038/nnano.2015.322 – ident: e_1_2_8_25_2 doi: 10.1038/ncomms1702 – ident: e_1_2_8_16_1 doi: 10.1021/nn302918x – ident: e_1_2_8_3_2 doi: 10.1021/nl902948m – ident: e_1_2_8_17_1 doi: 10.1021/nn3059828 – ident: e_1_2_8_2_2 doi: 10.1126/science.aax7864 – ident: e_1_2_8_21_1 doi: 10.1038/s41524-020-0281-1 – ident: e_1_2_8_10_3 doi: 10.1038/s41565-019-0622-8 – ident: e_1_2_8_8_1 doi: 10.1002/adma.201800996 – ident: e_1_2_8_15_1 doi: 10.1063/1.2768624 – ident: e_1_2_8_22_1 doi: 10.1002/adma.201404541 – ident: e_1_2_8_2_1 doi: 10.1002/pssr.201900605 – ident: e_1_2_8_6_2 doi: 10.1021/acs.nanolett.6b04459 – ident: e_1_2_8_11_1 doi: 10.1038/s41467-021-22533-1 – ident: e_1_2_8_5_2 doi: 10.1038/s41586-022-04520-8 – ident: e_1_2_8_4_1 doi: 10.1038/nature26154 – ident: e_1_2_8_1_1 doi: 10.1002/adma.201001068 – ident: e_1_2_8_1_2 doi: 10.1002/adma.201505123 – ident: e_1_2_8_25_1 doi: 10.1021/nn203700w – ident: e_1_2_8_12_2 doi: 10.1002/adma.201405887 – ident: e_1_2_8_5_1 doi: 10.1038/s41557-021-00865-1 – ident: e_1_2_8_24_1 doi: 10.1021/jp806045u |
| SSID | ssj0001121283 |
| Score | 2.3118026 |
| Snippet | Twisted bilayer graphene (tBLG) possesses various novel physical properties. Most of tBLG are fabricated by using artificial methods of stacking or folding... Abstract Twisted bilayer graphene (tBLG) possesses various novel physical properties. Most of tBLG are fabricated by using artificial methods of stacking or... |
| SourceID | doaj proquest crossref wiley |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Bilayers Chemical vapor deposition Domains Gas flow Graphene liquid Cu substrate Liquid phases Physical properties self‐intercalation Substrates twisted bilayer graphene |
| SummonAdditionalLinks | – databaseName: Wiley Online Library Open Access dbid: 24P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jb9QwFLZKCxIXKJsYaCsfkDhZjZfY42Nb6CK1VQ9F6s3y8gyRpjMwC4hbf0J_I78E28mknQNCgmOSl8h6-7NfvofQOxgqW3s3JCnYeyKCZcRqR4mrNQs2eE2DL8Mm1Pn58OpKX9z7i7_Fh-g33LJlFH-dDdy62e4daKgN102q71iKYFKqB2iDUq6yXjNxcbfLQpNrLlicyTIlUbyulsiNFdtd_cRKZCoA_itZ5_3ctQSfw6f_v-xN9KRLPPFeqynP0BqMn6NHpQHUz16kpB1G8dfNbT4Evnajn_go1efzL3gS8eWPrAoB7zcjmxL09MTmxjDAkzE-bb4tmoAPFi_Rp8OPlwfHpBuuQHzuhCEMnFXRaea4DZVXamiF0xqYkwKi5ay2UUgfgVLvGOc-OlYJpxhwqFMZxF-h9fFkDK8RjiC84xQsgBBW2lQUVdKxmJwpcBGrASJLxhrfIY_nARgj02ImM5OZYnqmDND7nv5ri7nxR8r9LKeeKmNllxuT6WfTmZ7RqoJUiCuv8myVnIAFb1NhmFyr1L6WA7S1lLLpDHhmmFKUKs5rPUCsyPMvSzF7H85O-qs3__LSW_Q4D7NvN3i20Pp8uoBt9NB_nzez6U5R7N_C4_ZQ priority: 102 providerName: Wiley-Blackwell |
| Title | Self‐Assembly Growth of Twisted Bilayer Graphene on Liquid Cu |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadmi.202201667 https://www.proquest.com/docview/2771173359 https://doaj.org/article/970e3387c707464397dca14937669c56 |
| Volume | 10 |
| WOSCitedRecordID | wos000895522000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2196-7350 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001121283 issn: 2196-7350 databaseCode: DOA dateStart: 20230101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2196-7350 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001121283 issn: 2196-7350 databaseCode: M~E dateStart: 20140101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 2196-7350 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001121283 issn: 2196-7350 databaseCode: 24P dateStart: 20230101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4qCl7EJ64vchA8FdskbZqjbwUVDwreQh4TLKy76u4qXsSf4G_0l5ik3XU9iBcvhbZzGGaazDfp8H0IbUPJVW50mfhibxJmFUmU0Fmic0GsskZk1kSxCX55Wd7eiqsxqa8wE1bTA9eB2xU8Bd9GccODMkYon9YoD-v9wiiEySPZdsrFWDMVT1cyvyWXdMjSmJJdZe8r3w4SX_CKKCr_XYUiWf8PhDmOU2OhOZ5Hcw1CxHu1ZwtoAjqLaCZOaprekkfX0Haf7x_hb-29br_iE99I9-9w1-Hrl5Azi_ertvJI2r9RYYILcLeDz6vHQWXxwWAZ3RwfXR-cJo0KQmLCyEpCQCvutCCaKpsazkvFtBBAdMHAKUpy5VhhHGSZ0YRS4zRJmeYEKOS-X6EraKrT7cAqwg6Y0TQDBcCYKpTvXtJCE-d3PaDMpS2UDKMiTUMRHpQq2rImNyYyRFGOothCOyP7h5oc41fL_RDkkVUgtY4PfKplk2r5V6pbaGOYItmstJ4knGcZpzQXLURi2v5wRe4dXpyN7tb-w7F1NBtU6OuTmQ001X8awCaaNs_9qve0hSYJu9qK36e_XrwdfQHRp-TO |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagBdEL5SkWWvABiZPVxHbs9bEt9CG2qx4WqTfLjzFE2u7CPkC99Sf0N_JLsJ1syh4QEuKYZBJZM56nJ98g9Bb60lTO9kl09o5wbygxypbEVop6450qvcvDJuRw2L-4UOdtN2H6F6bBh-gKbkkzsr1OCp4K0nu3qKHGX9YxwaPRhQkh76JNHl1NGmJA-fltmaWMtjmDcUbVFESyqlhBNxZ0b_0Ta64pI_ivhZ2_B6_Z-xxt_4d1P0IP29AT7zd75TG6A5Mn6H5uAXXzpzFsh3H4eX2TjoEv7fgKH8cMffEFTwMe_UibweODemxiiB6fmNQaBng6wYP627L2-HD5DH06-jA6PCHteAXiUi8MoWCNDFZRy4wvnJR9w61SQK3gEAyjlQlcuABl6SxlzAVLC24lBQZVTITYc7QxmU7gBcIBuLOsBAPAuREmpkWFsDREcwqMh6KHyIqz2rXY42kExlg3qMlUJ6bojik99K6j_9qgbvyR8iAJqqNKaNn5xnT2WbfKp5UsIKbi0sk0XSWFYN6ZmBpG4yqUq0QP7azErFsVnmsqZVlKxirVQzQL9C9L0fvvz067q5f_8tIb9OBkdDbQg9Phx1doK422b8o9O2hjMVvCLrrnvi_q-ex13uW_AG0m-jI |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Jb9QwFLagLOql7GJoCz4gcbKa2I49PnZhSkUZzaFIvVleniHSdKbMQtVbfwK_kV-C7WRS5oCQEMckL5H19me_fA-ht9CXpnK2T2Kwd4R7Q4lRtiS2UtQb71TpXR42IYfD_vm5GrXdhOlfmAYfottwS5aR_XUycLj0Ye8WNdT4izoWeDSGMCHkXXSPV9HRJnBnPrrdZimjb85gnNE0BZGsKlbQjQXdW__EWmjKCP5raefvyWuOPoNH_2Hdj9FWm3ri_UZXnqA7MHmKHuQWUDd_FtN2GIefNz_SMfCFHV_j41ihL77iacBnV0kZPD6oxyam6PGJSa1hgKcTfFp_W9YeHy6fo8-D92eHH0g7XoG41AtDKFgjg1XUMuMLJ2XfcKsUUCs4BMNoZQIXLkBZOksZc8HSgltJgUEVCyH2Am1MphN4iXAA7iwrwQBwboSJZVEhLA3RnQLjoeghsuKsdi32eBqBMdYNajLViSm6Y0oPvevoLxvUjT9SHiRBdVQJLTvfmM6-6Nb4tJIFxFJcOpmmq6QUzDsTS8PoXIVyleihnZWYdWvCc02lLEvJWKV6iGaB_mUpev_o00l39epfXnqDHo6OBvr0ZPhxG22myfbNbs8O2ljMlrCL7rvvi3o-e52V_BcZEPm2 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self%E2%80%90Assembly+Growth+of+Twisted+Bilayer+Graphene+on+Liquid+Cu&rft.jtitle=Advanced+materials+interfaces&rft.au=Xue%2C+Xudong&rft.au=Zhou%2C+Xiahong&rft.au=Li%2C+Dong&rft.au=Liu%2C+Mengya&rft.date=2023-01-01&rft.issn=2196-7350&rft.eissn=2196-7350&rft.volume=10&rft.issue=3&rft_id=info:doi/10.1002%2Fadmi.202201667&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_admi_202201667 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2196-7350&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2196-7350&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2196-7350&client=summon |