Projected Mushroom Type Phase‐Change Memory

Phase‐change memory devices have found applications in in‐memory computing where the physical attributes of these devices are exploited to compute in places without the need to shuttle data between memory and processing units. However, nonidealities such as temporal variations in the electrical resi...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Advanced functional materials Ročník 31; číslo 49
Hlavní autori: Ghazi Sarwat, Syed, Philip, Timothy M., Chen, Ching‐Tzu, Kersting, Benedikt, Bruce, Robert L., Cheng, Cheng‐Wei, Li, Ning, Saulnier, Nicole, BrightSky, Matthew, Sebastian, Abu
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Hoboken Wiley Subscription Services, Inc 01.12.2021
Predmet:
ISSN:1616-301X, 1616-3028
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Phase‐change memory devices have found applications in in‐memory computing where the physical attributes of these devices are exploited to compute in places without the need to shuttle data between memory and processing units. However, nonidealities such as temporal variations in the electrical resistance have a detrimental impact on the achievable computational precision. To address this, a promising approach is projecting the phase configuration of phase change material onto some stable element within the device. Here, the projection mechanism in a prominent phase‐change memory device architecture, namely mushroom‐type phase‐change memory, is investigated. Using nanoscale projected Ge2Sb2Te5 devices, the key attributes of state‐dependent resistance, drift coefficients, and phase configurations are studied, and using them how these devices fundamentally work is understood. Nonvolatile memory devices, which can both store and compute information are emerging building blocks for brain‐inspired and in‐memory computing. Here, the nuts and bolts of a “projected” mushroom type phase change computational device that can decouple the device's readout characteristics from the noisy properties of the phase change material are discussed.
AbstractList Phase‐change memory devices have found applications in in‐memory computing where the physical attributes of these devices are exploited to compute in places without the need to shuttle data between memory and processing units. However, nonidealities such as temporal variations in the electrical resistance have a detrimental impact on the achievable computational precision. To address this, a promising approach is projecting the phase configuration of phase change material onto some stable element within the device. Here, the projection mechanism in a prominent phase‐change memory device architecture, namely mushroom‐type phase‐change memory, is investigated. Using nanoscale projected Ge2Sb2Te5 devices, the key attributes of state‐dependent resistance, drift coefficients, and phase configurations are studied, and using them how these devices fundamentally work is understood.
Phase‐change memory devices have found applications in in‐memory computing where the physical attributes of these devices are exploited to compute in places without the need to shuttle data between memory and processing units. However, nonidealities such as temporal variations in the electrical resistance have a detrimental impact on the achievable computational precision. To address this, a promising approach is projecting the phase configuration of phase change material onto some stable element within the device. Here, the projection mechanism in a prominent phase‐change memory device architecture, namely mushroom‐type phase‐change memory, is investigated. Using nanoscale projected Ge 2 Sb 2 Te 5 devices, the key attributes of state‐dependent resistance, drift coefficients, and phase configurations are studied, and using them how these devices fundamentally work is understood.
Phase‐change memory devices have found applications in in‐memory computing where the physical attributes of these devices are exploited to compute in places without the need to shuttle data between memory and processing units. However, nonidealities such as temporal variations in the electrical resistance have a detrimental impact on the achievable computational precision. To address this, a promising approach is projecting the phase configuration of phase change material onto some stable element within the device. Here, the projection mechanism in a prominent phase‐change memory device architecture, namely mushroom‐type phase‐change memory, is investigated. Using nanoscale projected Ge2Sb2Te5 devices, the key attributes of state‐dependent resistance, drift coefficients, and phase configurations are studied, and using them how these devices fundamentally work is understood. Nonvolatile memory devices, which can both store and compute information are emerging building blocks for brain‐inspired and in‐memory computing. Here, the nuts and bolts of a “projected” mushroom type phase change computational device that can decouple the device's readout characteristics from the noisy properties of the phase change material are discussed.
Author Philip, Timothy M.
Li, Ning
Saulnier, Nicole
Kersting, Benedikt
Cheng, Cheng‐Wei
Bruce, Robert L.
