Projected Mushroom Type Phase‐Change Memory
Phase‐change memory devices have found applications in in‐memory computing where the physical attributes of these devices are exploited to compute in places without the need to shuttle data between memory and processing units. However, nonidealities such as temporal variations in the electrical resi...
Uložené v:
| Vydané v: | Advanced functional materials Ročník 31; číslo 49 |
|---|---|
| Hlavní autori: | , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Hoboken
Wiley Subscription Services, Inc
01.12.2021
|
| Predmet: | |
| ISSN: | 1616-301X, 1616-3028 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Phase‐change memory devices have found applications in in‐memory computing where the physical attributes of these devices are exploited to compute in places without the need to shuttle data between memory and processing units. However, nonidealities such as temporal variations in the electrical resistance have a detrimental impact on the achievable computational precision. To address this, a promising approach is projecting the phase configuration of phase change material onto some stable element within the device. Here, the projection mechanism in a prominent phase‐change memory device architecture, namely mushroom‐type phase‐change memory, is investigated. Using nanoscale projected Ge2Sb2Te5 devices, the key attributes of state‐dependent resistance, drift coefficients, and phase configurations are studied, and using them how these devices fundamentally work is understood.
Nonvolatile memory devices, which can both store and compute information are emerging building blocks for brain‐inspired and in‐memory computing. Here, the nuts and bolts of a “projected” mushroom type phase change computational device that can decouple the device's readout characteristics from the noisy properties of the phase change material are discussed. |
|---|---|
| AbstractList | Phase‐change memory devices have found applications in in‐memory computing where the physical attributes of these devices are exploited to compute in places without the need to shuttle data between memory and processing units. However, nonidealities such as temporal variations in the electrical resistance have a detrimental impact on the achievable computational precision. To address this, a promising approach is projecting the phase configuration of phase change material onto some stable element within the device. Here, the projection mechanism in a prominent phase‐change memory device architecture, namely mushroom‐type phase‐change memory, is investigated. Using nanoscale projected Ge2Sb2Te5 devices, the key attributes of state‐dependent resistance, drift coefficients, and phase configurations are studied, and using them how these devices fundamentally work is understood. Phase‐change memory devices have found applications in in‐memory computing where the physical attributes of these devices are exploited to compute in places without the need to shuttle data between memory and processing units. However, nonidealities such as temporal variations in the electrical resistance have a detrimental impact on the achievable computational precision. To address this, a promising approach is projecting the phase configuration of phase change material onto some stable element within the device. Here, the projection mechanism in a prominent phase‐change memory device architecture, namely mushroom‐type phase‐change memory, is investigated. Using nanoscale projected Ge 2 Sb 2 Te 5 devices, the key attributes of state‐dependent resistance, drift coefficients, and phase configurations are studied, and using them how these devices fundamentally work is understood. Phase‐change memory devices have found applications in in‐memory computing where the physical attributes of these devices are exploited to compute in places without the need to shuttle data between memory and processing units. However, nonidealities such as temporal variations in the electrical resistance have a detrimental impact on the achievable computational precision. To address this, a promising approach is projecting the phase configuration of phase change material onto some stable element within the device. Here, the projection mechanism in a prominent phase‐change memory device architecture, namely mushroom‐type phase‐change memory, is investigated. Using nanoscale projected Ge2Sb2Te5 devices, the key attributes of state‐dependent resistance, drift coefficients, and phase configurations are studied, and using them how these devices fundamentally work is understood. Nonvolatile memory devices, which can both store and compute information are emerging building blocks for brain‐inspired and in‐memory computing. Here, the nuts and bolts of a “projected” mushroom type phase change computational device that can decouple the device's readout characteristics from the noisy properties of the phase change material are discussed. |
| Author | Philip, Timothy M. Li, Ning Saulnier, Nicole Kersting, Benedikt Cheng, Cheng‐Wei Bruce, Robert L. Sebastian, Abu BrightSky, Matthew Chen, Ching‐Tzu Ghazi Sarwat, Syed |
| Author_xml | – sequence: 1 givenname: Syed surname: Ghazi Sarwat fullname: Ghazi Sarwat, Syed email: ghs@zurich.ibm.com organization: IBM Research – Europe – sequence: 2 givenname: Timothy M. surname: Philip fullname: Philip, Timothy M. organization: IBM Research AI Hardware Center – Albany – sequence: 3 givenname: Ching‐Tzu surname: Chen fullname: Chen, Ching‐Tzu organization: IBM Research AI Hardware Center – Albany – sequence: 4 givenname: Benedikt surname: Kersting fullname: Kersting, Benedikt organization: IBM Research – Europe – sequence: 5 givenname: Robert L. surname: Bruce fullname: Bruce, Robert L. organization: IBM Research – Yorktown Heights – sequence: 6 givenname: Cheng‐Wei surname: Cheng fullname: Cheng, Cheng‐Wei organization: IBM Research – Yorktown Heights – sequence: 7 givenname: Ning surname: Li fullname: Li, Ning organization: IBM Research – Yorktown Heights – sequence: 8 givenname: Nicole surname: Saulnier fullname: Saulnier, Nicole organization: IBM Research AI Hardware Center – Albany – sequence: 9 givenname: Matthew surname: BrightSky fullname: BrightSky, Matthew organization: IBM Research – Yorktown Heights – sequence: 10 givenname: Abu surname: Sebastian fullname: Sebastian, Abu email: ase@zurich.ibm.com organization: IBM Research – Europe |
| BookMark | eNqFkE1Lw0AQhhepYFu9eg54Tt2PySY5lmpVaLGHCt6W7WZiU5ps3U2R3PwJ_kZ_iSmRCoJ4mjm8z8zLMyC9ylZIyCWjI0Ypv9ZZXo445YzKCOIT0meSyVBQnvSOO3s-IwPvN5SyOBbQJ-HC2Q2aGrNgvvdrZ20ZLJsdBou19vj5_jFZ6-oFgzmW1jXn5DTXW48X33NInqa3y8l9OHu8e5iMZ6EBLuKQGxMBsiw2IICJDJhJAAEiyBhKgZKmALytqVeryLRtWZRrkWSYSp7xPBZDctXd3Tn7ukdfq43du6p9qbikEWeQiqRNQZcyznrvMFemqHVd2Kp2utgqRtVBjDqIUUcxLTb6he1cUWrX_A2kHfBWbLH5J63GN9P5D_sF9wJ27A |
| CitedBy_id | crossref_primary_10_1038_s41467_023_42792_4 crossref_primary_10_1007_s10854_024_12689_z crossref_primary_10_3390_nano12101702 crossref_primary_10_1039_D5TC02344K crossref_primary_10_1063_5_0179424 crossref_primary_10_1063_5_0190632 crossref_primary_10_1038_s44335_024_00018_w crossref_primary_10_1109_LED_2022_3203971 crossref_primary_10_1016_j_nanoen_2022_106931 crossref_primary_10_1021_acsaelm_5c01436 crossref_primary_10_1002_pssr_202500052 crossref_primary_10_1088_1361_6463_ad5605 crossref_primary_10_1039_D4RA05458J crossref_primary_10_1557_s43577_022_00391_6 crossref_primary_10_1109_TED_2024_3496445 crossref_primary_10_1002_admi_202500058 crossref_primary_10_1002_pssa_202300921 crossref_primary_10_1146_annurev_matsci_080522_094849 crossref_primary_10_1038_s41528_024_00296_1 crossref_primary_10_1016_j_mattod_2023_07_025 crossref_primary_10_1002_adma_202201238 crossref_primary_10_1109_TED_2023_3321014 crossref_primary_10_1080_14686996_2023_2252725 crossref_primary_10_1063_5_0154995 crossref_primary_10_1016_j_jnoncrysol_2022_121874 crossref_primary_10_3390_ma17061379 crossref_primary_10_1021_acs_chemrev_4c00670 crossref_primary_10_1016_j_revmat_2025_100015 crossref_primary_10_1109_TED_2022_3232080 |
| Cites_doi | 10.1021/nl201040y 10.1109/JPROC.2010.2070050 10.1080/02670836.2017.1341723 10.1063/1.5080959 10.1016/j.micpro.2019.01.009 10.1063/5.0031947 10.1038/s41928-018-0092-2 10.1016/j.sse.2010.04.020 10.1103/PhysRevB.79.165206 10.1126/science.aay0291 10.1109/LED.2008.2010004 10.1109/ICETEEEM.2012.6494522 10.1063/1.2773688 10.1039/C8TC00222C 10.1038/s41598-020-64826-3 10.1109/JPROC.2018.2790840 10.1021/acs.nanolett.7b00909 10.1063/1.5042413 10.1063/1.5004118 10.1016/S1658-3655(12)60012-0 10.1038/s41598-016-0001-8 10.1109/ESSDERC.2016.7599664 10.3390/app8081238 10.1088/1361-6463/ab37b6 10.1063/1.3653279 10.1126/science.1201938 10.1038/ncomms9181 10.1103/PhysRevB.78.035308 10.1088/1361-6463/ab7794 10.1021/acsami.8b18473 10.1038/s41565-020-0655-z 10.1063/1.3304167 10.1038/s41928-017-0006-8 10.1021/nl3038097 10.1002/aelm.201900198 10.1116/1.2699254 |
| ContentType | Journal Article |
| Copyright | 2021 The Authors. Advanced Functional Materials published by Wiley‐VCH GmbH 2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2021 The Authors. Advanced Functional Materials published by Wiley‐VCH GmbH – notice: 2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
| DOI | 10.1002/adfm.202106547 |
| DatabaseName | Wiley-Blackwell Open Access Titles CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
| DatabaseTitleList | Materials Research Database CrossRef |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1616-3028 |
| EndPage | n/a |
| ExternalDocumentID | 10_1002_adfm_202106547 ADFM202106547 |
| Genre | article |
| GrantInformation_xml | – fundername: European Union's Horizon 2020 Research and Innovation Program funderid: 682675 |
| GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 24P 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AAMMB AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 O8X 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
| ID | FETCH-LOGICAL-c4237-2cc54e1d7c43413d41c84e4454d1e63e609442065abb5c65415fa38de962d2f73 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 38 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000694632500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1616-301X |
| IngestDate | Sun Nov 09 07:30:27 EST 2025 Tue Nov 18 21:42:06 EST 2025 Sat Nov 29 07:17:55 EST 2025 Wed Jan 22 16:26:52 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 49 |
| Language | English |
| License | Attribution |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4237-2cc54e1d7c43413d41c84e4454d1e63e609442065abb5c65415fa38de962d2f73 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202106547 |
| PQID | 2605214938 |
| PQPubID | 2045204 |
| PageCount | 9 |
| ParticipantIDs | proquest_journals_2605214938 crossref_citationtrail_10_1002_adfm_202106547 crossref_primary_10_1002_adfm_202106547 wiley_primary_10_1002_adfm_202106547_ADFM202106547 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-12-01 |
| PublicationDateYYYYMMDD | 2021-12-01 |
| PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Hoboken |
| PublicationPlace_xml | – name: Hoboken |
| PublicationTitle | Advanced functional materials |
| PublicationYear | 2021 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2010; 12 2010; 98 2010; 54 2007; 102 2015; 6 2019; 5 2018; 106 2012 2019; 52 2019; 11 2018; 124 2021; 129 2020; 15 2019; 366 2007 2008; 78 2011; 12 2020; 10 2011; 332 2011; 110 2018; 6 2016; 6 2009; 79 2018; 8 2009; 30 2020; 53 2018; 1 2017; 17 2013; 13 2021 2017; 33 2019; 67 2019; 114 2016 2013 2017; 122 2009; 2 2010; 96 2007; 25 e_1_2_8_28_1 Burr G. W. (e_1_2_8_30_1) 2019; 52 e_1_2_8_24_1 Kim W. (e_1_2_8_27_1) 2016 e_1_2_8_25_1 Wong H. (e_1_2_8_31_1) 2010; 12 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_22_1 Bruce R. (e_1_2_8_29_1) 2021 e_1_2_8_45_1 e_1_2_8_23_1 Holm R. (e_1_2_8_33_1) e_1_2_8_44_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_40_1 e_1_2_8_17_1 Kim S. (e_1_2_8_26_1) 2013 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_37_1 Le Gallo M. (e_1_2_8_14_1) 2016 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 |
| References_xml | – start-page: 373 year: 2016 end-page: 376 – volume: 17 start-page: 3688 year: 2017 publication-title: Nano Lett. – volume: 106 start-page: 260 year: 2018 publication-title: Proc. IEEE – volume: 52 year: 2019 publication-title: J. Phys. D: Appl. Phys. – volume: 78 year: 2008 publication-title: Phys. Rev. B – volume: 96 year: 2010 publication-title: Appl. Phys. Lett. – volume: 6 start-page: 1 year: 2016 publication-title: Sci. Rep. – year: 2007 – volume: 110 year: 2011 publication-title: J. Appl. Phys. – volume: 11 start-page: 5336 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 30 start-page: 126 year: 2009 publication-title: IEEE Electron Device Lett. – start-page: 1 year: 2021 end-page: 6 – volume: 98 start-page: 2201 year: 2010 publication-title: Proc. IEEE – volume: 33 start-page: 1890 year: 2017 publication-title: Mater. Sci. Technol. – volume: 12 year: 2010 publication-title: Proc. IEEE – volume: 12 start-page: 2179 year: 2011 publication-title: Nano Lett. – volume: 10 start-page: 8248 year: 2020 publication-title: Sci. Rep. – volume: 366 start-page: 210 year: 2019 publication-title: Science – volume: 13 start-page: 464 year: 2013 publication-title: Nano Lett. – volume: 52 start-page: 47 year: 2019 publication-title: J. Phys. D: Appl. Phys. – start-page: 30 year: 2013 end-page: 37 – volume: 2 start-page: 94 year: 2009 publication-title: J. Taibah Univ. Sci. – year: 2016 – volume: 79 year: 2009 publication-title: Phys. Rev. B – year: 2012 – volume: 6 start-page: 8181 year: 2015 publication-title: Nat. Commun. – volume: 25 start-page: 330 year: 2007 publication-title: J. Vacuum Sci. Technol. A – volume: 1 start-page: 22 year: 2018 publication-title: Nat. Electron. – volume: 1 start-page: 333 year: 2018 publication-title: Nat. Electron. – volume: 124 year: 2018 publication-title: J. Appl. Phys. – volume: 332 start-page: 568 year: 2011 publication-title: Science – volume: 15 start-page: 529 year: 2020 publication-title: Nat. Nanotechnol. – volume: 5 year: 2019 publication-title: Adv. Electron. Mater. – volume: 114 year: 2019 publication-title: Appl. Phys. Lett. – volume: 67 start-page: 28 year: 2019 publication-title: Microprocess. Microsyst. – volume: 102 year: 2007 publication-title: J. Appl. Phys. – volume: 6 start-page: 3387 year: 2018 publication-title: J. Mater. Chem. C – volume: 8 start-page: 1238 year: 2018 publication-title: Appl. Sci. – volume: 129 year: 2021 publication-title: J. Appl. Phys. – volume: 54 start-page: 991 year: 2010 publication-title: Solid‐State Electron. – volume: 53 year: 2020 publication-title: J. Phys. D: Appl. Phys. – volume: 122 year: 2017 publication-title: J. Appl. Phys. – ident: e_1_2_8_6_1 doi: 10.1021/nl201040y – ident: e_1_2_8_8_1 doi: 10.1109/JPROC.2010.2070050 – volume-title: Electric Contacts Theory and Application ident: e_1_2_8_33_1 – ident: e_1_2_8_18_1 doi: 10.1080/02670836.2017.1341723 – ident: e_1_2_8_37_1 – ident: e_1_2_8_41_1 doi: 10.1063/1.5080959 – volume: 52 start-page: 47 year: 2019 ident: e_1_2_8_30_1 publication-title: J. Phys. D: Appl. Phys. – ident: e_1_2_8_3_1 doi: 10.1016/j.micpro.2019.01.009 – ident: e_1_2_8_23_1 doi: 10.1063/5.0031947 – ident: e_1_2_8_2_1 doi: 10.1038/s41928-018-0092-2 – ident: e_1_2_8_43_1 doi: 10.1016/j.sse.2010.04.020 – ident: e_1_2_8_13_1 doi: 10.1103/PhysRevB.79.165206 – volume-title: Int. Electron Devices Meeting (IEDM) year: 2016 ident: e_1_2_8_27_1 – ident: e_1_2_8_20_1 doi: 10.1126/science.aay0291 – ident: e_1_2_8_32_1 doi: 10.1109/LED.2008.2010004 – ident: e_1_2_8_38_1 doi: 10.1109/ICETEEEM.2012.6494522 – ident: e_1_2_8_44_1 doi: 10.1063/1.2773688 – start-page: 1 volume-title: IEEE Int. Reliability Physics Symp. (IPRS) year: 2021 ident: e_1_2_8_29_1 – ident: e_1_2_8_19_1 doi: 10.1039/C8TC00222C – ident: e_1_2_8_25_1 doi: 10.1038/s41598-020-64826-3 – ident: e_1_2_8_7_1 doi: 10.1109/JPROC.2018.2790840 – ident: e_1_2_8_28_1 – ident: e_1_2_8_40_1 – ident: e_1_2_8_11_1 doi: 10.1021/acs.nanolett.7b00909 – volume: 12 year: 2010 ident: e_1_2_8_31_1 publication-title: Proc. IEEE – ident: e_1_2_8_5_1 doi: 10.1063/1.5042413 – ident: e_1_2_8_35_1 doi: 10.1063/1.5004118 – ident: e_1_2_8_39_1 doi: 10.1016/S1658-3655(12)60012-0 – ident: e_1_2_8_10_1 doi: 10.1038/s41598-016-0001-8 – start-page: 373 volume-title: 2016 46th European Solid‐State Device Research Conf. (ESSDERC) year: 2016 ident: e_1_2_8_14_1 doi: 10.1109/ESSDERC.2016.7599664 – ident: e_1_2_8_42_1 doi: 10.3390/app8081238 – ident: e_1_2_8_17_1 doi: 10.1088/1361-6463/ab37b6 – ident: e_1_2_8_34_1 doi: 10.1063/1.3653279 – ident: e_1_2_8_9_1 doi: 10.1126/science.1201938 – start-page: 30 volume-title: Int. Electron Devices Meeting (IEDM) year: 2013 ident: e_1_2_8_26_1 – ident: e_1_2_8_24_1 doi: 10.1038/ncomms9181 – ident: e_1_2_8_45_1 doi: 10.1103/PhysRevB.78.035308 – ident: e_1_2_8_12_1 doi: 10.1088/1361-6463/ab7794 – ident: e_1_2_8_22_1 doi: 10.1021/acsami.8b18473 – ident: e_1_2_8_4_1 doi: 10.1038/s41565-020-0655-z – ident: e_1_2_8_15_1 doi: 10.1063/1.3304167 – ident: e_1_2_8_1_1 doi: 10.1038/s41928-017-0006-8 – ident: e_1_2_8_21_1 doi: 10.1021/nl3038097 – ident: e_1_2_8_16_1 doi: 10.1002/aelm.201900198 – ident: e_1_2_8_36_1 doi: 10.1116/1.2699254 |
| SSID | ssj0017734 |
| Score | 2.5428846 |
| Snippet | Phase‐change memory devices have found applications in in‐memory computing where the physical attributes of these devices are exploited to compute in places... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | circuit model computational‐memory Computer architecture Configurations Impact resistance Materials science Memory devices Mushrooms nano‐fabrication Phase change materials projected phase‐change memory |
| Title | Projected Mushroom Type Phase‐Change Memory |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202106547 https://www.proquest.com/docview/2605214938 |
| Volume | 31 |
| WOSCitedRecordID | wos000694632500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1616-3028 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017734 issn: 1616-301X databaseCode: DRFUL dateStart: 20010101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1PS8MwFH_o5kEP_henc_QgeApb0rRNj8NZPLhRxMlupflTJsiUdRO8-RH8jH4Sk6brtoMIemshScNLXt_7Je_9HsCl5JJIwrnGJpwhGooA8YBQpDJtC2mWSlKUA3q8CwYDNhqF8UoWv-WHqA7cjGYU_2uj4CnP20vS0FRmJpNcQxZTP3cT6hi7zBRvIDSu7hGCwN4r-9hEeOHRgraxQ9rr_dfN0tLXXPVYC5MT7f1_svuwW7qbTtfujwPYUJND2FkhITwCFNvDGCWd_jwfG0_aMejUicfawn19fNoEBKdvYnLfj2EY3Txc36KyiAISJuIFESE8qrAMBDUGS1IsGFWUelRi5bvK1_iOEj2tlHNPmKrgXpa6TKrQ14uYBe4J1CYvE3UKjnYeSZayjuuGHYol5py5aZhiyfQXMk4bgBYyTETJMG4KXTwnlhuZJEYMSSWGBlxV7V8tt8aPLZuLJUlKHcsTg8SIBnguawAphP_LKEm3F_Wrt7O_dDqHbfNs41maUJtN5-oCtsTb7Cmftoq914J67z4a3n0DE5zYsg |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEB60CurBt1itmoPgKbTZbF7HopaKTcmhSm9L9hEqSJU-BG_-BH-jv8SdbJq2BxHEY8LuZpmdyTx25huAS8klkYRz7Zvw0KaRCGweEGqrTOtCmqWS5O2AHjtBtxv2-1FSZBNiLYzBhygDbigZ-f8aBRwD0vU5amgqMywl1z4LNtBdhTWqVQ2yOqFJeZEQBOZi2Xcwxcvpz3AbG6S-PH9ZL82NzUWTNdc5rZ1_2O0ubBcGp9U0HLIHK2q4D1sLMIQHYCcmHKOkFU_HA7SlLfRPrWSgddzXx6cpQbBizMp9P4SH1m3vum0XbRRsgTkvNhHCo8qRgaCosiR1REgVpR6VjvJd5WsPjxK9rZRzT2BfcC9L3VCqyNfHmAXuEVSGL0N1DJY2H0mWhg3XjRrUkQ7noZtGqSND_YWM0yrYMyIyUWCMY6uLZ2bQkQlDMrCSDFW4Kse_GnSNH0fWZmfCCikbM_TFiHbx3LAKJKf-L6uw5k0rLp9O_jLpAjbavbjDOnfd-1PYxPcmu6UGlcloqs5gXbxNnsaj85wRvwFHdtr9 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEB60FdGDb7FaNQfBU7DZbJrkWKxBsS1BrPS2ZF9UkFr6ELz5E_yN_hJ3kjRtDyKIx4TNZpnsZubbnfk-gAvJJZGEc4NNeGDTUPg29wm1lTa-kOpEklQO6KnldzpBrxfGeTYh1sJk_BDFhhuujPR_jQtcDaW-mrOGJlJjKbnBLCiguwplikoyJSg3H6JuqzhK8P3saLnuYJKX05sxN9bI1XIPy55pHm4uBq2p14m2_2G8O7CVh5xWI5sju7CiBnuwuUBEuA92nG3IKGm1p-M-RtMWIlQr7hsv9_XxmRUhWG3My30_gG5083h9a-dCCrbArBebCOFR5UhfUHRakjoioIpSj0pH1V1VNxiPEjOshHNPoDK4pxM3kMrYUxLtu4dQGrwO1BFYJoAkOglqrhvWqCMdzgM3CRNHBuYNmtMK2DMjMpGzjKPYxQvL-JEJQzOwwgwVuCzaDzN-jR9bVmffhOXrbMwQjRED8tygAiS1_i-9sEYzahdXx3956BzW42bEWned-xPYwNtZeksVSpPRVJ3CmnibPI9HZ_lM_AYcYtwT |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Projected+Mushroom+Type+Phase%E2%80%90Change+Memory&rft.jtitle=Advanced+functional+materials&rft.au=Ghazi+Sarwat%2C+Syed&rft.au=Philip%2C+Timothy+M.&rft.au=Chen%2C+Ching%E2%80%90Tzu&rft.au=Kersting%2C+Benedikt&rft.date=2021-12-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=31&rft.issue=49&rft_id=info:doi/10.1002%2Fadfm.202106547&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_202106547 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |