Self‐Assembly Growth of Twisted Bilayer Graphene on Liquid Cu

Twisted bilayer graphene (tBLG) possesses various novel physical properties. Most of tBLG are fabricated by using artificial methods of stacking or folding single‐layer graphene. Chemical vapor deposition (CVD) has been verified that it holds great potential for preparation of large‐size high‐qualit...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Advanced materials interfaces Ročník 10; číslo 3
Hlavní autori: Xue, Xudong, Zhou, Xiahong, Li, Dong, Liu, Mengya, Liu, Shan, Wang, Liping, Yu, Gui
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Weinheim John Wiley & Sons, Inc 01.01.2023
Wiley-VCH
Predmet:
ISSN:2196-7350, 2196-7350
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Twisted bilayer graphene (tBLG) possesses various novel physical properties. Most of tBLG are fabricated by using artificial methods of stacking or folding single‐layer graphene. Chemical vapor deposition (CVD) has been verified that it holds great potential for preparation of large‐size high‐quality graphene. Therefore, it is significant for preparing tBLG in situ by using CVD technology. In this work, a novel approach is developed to directly prepare tBLGs on liquid Cu substrate. When the growth temperature exceeds a certain critical value, the state of aligned high‐quality single‐layer graphene domains grown on liquid Cu will be broken. Then, tBLG with twisted double‐layer regions is prepared in situ by rotating and intercalating between graphene domains. Experimental observations suggest that the liquid phase of Cu substrate and gas flow play a crucial role for the formation of tBLGs. These results demonstrate that the liquid Cu is an ideal potential substrate for preparing tBLGs with a full range of twisted angles and studying the formation mechanism of layer‐stacked materials. Twisted bilayer graphene (tBLG) is prepared by chemical vapor deposition on liquid Cu. When the growth temperature exceeds a certain critical value, the state of aligned high‐quality single‐layer graphene domains grown on liquid Cu is broken. Then, tBLG with twisted double‐layer regions is obtained in situ by rotating and intercalating between graphene domains.
AbstractList Twisted bilayer graphene (tBLG) possesses various novel physical properties. Most of tBLG are fabricated by using artificial methods of stacking or folding single‐layer graphene. Chemical vapor deposition (CVD) has been verified that it holds great potential for preparation of large‐size high‐quality graphene. Therefore, it is significant for preparing tBLG in situ by using CVD technology. In this work, a novel approach is developed to directly prepare tBLGs on liquid Cu substrate. When the growth temperature exceeds a certain critical value, the state of aligned high‐quality single‐layer graphene domains grown on liquid Cu will be broken. Then, tBLG with twisted double‐layer regions is prepared in situ by rotating and intercalating between graphene domains. Experimental observations suggest that the liquid phase of Cu substrate and gas flow play a crucial role for the formation of tBLGs. These results demonstrate that the liquid Cu is an ideal potential substrate for preparing tBLGs with a full range of twisted angles and studying the formation mechanism of layer‐stacked materials. Twisted bilayer graphene (tBLG) is prepared by chemical vapor deposition on liquid Cu. When the growth temperature exceeds a certain critical value, the state of aligned high‐quality single‐layer graphene domains grown on liquid Cu is broken. Then, tBLG with twisted double‐layer regions is obtained in situ by rotating and intercalating between graphene domains.
Abstract Twisted bilayer graphene (tBLG) possesses various novel physical properties. Most of tBLG are fabricated by using artificial methods of stacking or folding single‐layer graphene. Chemical vapor deposition (CVD) has been verified that it holds great potential for preparation of large‐size high‐quality graphene. Therefore, it is significant for preparing tBLG in situ by using CVD technology. In this work, a novel approach is developed to directly prepare tBLGs on liquid Cu substrate. When the growth temperature exceeds a certain critical value, the state of aligned high‐quality single‐layer graphene domains grown on liquid Cu will be broken. Then, tBLG with twisted double‐layer regions is prepared in situ by rotating and intercalating between graphene domains. Experimental observations suggest that the liquid phase of Cu substrate and gas flow play a crucial role for the formation of tBLGs. These results demonstrate that the liquid Cu is an ideal potential substrate for preparing tBLGs with a full range of twisted angles and studying the formation mechanism of layer‐stacked materials.
Twisted bilayer graphene (tBLG) possesses various novel physical properties. Most of tBLG are fabricated by using artificial methods of stacking or folding single‐layer graphene. Chemical vapor deposition (CVD) has been verified that it holds great potential for preparation of large‐size high‐quality graphene. Therefore, it is significant for preparing tBLG in situ by using CVD technology. In this work, a novel approach is developed to directly prepare tBLGs on liquid Cu substrate. When the growth temperature exceeds a certain critical value, the state of aligned high‐quality single‐layer graphene domains grown on liquid Cu will be broken. Then, tBLG with twisted double‐layer regions is prepared in situ by rotating and intercalating between graphene domains. Experimental observations suggest that the liquid phase of Cu substrate and gas flow play a crucial role for the formation of tBLGs. These results demonstrate that the liquid Cu is an ideal potential substrate for preparing tBLGs with a full range of twisted angles and studying the formation mechanism of layer‐stacked materials.
Author Wang, Liping
Li, Dong
Yu, Gui
Liu, Shan
Liu, Mengya
Xue, Xudong
Zhou, Xiahong
Author_xml – sequence: 1
  givenname: Xudong
  surname: Xue
  fullname: Xue, Xudong
  organization: Chinese Academy of Sciences
– sequence: 2
  givenname: Xiahong
  surname: Zhou
  fullname: Zhou, Xiahong
  organization: University of Chinese Academy of Sciences
– sequence: 3
  givenname: Dong
  surname: Li
  fullname: Li, Dong
  organization: University of Chinese Academy of Sciences
– sequence: 4
  givenname: Mengya
  surname: Liu
  fullname: Liu, Mengya
  organization: Chinese Academy of Sciences
– sequence: 5
  givenname: Shan
  surname: Liu
  fullname: Liu, Shan
  organization: University of Chinese Academy of Sciences
– sequence: 6
  givenname: Liping
  surname: Wang
  fullname: Wang, Liping
  email: lpwang@mater.ustb.edu.cn
  organization: University of Science and Technology Beijing
– sequence: 7
  givenname: Gui
  orcidid: 0000-0001-8324-397X
  surname: Yu
  fullname: Yu, Gui
  email: yugui@iccas.ac.cn
  organization: University of Chinese Academy of Sciences
BookMark eNqFkMFOGzEQhq0KpALl2vNKnBPssdeOT1UIhUYK6qH0bNneMTjarIO9UZRbH4Fn5Em6NBVFlRCnGc3M9_-j_5gcdKlDQj4zOmaUwrltVnEMFIAyKdUHcgRMy5HiNT141X8kp6UsKaWMAYMJPyJffmAbnn49TkvBlWt31XVO2_6-SqG63cbSY1NdxNbuMA8bu77HDqvUVYv4sIlNNdt8IofBtgVP_9YT8vPq6-3s22jx_Xo-my5GXgBXI0BnVXAaHLcN9UpNrHBaIzgpMFgOtQ1C-oCMeQec--CACqcAOdYTCfyEzPe6TbJLs85xZfPOJBvNn0HKd8bmPvoWjVYUOZ8or6gSUnCtGm-Z0FxJqX0tB62zvdY6p4cNlt4s0yZ3w_sGlGJMcV7r4Wq8v_I5lZIxvLgyap4zN8-Zm5fMB0D8B_jY2z6mrs82tm9jeo9tY4u7d0zM9PJm_o_9DViWltw
CitedBy_id crossref_primary_10_1002_adma_202312125
crossref_primary_10_1088_2399_1984_acf0a9
crossref_primary_10_1088_2053_1591_adcff5
crossref_primary_10_1002_adma_202506242
crossref_primary_10_1002_smll_202500628
crossref_primary_10_1002_jrs_6735
crossref_primary_10_1063_5_0170550
Cites_doi 10.1038/nature26160
10.1002/advs.202103170
10.1021/acs.chemmater.6b03672
10.1021/acs.chemmater.6b01137
10.1002/smll.201805395
10.1021/acsnano.6b02046
10.1021/jacs.9b05705
10.1063/1.3467496
10.1073/pnas.1200339109
10.1021/acs.chemmater.8b03998
10.1088/2053-1583/ab31bd
10.1126/sciadv.abc5555
10.1021/nl301137k
10.1002/adma.200803016
10.1103/PhysRevLett.99.256802
10.1063/1.3691952
10.1038/nnano.2015.322
10.1038/ncomms1702
10.1021/nn302918x
10.1021/nl902948m
10.1021/nn3059828
10.1126/science.aax7864
10.1038/s41524-020-0281-1
10.1038/s41565-019-0622-8
10.1002/adma.201800996
10.1063/1.2768624
10.1002/adma.201404541
10.1002/pssr.201900605
10.1021/acs.nanolett.6b04459
10.1038/s41467-021-22533-1
10.1038/s41586-022-04520-8
10.1038/nature26154
10.1002/adma.201001068
10.1002/adma.201505123
10.1021/nn203700w
10.1002/adma.201405887
10.1038/s41557-021-00865-1
10.1021/jp806045u
ContentType Journal Article
Copyright 2022 The Authors. Advanced Materials Interfaces published by Wiley‐VCH GmbH
2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. Advanced Materials Interfaces published by Wiley‐VCH GmbH
– notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
DOA
DOI 10.1002/admi.202201667
DatabaseName Wiley Online Library Open Access
CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList

Materials Research Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2196-7350
EndPage n/a
ExternalDocumentID oai_doaj_org_article_970e3387c707464397dca14937669c56
10_1002_admi_202201667
ADMI202201667
Genre article
GrantInformation_xml – fundername: Strategic Priority Research Program of the Chinese Academy of Sciences
  funderid: XDB30000000
– fundername: Beijing National Laboratory for Molecular Sciences
  funderid: BNLMS‐ CXXM‐202101
– fundername: National Natural Science Foundation of China
  funderid: 52172054; 22021002
GroupedDBID 0R~
1OC
24P
33P
AAESR
AAHHS
AAIHA
AAXRX
AAZKR
ABCUV
ABJCF
ACAHQ
ACCFJ
ACCMX
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AENEX
AEQDE
AFBPY
AIACR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ARCSS
AVUZU
AZVAB
BMXJE
BRXPI
DCZOG
DPXWK
EBS
G-S
GODZA
GROUPED_DOAJ
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY~
M~E
O9-
P2W
R.K
ROL
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
AAFWJ
AAMMB
AAYXX
ABJNI
ADMLS
AEFGJ
AFFHD
AFKRA
AFPKN
AGXDD
AIDQK
AIDYY
AIURR
ARAPS
BENPR
BFHJK
BGLVJ
CCPQU
CITATION
EJD
HCIFZ
KB.
M7S
PDBOC
PHGZM
PHGZT
PQGLB
PTHSS
SUPJJ
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c4237-2eba7fb92b3ad0c778a4b99e2b64efa325af46cfe11cb233cfb204b72e3e58623
IEDL.DBID DOA
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000895522000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2196-7350
IngestDate Fri Oct 03 12:53:48 EDT 2025
Fri Jul 25 11:47:23 EDT 2025
Sat Nov 29 07:24:20 EST 2025
Tue Nov 18 21:13:52 EST 2025
Wed Jan 22 16:24:20 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4237-2eba7fb92b3ad0c778a4b99e2b64efa325af46cfe11cb233cfb204b72e3e58623
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8324-397X
OpenAccessLink https://doaj.org/article/970e3387c707464397dca14937669c56
PQID 2771173359
PQPubID 2034582
PageCount 6
ParticipantIDs doaj_primary_oai_doaj_org_article_970e3387c707464397dca14937669c56
proquest_journals_2771173359
crossref_primary_10_1002_admi_202201667
crossref_citationtrail_10_1002_admi_202201667
wiley_primary_10_1002_admi_202201667_ADMI202201667
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced materials interfaces
PublicationYear 2023
Publisher John Wiley & Sons, Inc
Wiley-VCH
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley-VCH
References 2020; 6
2011 2012; 5 3
2012; 100
2015; 27
2021; 12
2009; 21
2018 2018 2020; 556 556 6
2019; 31
2016 2019 2020; 28 15 15
2016 2017; 10 17
2010; 39
2022 2022; 14 605
2007; 91
2020 2019 2022 2019; 14 365 9 6
2017; 29
2012; 6
2013; 7
2008; 112
2019; 141
2012; 12
2010 2016; 22 28
2012 2015; 109 27
2007 2010; 99 10
2016; 11
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_25_2
e_1_2_8_2_2
e_1_2_8_3_1
e_1_2_8_1_2
e_1_2_8_2_1
e_1_2_8_2_4
e_1_2_8_4_2
e_1_2_8_5_1
e_1_2_8_2_3
e_1_2_8_3_2
e_1_2_8_4_1
e_1_2_8_6_2
e_1_2_8_7_1
e_1_2_8_4_3
e_1_2_8_5_2
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_1_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_12_2
e_1_2_8_13_1
e_1_2_8_14_1
e_1_2_8_15_1
e_1_2_8_16_1
e_1_2_8_10_1
e_1_2_8_10_2
e_1_2_8_11_1
e_1_2_8_10_3
e_1_2_8_12_1
References_xml – volume: 91
  year: 2007
  publication-title: Appl. Phys. Lett.
– volume: 141
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 14
  year: 2020
  publication-title: NPJ Comput. Mater.
– volume: 112
  year: 2008
  publication-title: J. Phys. Chem. C
– volume: 14 365 9 6
  start-page: 1036
  year: 2020 2019 2022 2019
  publication-title: Phys. Status Solidi RRL Science Adv. Sci. 2D Mater.
– volume: 6
  start-page: 8241
  year: 2012
  publication-title: ACS Nano
– volume: 27
  start-page: 1376
  year: 2015
  publication-title: Adv. Mater.
– volume: 100
  year: 2012
  publication-title: Appl. Phys. Lett.
– volume: 39
  year: 2010
  publication-title: J. Phys. Chem. Ref. Data
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 10 17
  start-page: 6725 1467
  year: 2016 2017
  publication-title: ACS Nano Nano Lett.
– volume: 12
  start-page: 3162
  year: 2012
  publication-title: Nano Lett.
– volume: 22 28
  start-page: 3906 4956
  year: 2010 2016
  publication-title: Adv. Mater. Adv. Mater.
– volume: 14 605
  start-page: 267 63
  year: 2022 2022
  publication-title: Nat. Chem. Nature
– volume: 5 3
  start-page: 9927 699
  year: 2011 2012
  publication-title: ACS Nano Nat. Commun.
– volume: 28 15 15
  start-page: 4583 289
  year: 2016 2019 2020
  publication-title: Chem. Mater. Small Nat. Nanotechnol.
– volume: 99 10
  start-page: 804
  year: 2007 2010
  publication-title: Phys. Rev. Lett. Nano Lett.
– volume: 29
  start-page: 1022
  year: 2017
  publication-title: Chem. Mater.
– volume: 556 556 6
  start-page: 80 43 5555
  year: 2018 2018 2020
  publication-title: Nature Nature Sci. Adv.
– volume: 21
  start-page: 2328
  year: 2009
  publication-title: Adv. Mater.
– volume: 7
  start-page: 2587
  year: 2013
  publication-title: ACS Nano
– volume: 11
  start-page: 426
  year: 2016
  publication-title: Nat. Nanotechnol.
– volume: 109 27
  start-page: 7992 2821
  year: 2012 2015
  publication-title: Proc. Natl. Acad. Sci. U. S. A. Adv. Mater.
– volume: 12
  start-page: 2391
  year: 2021
  publication-title: Nat. Commun.
– volume: 31
  start-page: 1231
  year: 2019
  publication-title: Chem. Mater.
– ident: e_1_2_8_4_2
  doi: 10.1038/nature26160
– ident: e_1_2_8_2_3
  doi: 10.1002/advs.202103170
– ident: e_1_2_8_20_1
  doi: 10.1021/acs.chemmater.6b03672
– ident: e_1_2_8_10_1
  doi: 10.1021/acs.chemmater.6b01137
– ident: e_1_2_8_10_2
  doi: 10.1002/smll.201805395
– ident: e_1_2_8_6_1
  doi: 10.1021/acsnano.6b02046
– ident: e_1_2_8_13_1
  doi: 10.1021/jacs.9b05705
– ident: e_1_2_8_19_1
  doi: 10.1063/1.3467496
– ident: e_1_2_8_12_1
  doi: 10.1073/pnas.1200339109
– ident: e_1_2_8_14_1
  doi: 10.1021/acs.chemmater.8b03998
– ident: e_1_2_8_2_4
  doi: 10.1088/2053-1583/ab31bd
– ident: e_1_2_8_4_3
  doi: 10.1126/sciadv.abc5555
– ident: e_1_2_8_18_1
  doi: 10.1021/nl301137k
– ident: e_1_2_8_23_1
  doi: 10.1002/adma.200803016
– ident: e_1_2_8_3_1
  doi: 10.1103/PhysRevLett.99.256802
– ident: e_1_2_8_7_1
  doi: 10.1063/1.3691952
– ident: e_1_2_8_9_1
  doi: 10.1038/nnano.2015.322
– ident: e_1_2_8_25_2
  doi: 10.1038/ncomms1702
– ident: e_1_2_8_16_1
  doi: 10.1021/nn302918x
– ident: e_1_2_8_3_2
  doi: 10.1021/nl902948m
– ident: e_1_2_8_17_1
  doi: 10.1021/nn3059828
– ident: e_1_2_8_2_2
  doi: 10.1126/science.aax7864
– ident: e_1_2_8_21_1
  doi: 10.1038/s41524-020-0281-1
– ident: e_1_2_8_10_3
  doi: 10.1038/s41565-019-0622-8
– ident: e_1_2_8_8_1
  doi: 10.1002/adma.201800996
– ident: e_1_2_8_15_1
  doi: 10.1063/1.2768624
– ident: e_1_2_8_22_1
  doi: 10.1002/adma.201404541
– ident: e_1_2_8_2_1
  doi: 10.1002/pssr.201900605
– ident: e_1_2_8_6_2
  doi: 10.1021/acs.nanolett.6b04459
– ident: e_1_2_8_11_1
  doi: 10.1038/s41467-021-22533-1
– ident: e_1_2_8_5_2
  doi: 10.1038/s41586-022-04520-8
– ident: e_1_2_8_4_1
  doi: 10.1038/nature26154
– ident: e_1_2_8_1_1
  doi: 10.1002/adma.201001068
– ident: e_1_2_8_1_2
  doi: 10.1002/adma.201505123
– ident: e_1_2_8_25_1
  doi: 10.1021/nn203700w
– ident: e_1_2_8_12_2
  doi: 10.1002/adma.201405887
– ident: e_1_2_8_5_1
  doi: 10.1038/s41557-021-00865-1
– ident: e_1_2_8_24_1
  doi: 10.1021/jp806045u
SSID ssj0001121283
Score 2.3118973
Snippet Twisted bilayer graphene (tBLG) possesses various novel physical properties. Most of tBLG are fabricated by using artificial methods of stacking or folding...
Abstract Twisted bilayer graphene (tBLG) possesses various novel physical properties. Most of tBLG are fabricated by using artificial methods of stacking or...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Bilayers
Chemical vapor deposition
Domains
Gas flow
Graphene
liquid Cu substrate
Liquid phases
Physical properties
self‐intercalation
Substrates
twisted bilayer graphene
SummonAdditionalLinks – databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZKCxKXtrzElrbyAYlTVMd2PPWxLfQhlaqHgnqzbMeGSNtd2AeIGz-B38gvYexk0-4BIdFjEieyPA9_Mxl_Q8hriLLyUrHCV6jBktW6cN6lovGaiYhuU-Xj0R_P4eJi__paX945xd_yQ_QJt2QZ2V8nA7duundLGmrrmwbjO447mFLwgKyVpYCk11xe3mZZSnTNmYsTLVMVICq2YG5kfG_5E0s7UybwX0Kdd7Fr3nyON-4_7U2y3gFPetBqyhOyEkZPyaNcAOqnzxC0h2H8_fNX-gl844Y_6AnG57PPdBzp1fekCjU9bIYWATo-sakwLNDxiJ43X-dNTY_mz8mH43dXR6dF11yh8KkSpuDBWYhOcydszTzAvpVO68CdkiFawSsbpfIxlCXKTggfHWfSAQ8iVBgGiRdkdTQehZeEVswhrGTgMNaUMoKLwjIvtAQfIsLJASkWC2t8xzyeGmAMTcuZzE1aFNMvyoC86cd_aTk3_jryMMmpH5W4svON8eST6UzPaGABA3HwkHqrJABWe4uBIbpWpX2lBmR7IWXTGfDUcICyBCEqPSA8y_MfUzEHb9-f9Vdb__PSK_I4NbNvEzzbZHU2mYcd8tB_mzXTyW5W7D-STvRT
  priority: 102
  providerName: Wiley-Blackwell
Title Self‐Assembly Growth of Twisted Bilayer Graphene on Liquid Cu
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadmi.202201667
https://www.proquest.com/docview/2771173359
https://doaj.org/article/970e3387c707464397dca14937669c56
Volume 10
WOSCitedRecordID wos000895522000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2196-7350
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001121283
  issn: 2196-7350
  databaseCode: DOA
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2196-7350
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001121283
  issn: 2196-7350
  databaseCode: M~E
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 2196-7350
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001121283
  issn: 2196-7350
  databaseCode: 24P
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4qCl7EJ64vchA8FdMkbTZH3woqHlS8hSRNsLAPdXcVL-JP8Df6S5yk3XU9iBcvhbZzCN8kmW_S6TcIbQvPM8tzktgMZjAnhUyMNaFovCDMw7aZx9-jb8_F5WXz7k5ejbX6CjVhlTxwBdyuFMRBGiWsCJ0xQvgsrAZaDwsjlzaLYttEyLFkKp6upLAlN9lQpZHQXV20S0gHKQS8PDaV_45CUaz_B8Mc56kx0BzPo7maIeK9amQLaMJ1FtFMrNS0vSVg167lP98_wtfatmm94hNIpPv3uOvx9UvwWYH3y5YGJg1vdKjgcrjbwefl46As8MFgGd0cH10fnCZ1F4TEhpKVhDqjhTeSGqYLYoVoam6kdNTk3HnNaKY9z613aQogM2a9oYQbQR1zGeQrbAVNdbodt4pwRgzwPyIMJIWce2E808QyyYV1HnhfAyVDVJStJcJDp4qWqsSNqQooqhGKDbQzsn-oxDF-tdwPII-sgqh1fACuVrWr1V-ubqCNoYtUvdJ6igqRpoKxTDYQjW77Yyhq7_DibHS39h8DW0ezoQt9dTKzgab6TwO3iabtc7_sPW2hScqvtuL8hOvF29EX2Ifi0Q
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELaggODCG7FQwAckTlEd2_HUx7ZQWrFd9bCg3izbsUuk7S7sA8SNn8Bv5JcwdrIpe0BIiGMSJ7I8D38zGX9DyEuIsvJSscJXqMGS1bpw3qWi8ZqJiG5T5ePRH4YwGu2enenTrpownYVp-SH6hFuyjOyvk4GnhPTOJWuorS8aDPA4bmFKwVVyTeJWk5oYcHl6mWYp0TdnMk40TVWAqNiaupHxnc1PbGxNmcF_A3b-Dl7z7nN45z_M-y653UFPutfqyj1yJUzvkxu5BNQvHiBsD5P48_uP9Bv4wk2-0bcYoS8_0lmk469JGWq630wsQnR8YlNpWKCzKR02n1dNTQ9WD8n7wzfjg6Oia69Q-FQLU_DgLESnuRO2Zh5g10qndeBOyRCt4JWNUvkYyhKlJ4SPjjPpgAcRKgyExCOyNZ1Nw2NCK-YQWDJwGG1KGcFFYZkXWoIPEQHlgBTrlTW-4x5PLTAmpmVN5iYtiukXZUBe9eM_tawbfxy5nwTVj0ps2fnGbH5uOuMzGljAUBw8pO4qCYLV3mJoiM5VaV-pAdlei9l0JrwwHKAsQYhKDwjPAv3LVMze65Pj_urJv7z0gtw8Gp8MzfB49O4puZVa27fpnm2ytZyvwjNy3X9ZNov586zlvwAiJ_g1
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Jb9QwFLagLOJSdnWggA9InKI6Xutjt4GKYTSHgnqzbMcukaYz7SxUvfET-I38Ep6dTMocEBLimMSJLL_F33t5_h5Cb1XkwnNJCi9AgzmpdOG8S0XjFWER3KbMx6O_DNRwuHt6qkdtNWE6C9PwQ3QJt2QZ2V8nAw8XVdy5YQ211XkNAR6FLUxKdRvd4QIcbSJ35qObNEsJvjmTcYJpykIxQVbUjYTurH9ibWvKDP5rsPN38Jp3n_7D_zDvR2izhZ54r9GVx-hWmDxB93IJqJ8_BdgexvHn9x_pN_C5G1_j9xChL77iacQnV0kZKrxfjy1AdHhiU2lYwNMJHtSXy7rCB8tn6HP_6OTgQ9G2Vyh8qoUpaHBWRaepY7YiXqldy53WgTrJQ7SMChu59DGUJUiPMR8dJdwpGlgQEAix52hjMp2ELYQFcQAsiXIQbXIelYvMEs80Vz5EAJQ9VKxW1viWezy1wBibhjWZmrQopluUHnrXjb9oWDf-OHI_Caobldiy843p7My0xme0IgFCceVV6q6SIFjlLYSG4Fyl9kL20PZKzKY14bmhSpWlYkzoHqJZoH-Zitk7_HTcXb34l5feoPujw74ZHA8_vkQPUmf7JtuzjTYWs2V4he76b4t6PnudlfwXz__3uQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self%E2%80%90Assembly+Growth+of+Twisted+Bilayer+Graphene+on+Liquid+Cu&rft.jtitle=Advanced+materials+interfaces&rft.au=Xue%2C+Xudong&rft.au=Zhou%2C+Xiahong&rft.au=Li%2C+Dong&rft.au=Liu%2C+Mengya&rft.date=2023-01-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=2196-7350&rft.volume=10&rft.issue=3&rft_id=info:doi/10.1002%2Fadmi.202201667&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2196-7350&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2196-7350&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2196-7350&client=summon