Sebastian, Abu
BrightSky, Matthew
Chen, Ching‐Tzu
Ghazi Sarwat, Syed
Author_xml – sequence: 1
  givenname: Syed
  surname: Ghazi Sarwat
  fullname: Ghazi Sarwat, Syed
  email: ghs@zurich.ibm.com
  organization: IBM Research – Europe
– sequence: 2
  givenname: Timothy M.
  surname: Philip
  fullname: Philip, Timothy M.
  organization: IBM Research AI Hardware Center – Albany
– sequence: 3
  givenname: Ching‐Tzu
  surname: Chen
  fullname: Chen, Ching‐Tzu
  organization: IBM Research AI Hardware Center – Albany
– sequence: 4
  givenname: Benedikt
  surname: Kersting
  fullname: Kersting, Benedikt
  organization: IBM Research – Europe
– sequence: 5
  givenname: Robert L.
  surname: Bruce
  fullname: Bruce, Robert L.
  organization: IBM Research – Yorktown Heights
– sequence: 6
  givenname: Cheng‐Wei
  surname: Cheng
  fullname: Cheng, Cheng‐Wei
  organization: IBM Research – Yorktown Heights
– sequence: 7
  givenname: Ning
  surname: Li
  fullname: Li, Ning
  organization: IBM Research – Yorktown Heights
– sequence: 8
  givenname: Nicole
  surname: Saulnier
  fullname: Saulnier, Nicole
  organization: IBM Research AI Hardware Center – Albany
– sequence: 9
  givenname: Matthew
  surname: BrightSky
  fullname: BrightSky, Matthew
  organization: IBM Research – Yorktown Heights
– sequence: 10
  givenname: Abu
  surname: Sebastian
  fullname: Sebastian, Abu
  email: ase@zurich.ibm.com
  organization: IBM Research – Europe
BookMark eNqFkE1Lw0AQhhepYFu9eg54Tt2PySY5lmpVaLGHCt6W7WZiU5ps3U2R3PwJ_kZ_iSmRCoJ4mjm8z8zLMyC9ylZIyCWjI0Ypv9ZZXo445YzKCOIT0meSyVBQnvSOO3s-IwPvN5SyOBbQJ-HC2Q2aGrNgvvdrZ20ZLJsdBou19vj5_jFZ6-oFgzmW1jXn5DTXW48X33NInqa3y8l9OHu8e5iMZ6EBLuKQGxMBsiw2IICJDJhJAAEiyBhKgZKmALytqVeryLRtWZRrkWSYSp7xPBZDctXd3Tn7ukdfq43du6p9qbikEWeQiqRNQZcyznrvMFemqHVd2Kp2utgqRtVBjDqIUUcxLTb6he1cUWrX_A2kHfBWbLH5J63GN9P5D_sF9wJ27A
CitedBy_id crossref_primary_10_1038_s41467_023_42792_4
crossref_primary_10_1007_s10854_024_12689_z
crossref_primary_10_3390_nano12101702
crossref_primary_10_1039_D5TC02344K
crossref_primary_10_1063_5_0179424
crossref_primary_10_1063_5_0190632
crossref_primary_10_1038_s44335_024_00018_w
crossref_primary_10_1109_LED_2022_3203971
crossref_primary_10_1016_j_nanoen_2022_106931
crossref_primary_10_1021_acsaelm_5c01436
crossref_primary_10_1002_pssr_202500052
crossref_primary_10_1088_1361_6463_ad5605
crossref_primary_10_1039_D4RA05458J
crossref_primary_10_1557_s43577_022_00391_6
crossref_primary_10_1109_TED_2024_3496445
crossref_primary_10_1002_admi_202500058
crossref_primary_10_1002_pssa_202300921
crossref_primary_10_1146_annurev_matsci_080522_094849
crossref_primary_10_1038_s41528_024_00296_1
crossref_primary_10_1016_j_mattod_2023_07_025
crossref_primary_10_1002_adma_202201238
crossref_primary_10_1109_TED_2023_3321014
crossref_primary_10_1080_14686996_2023_2252725
crossref_primary_10_1063_5_0154995
crossref_primary_10_1016_j_jnoncrysol_2022_121874
crossref_primary_10_3390_ma17061379
crossref_primary_10_1021_acs_chemrev_4c00670
crossref_primary_10_1016_j_revmat_2025_100015
crossref_primary_10_1109_TED_2022_3232080
Cites_doi 10.1021/nl201040y
10.1109/JPROC.2010.2070050
10.1080/02670836.2017.1341723
10.1063/1.5080959
10.1016/j.micpro.2019.01.009
10.1063/5.0031947
10.1038/s41928-018-0092-2
10.1016/j.sse.2010.04.020
10.1103/PhysRevB.79.165206
10.1126/science.aay0291
10.1109/LED.2008.2010004
10.1109/ICETEEEM.2012.6494522
10.1063/1.2773688
10.1039/C8TC00222C
10.1038/s41598-020-64826-3
10.1109/JPROC.2018.2790840
10.1021/acs.nanolett.7b00909
10.1063/1.5042413
10.1063/1.5004118
10.1016/S1658-3655(12)60012-0
10.1038/s41598-016-0001-8
10.1109/ESSDERC.2016.7599664
10.3390/app8081238
10.1088/1361-6463/ab37b6
10.1063/1.3653279
10.1126/science.1201938
10.1038/ncomms9181
10.1103/PhysRevB.78.035308
10.1088/1361-6463/ab7794
10.1021/acsami.8b18473
10.1038/s41565-020-0655-z
10.1063/1.3304167
10.1038/s41928-017-0006-8
10.1021/nl3038097
10.1002/aelm.201900198
10.1116/1.2699254
ContentType Journal Article
Copyright 2021 The Authors. Advanced Functional Materials published by Wiley‐VCH GmbH
2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 The Authors. Advanced Functional Materials published by Wiley‐VCH GmbH
– notice: 2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202106547
DatabaseName Wiley-Blackwell Open Access Titles
CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database
CrossRef

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202106547
ADFM202106547
Genre article
GrantInformation_xml – fundername: European Union's Horizon 2020 Research and Innovation Program
  funderid: 682675
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
24P
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AAMMB
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
O8X
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c4237-2cc54e1d7c43413d41c84e4454d1e63e609442065abb5c65415fa38de962d2f73
IEDL.DBID 24P
ISICitedReferencesCount 38
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000694632500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1616-301X
IngestDate Sun Nov 09 07:30:27 EST 2025
Tue Nov 18 21:42:06 EST 2025
Sat Nov 29 07:17:55 EST 2025
Wed Jan 22 16:26:52 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 49
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4237-2cc54e1d7c43413d41c84e4454d1e63e609442065abb5c65415fa38de962d2f73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202106547
PQID 2605214938
PQPubID 2045204
PageCount 9
ParticipantIDs proquest_journals_2605214938
crossref_citationtrail_10_1002_adfm_202106547
crossref_primary_10_1002_adfm_202106547
wiley_primary_10_1002_adfm_202106547_ADFM202106547
PublicationCentury 2000
PublicationDate 2021-12-01
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2010; 12
2010; 98
2010; 54
2007; 102
2015; 6
2019; 5
2018; 106
2012
2019; 52
2019; 11
2018; 124
2021; 129
2020; 15
2019; 366
2007
2008; 78
2011; 12
2020; 10
2011; 332
2011; 110
2018; 6
2016; 6
2009; 79
2018; 8
2009; 30
2020; 53
2018; 1
2017; 17
2013; 13
2021
2017; 33
2019; 67
2019; 114
2016
2013
2017; 122
2009; 2
2010; 96
2007; 25
e_1_2_8_28_1
Burr G. W. (e_1_2_8_30_1) 2019; 52
e_1_2_8_24_1
Kim W. (e_1_2_8_27_1) 2016
e_1_2_8_25_1
Wong H. (e_1_2_8_31_1) 2010; 12
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_22_1
Bruce R. (e_1_2_8_29_1) 2021
e_1_2_8_45_1
e_1_2_8_23_1
Holm R. (e_1_2_8_33_1)
e_1_2_8_44_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_40_1
e_1_2_8_17_1
Kim S. (e_1_2_8_26_1) 2013
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
Le Gallo M. (e_1_2_8_14_1) 2016
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
References_xml – start-page: 373
  year: 2016
  end-page: 376
– volume: 17
  start-page: 3688
  year: 2017
  publication-title: Nano Lett.
– volume: 106
  start-page: 260
  year: 2018
  publication-title: Proc. IEEE
– volume: 52
  year: 2019
  publication-title: J. Phys. D: Appl. Phys.
– volume: 78
  year: 2008
  publication-title: Phys. Rev. B
– volume: 96
  year: 2010
  publication-title: Appl. Phys. Lett.
– volume: 6
  start-page: 1
  year: 2016
  publication-title: Sci. Rep.
– year: 2007
– volume: 110
  year: 2011
  publication-title: J. Appl. Phys.
– volume: 11
  start-page: 5336
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 30
  start-page: 126
  year: 2009
  publication-title: IEEE Electron Device Lett.
– start-page: 1
  year: 2021
  end-page: 6
– volume: 98
  start-page: 2201
  year: 2010
  publication-title: Proc. IEEE
– volume: 33
  start-page: 1890
  year: 2017
  publication-title: Mater. Sci. Technol.
– volume: 12
  year: 2010
  publication-title: Proc. IEEE
– volume: 12
  start-page: 2179
  year: 2011
  publication-title: Nano Lett.
– volume: 10
  start-page: 8248
  year: 2020
  publication-title: Sci. Rep.
– volume: 366
  start-page: 210
  year: 2019
  publication-title: Science
– volume: 13
  start-page: 464
  year: 2013
  publication-title: Nano Lett.
– volume: 52
  start-page: 47
  year: 2019
  publication-title: J. Phys. D: Appl. Phys.
– start-page: 30
  year: 2013
  end-page: 37
– volume: 2
  start-page: 94
  year: 2009
  publication-title: J. Taibah Univ. Sci.
– year: 2016
– volume: 79
  year: 2009
  publication-title: Phys. Rev. B
– year: 2012
– volume: 6
  start-page: 8181
  year: 2015
  publication-title: Nat. Commun.
– volume: 25
  start-page: 330
  year: 2007
  publication-title: J. Vacuum Sci. Technol. A
– volume: 1
  start-page: 22
  year: 2018
  publication-title: Nat. Electron.
– volume: 1
  start-page: 333
  year: 2018
  publication-title: Nat. Electron.
– volume: 124
  year: 2018
  publication-title: J. Appl. Phys.
– volume: 332
  start-page: 568
  year: 2011
  publication-title: Science
– volume: 15
  start-page: 529
  year: 2020
  publication-title: Nat. Nanotechnol.
– volume: 5
  year: 2019
  publication-title: Adv. Electron. Mater.
– volume: 114
  year: 2019
  publication-title: Appl. Phys. Lett.
– volume: 67
  start-page: 28
  year: 2019
  publication-title: Microprocess. Microsyst.
– volume: 102
  year: 2007
  publication-title: J. Appl. Phys.
– volume: 6
  start-page: 3387
  year: 2018
  publication-title: J. Mater. Chem. C
– volume: 8
  start-page: 1238
  year: 2018
  publication-title: Appl. Sci.
– volume: 129
  year: 2021
  publication-title: J. Appl. Phys.
– volume: 54
  start-page: 991
  year: 2010
  publication-title: Solid‐State Electron.
– volume: 53
  year: 2020
  publication-title: J. Phys. D: Appl. Phys.
– volume: 122
  year: 2017
  publication-title: J. Appl. Phys.
– ident: e_1_2_8_6_1
  doi: 10.1021/nl201040y
– ident: e_1_2_8_8_1
  doi: 10.1109/JPROC.2010.2070050
– volume-title: Electric Contacts Theory and Application
  ident: e_1_2_8_33_1
– ident: e_1_2_8_18_1
  doi: 10.1080/02670836.2017.1341723
– ident: e_1_2_8_37_1
– ident: e_1_2_8_41_1
  doi: 10.1063/1.5080959
– volume: 52
  start-page: 47
  year: 2019
  ident: e_1_2_8_30_1
  publication-title: J. Phys. D: Appl. Phys.
– ident: e_1_2_8_3_1
  doi: 10.1016/j.micpro.2019.01.009
– ident: e_1_2_8_23_1
  doi: 10.1063/5.0031947
– ident: e_1_2_8_2_1
  doi: 10.1038/s41928-018-0092-2
– ident: e_1_2_8_43_1
  doi: 10.1016/j.sse.2010.04.020
– ident: e_1_2_8_13_1
  doi: 10.1103/PhysRevB.79.165206
– volume-title: Int. Electron Devices Meeting (IEDM)
  year: 2016
  ident: e_1_2_8_27_1
– ident: e_1_2_8_20_1
  doi: 10.1126/science.aay0291
– ident: e_1_2_8_32_1
  doi: 10.1109/LED.2008.2010004
– ident: e_1_2_8_38_1
  doi: 10.1109/ICETEEEM.2012.6494522
– ident: e_1_2_8_44_1
  doi: 10.1063/1.2773688
– start-page: 1
  volume-title: IEEE Int. Reliability Physics Symp. (IPRS)
  year: 2021
  ident: e_1_2_8_29_1
– ident: e_1_2_8_19_1
  doi: 10.1039/C8TC00222C
– ident: e_1_2_8_25_1
  doi: 10.1038/s41598-020-64826-3
– ident: e_1_2_8_7_1
  doi: 10.1109/JPROC.2018.2790840
– ident: e_1_2_8_28_1
– ident: e_1_2_8_40_1
– ident: e_1_2_8_11_1
  doi: 10.1021/acs.nanolett.7b00909
– volume: 12
  year: 2010
  ident: e_1_2_8_31_1
  publication-title: Proc. IEEE
– ident: e_1_2_8_5_1
  doi: 10.1063/1.5042413
– ident: e_1_2_8_35_1
  doi: 10.1063/1.5004118
– ident: e_1_2_8_39_1
  doi: 10.1016/S1658-3655(12)60012-0
– ident: e_1_2_8_10_1
  doi: 10.1038/s41598-016-0001-8
– start-page: 373
  volume-title: 2016 46th European Solid‐State Device Research Conf. (ESSDERC)
  year: 2016
  ident: e_1_2_8_14_1
  doi: 10.1109/ESSDERC.2016.7599664
– ident: e_1_2_8_42_1
  doi: 10.3390/app8081238
– ident: e_1_2_8_17_1
  doi: 10.1088/1361-6463/ab37b6
– ident: e_1_2_8_34_1
  doi: 10.1063/1.3653279
– ident: e_1_2_8_9_1
  doi: 10.1126/science.1201938
– start-page: 30
  volume-title: Int. Electron Devices Meeting (IEDM)
  year: 2013
  ident: e_1_2_8_26_1
– ident: e_1_2_8_24_1
  doi: 10.1038/ncomms9181
– ident: e_1_2_8_45_1
  doi: 10.1103/PhysRevB.78.035308
– ident: e_1_2_8_12_1
  doi: 10.1088/1361-6463/ab7794
– ident: e_1_2_8_22_1
  doi: 10.1021/acsami.8b18473
– ident: e_1_2_8_4_1
  doi: 10.1038/s41565-020-0655-z
– ident: e_1_2_8_15_1
  doi: 10.1063/1.3304167
– ident: e_1_2_8_1_1
  doi: 10.1038/s41928-017-0006-8
– ident: e_1_2_8_21_1
  doi: 10.1021/nl3038097
– ident: e_1_2_8_16_1
  doi: 10.1002/aelm.201900198
– ident: e_1_2_8_36_1
  doi: 10.1116/1.2699254
SSID ssj0017734
Score 2.5428846
Snippet Phase‐change memory devices have found applications in in‐memory computing where the physical attributes of these devices are exploited to compute in places...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms circuit model
computational‐memory
Computer architecture
Configurations
Impact resistance
Materials science
Memory devices
Mushrooms
nano‐fabrication
Phase change materials
projected phase‐change memory
Title Projected Mushroom Type Phase‐Change Memory
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202106547
https://www.proquest.com/docview/2605214938
Volume 31
WOSCitedRecordID wos000694632500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1616-3028
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017734
  issn: 1616-301X
  databaseCode: DRFUL
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1PS8MwFH_o5kEP_henc_QgeApb0rRNj8NZPLhRxMlupflTJsiUdRO8-RH8jH4Sk6brtoMIemshScNLXt_7Je_9HsCl5JJIwrnGJpwhGooA8YBQpDJtC2mWSlKUA3q8CwYDNhqF8UoWv-WHqA7cjGYU_2uj4CnP20vS0FRmJpNcQxZTP3cT6hi7zBRvIDSu7hGCwN4r-9hEeOHRgraxQ9rr_dfN0tLXXPVYC5MT7f1_svuwW7qbTtfujwPYUJND2FkhITwCFNvDGCWd_jwfG0_aMejUicfawn19fNoEBKdvYnLfj2EY3Txc36KyiAISJuIFESE8qrAMBDUGS1IsGFWUelRi5bvK1_iOEj2tlHNPmKrgXpa6TKrQ14uYBe4J1CYvE3UKjnYeSZayjuuGHYol5py5aZhiyfQXMk4bgBYyTETJMG4KXTwnlhuZJEYMSSWGBlxV7V8tt8aPLZuLJUlKHcsTg8SIBnguawAphP_LKEm3F_Wrt7O_dDqHbfNs41maUJtN5-oCtsTb7Cmftoq914J67z4a3n0DE5zYsg
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEB60CurBt1itmoPgKbTZbF7HopaKTcmhSm9L9hEqSJU-BG_-BH-jv8SdbJq2BxHEY8LuZpmdyTx25huAS8klkYRz7Zvw0KaRCGweEGqrTOtCmqWS5O2AHjtBtxv2-1FSZBNiLYzBhygDbigZ-f8aBRwD0vU5amgqMywl1z4LNtBdhTWqVQ2yOqFJeZEQBOZi2Xcwxcvpz3AbG6S-PH9ZL82NzUWTNdc5rZ1_2O0ubBcGp9U0HLIHK2q4D1sLMIQHYCcmHKOkFU_HA7SlLfRPrWSgddzXx6cpQbBizMp9P4SH1m3vum0XbRRsgTkvNhHCo8qRgaCosiR1REgVpR6VjvJd5WsPjxK9rZRzT2BfcC9L3VCqyNfHmAXuEVSGL0N1DJY2H0mWhg3XjRrUkQ7noZtGqSND_YWM0yrYMyIyUWCMY6uLZ2bQkQlDMrCSDFW4Kse_GnSNH0fWZmfCCikbM_TFiHbx3LAKJKf-L6uw5k0rLp9O_jLpAjbavbjDOnfd-1PYxPcmu6UGlcloqs5gXbxNnsaj85wRvwFHdtr9
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEB60FdGDb7FaNQfBU7DZbJrkWKxBsS1BrPS2ZF9UkFr6ELz5E_yN_hJ3kjRtDyKIx4TNZpnsZubbnfk-gAvJJZGEc4NNeGDTUPg29wm1lTa-kOpEklQO6KnldzpBrxfGeTYh1sJk_BDFhhuujPR_jQtcDaW-mrOGJlJjKbnBLCiguwplikoyJSg3H6JuqzhK8P3saLnuYJKX05sxN9bI1XIPy55pHm4uBq2p14m2_2G8O7CVh5xWI5sju7CiBnuwuUBEuA92nG3IKGm1p-M-RtMWIlQr7hsv9_XxmRUhWG3My30_gG5083h9a-dCCrbArBebCOFR5UhfUHRakjoioIpSj0pH1V1VNxiPEjOshHNPoDK4pxM3kMrYUxLtu4dQGrwO1BFYJoAkOglqrhvWqCMdzgM3CRNHBuYNmtMK2DMjMpGzjKPYxQvL-JEJQzOwwgwVuCzaDzN-jR9bVmffhOXrbMwQjRED8tygAiS1_i-9sEYzahdXx3956BzW42bEWned-xPYwNtZeksVSpPRVJ3CmnibPI9HZ_lM_AYcYtwT
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Projected+Mushroom+Type+Phase%E2%80%90Change+Memory&rft.jtitle=Advanced+functional+materials&rft.au=Ghazi+Sarwat%2C+Syed&rft.au=Philip%2C+Timothy+M.&rft.au=Chen%2C+Ching%E2%80%90Tzu&rft.au=Kersting%2C+Benedikt&rft.date=2021-12-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=31&rft.issue=49&rft_id=info:doi/10.1002%2Fadfm.202106547&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_202106547
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon