Control of Polymorphism and Morphology in Solution Sheared Organic Field‐Effect Transistors
During the last decades, small molecule organic semiconductors have been successfully used as active layer in organic field‐effect transistors (OFETs). Despite the high mobility achieved so far with organic molecules, in order to progress in the field it is crucial to find techniques to process them...
Uložené v:
| Vydané v: | Advanced functional materials Ročník 27; číslo 25 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Hoboken
Wiley Subscription Services, Inc
05.07.2017
|
| Predmet: | |
| ISSN: | 1616-301X, 1616-3028 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | During the last decades, small molecule organic semiconductors have been successfully used as active layer in organic field‐effect transistors (OFETs). Despite the high mobility achieved so far with organic molecules, in order to progress in the field it is crucial to find techniques to process them from solution. The device reproducibility is one of the principal weak points of organic electronics for further commercialization. To achieve a high device‐to‐device reproducibility it is essential to control the morphology and polymorphism of the active layer for OFET application. In this work, the preparation of thin films is reported based on blends of the organic semiconductor dibenzo‐tetrathiafulvalene (DB‐TTF) and polystyrene by a solution shearing technique compatible with upscaling. Here, it is demonstrated that varying the deposition parameters (i.e., speed and temperature) or the solution formulation (i.e., semiconductor/binder polymer ratio) is possible to control the film morphology and semiconductor polymorphism and, hence, the different intermolecular interactions. It is demonstrated that the control of the thermodynamics and kinetics of the crystallization process is key for the device performance optimization. Further, this is the first time that DB‐TTF thin films of the α‐polymorph are reported.
Printed organic semiconductors require high control of polymorphism and morphology to enhance device reproducibility. Thin‐film organic field‐effect transistors have been prepared by solution shearing using blends of a small molecule semiconductor and a binder polymer. The deposition parameters and solution formulation determine the thin‐film morphology and polymorphism, which, in turn, has a crucial impact on the device performance. |
|---|---|
| AbstractList | During the last decades, small molecule organic semiconductors have been successfully used as active layer in organic field‐effect transistors (OFETs). Despite the high mobility achieved so far with organic molecules, in order to progress in the field it is crucial to find techniques to process them from solution. The device reproducibility is one of the principal weak points of organic electronics for further commercialization. To achieve a high device‐to‐device reproducibility it is essential to control the morphology and polymorphism of the active layer for OFET application. In this work, the preparation of thin films is reported based on blends of the organic semiconductor dibenzo‐tetrathiafulvalene (DB‐TTF) and polystyrene by a solution shearing technique compatible with upscaling. Here, it is demonstrated that varying the deposition parameters (i.e., speed and temperature) or the solution formulation (i.e., semiconductor/binder polymer ratio) is possible to control the film morphology and semiconductor polymorphism and, hence, the different intermolecular interactions. It is demonstrated that the control of the thermodynamics and kinetics of the crystallization process is key for the device performance optimization. Further, this is the first time that DB‐TTF thin films of the α‐polymorph are reported. During the last decades, small molecule organic semiconductors have been successfully used as active layer in organic field-effect transistors (OFETs). Despite the high mobility achieved so far with organic molecules, in order to progress in the field it is crucial to find techniques to process them from solution. The device reproducibility is one of the principal weak points of organic electronics for further commercialization. To achieve a high device-to-device reproducibility it is essential to control the morphology and polymorphism of the active layer for OFET application. In this work, the preparation of thin films is reported based on blends of the organic semiconductor dibenzo-tetrathiafulvalene (DB-TTF) and polystyrene by a solution shearing technique compatible with upscaling. Here, it is demonstrated that varying the deposition parameters (i.e., speed and temperature) or the solution formulation (i.e., semiconductor/binder polymer ratio) is possible to control the film morphology and semiconductor polymorphism and, hence, the different intermolecular interactions. It is demonstrated that the control of the thermodynamics and kinetics of the crystallization process is key for the device performance optimization. Further, this is the first time that DB-TTF thin films of the [alpha]-polymorph are reported. During the last decades, small molecule organic semiconductors have been successfully used as active layer in organic field‐effect transistors (OFETs). Despite the high mobility achieved so far with organic molecules, in order to progress in the field it is crucial to find techniques to process them from solution. The device reproducibility is one of the principal weak points of organic electronics for further commercialization. To achieve a high device‐to‐device reproducibility it is essential to control the morphology and polymorphism of the active layer for OFET application. In this work, the preparation of thin films is reported based on blends of the organic semiconductor dibenzo‐tetrathiafulvalene (DB‐TTF) and polystyrene by a solution shearing technique compatible with upscaling. Here, it is demonstrated that varying the deposition parameters (i.e., speed and temperature) or the solution formulation (i.e., semiconductor/binder polymer ratio) is possible to control the film morphology and semiconductor polymorphism and, hence, the different intermolecular interactions. It is demonstrated that the control of the thermodynamics and kinetics of the crystallization process is key for the device performance optimization. Further, this is the first time that DB‐TTF thin films of the α‐polymorph are reported. Printed organic semiconductors require high control of polymorphism and morphology to enhance device reproducibility. Thin‐film organic field‐effect transistors have been prepared by solution shearing using blends of a small molecule semiconductor and a binder polymer. The deposition parameters and solution formulation determine the thin‐film morphology and polymorphism, which, in turn, has a crucial impact on the device performance. |
| Author | Leonardi, Francesca Tamayo, Adrián Mas‐Torrent, Marta Galindo, Sergi |
| Author_xml | – sequence: 1 givenname: Sergi surname: Galindo fullname: Galindo, Sergi organization: Campus de la Universitat Autònoma de Barcelona – sequence: 2 givenname: Adrián surname: Tamayo fullname: Tamayo, Adrián organization: Campus de la Universitat Autònoma de Barcelona – sequence: 3 givenname: Francesca surname: Leonardi fullname: Leonardi, Francesca organization: Campus de la Universitat Autònoma de Barcelona – sequence: 4 givenname: Marta surname: Mas‐Torrent fullname: Mas‐Torrent, Marta email: mmas@icmab.es organization: Campus de la Universitat Autònoma de Barcelona |
| BookMark | eNqFkE1LAzEQhoNUsK1ePQc8b83XfvRYqlWhpYI9eJGQ3SRtym5Sky2yN3-Cv9Ff4i6VCoJ4mhl4nhnmHYCedVYBcInRCCNEroXU1YggnCIUk-QE9HGCk4gikvWOPX4-A4MQtqjFUsr64GXqbO1dCZ2Gj65sKud3GxMqKKyEi25wpVs30Fj45Mp9bVzbbJTwSsKlXwtrCjgzqpSf7x-3WquihisvbDChdj6cg1MtyqAuvusQrGa3q-l9NF_ePUwn86hghCZRLnCcooQJiiRlgpGMsYwoifJY5CormKIyYSSmKlO5FAUlMR4TmutU60QiOgRXh7U77173KtR86_bethd5yyGGyTiJW4odqMK7ELzSvDC16D6qvTAlx4h3OfIuR37MsdVGv7SdN5Xwzd_C-CC8mVI1_9B8cjNb_LhfkIqJsQ |
| CitedBy_id | crossref_primary_10_1016_j_mattod_2018_07_018 crossref_primary_10_1002_ange_202421769 crossref_primary_10_1002_admt_202101535 crossref_primary_10_1002_aelm_201900067 crossref_primary_10_1002_admt_202401518 crossref_primary_10_1016_j_cis_2019_102080 crossref_primary_10_1039_D2NR05625A crossref_primary_10_1039_D4EE01073F crossref_primary_10_26599_NR_2025_94907343 crossref_primary_10_1016_j_apsusc_2019_143822 crossref_primary_10_1038_s41428_018_0069_z crossref_primary_10_1002_adfm_202006115 crossref_primary_10_1016_j_jiec_2021_09_023 crossref_primary_10_1038_s41467_020_15974_7 crossref_primary_10_1002_admi_202500599 crossref_primary_10_1016_j_orgel_2022_106448 crossref_primary_10_1038_s41467_020_20209_w crossref_primary_10_1039_D0NH00096E crossref_primary_10_1002_adma_202401822 crossref_primary_10_1016_j_comptc_2024_115060 crossref_primary_10_1039_D4TC05403B crossref_primary_10_3390_cryst13060861 crossref_primary_10_3390_molecules27217235 crossref_primary_10_1002_adma_202110468 crossref_primary_10_1002_adfm_201807786 crossref_primary_10_1021_acs_cgd_5c00046 crossref_primary_10_1016_j_dyepig_2019_107847 crossref_primary_10_1002_aelm_202400887 crossref_primary_10_1002_cptc_201700123 crossref_primary_10_1016_j_matpr_2024_06_009 crossref_primary_10_1002_adfm_202413904 crossref_primary_10_1002_admt_201900104 crossref_primary_10_1002_smll_202006043 crossref_primary_10_1088_1361_6528_aaaa7a crossref_primary_10_1016_j_chemphys_2019_02_012 crossref_primary_10_1002_adfm_202202071 crossref_primary_10_1002_aelm_201700349 crossref_primary_10_1002_adfm_201706372 crossref_primary_10_1002_aelm_201800076 crossref_primary_10_3390_coatings11101222 crossref_primary_10_1038_s41563_020_0760_2 crossref_primary_10_1002_adfm_202105456 crossref_primary_10_1016_j_synthmet_2022_117209 crossref_primary_10_1109_LED_2020_2967024 crossref_primary_10_1039_D0QM00567C crossref_primary_10_1002_aelm_201700271 crossref_primary_10_1002_anie_202421769 crossref_primary_10_1002_aelm_201800141 crossref_primary_10_3390_cryst14030207 crossref_primary_10_1002_admi_202101679 crossref_primary_10_1016_j_orgel_2019_02_011 crossref_primary_10_1002_aelm_202400500 crossref_primary_10_1002_smll_202300151 crossref_primary_10_1002_admi_201900950 crossref_primary_10_1016_j_polymer_2020_122208 crossref_primary_10_1016_j_progpolymsci_2022_101548 |
| Cites_doi | 10.1002/adfm.201502412 10.1038/srep32620 10.1039/c1jm12837j 10.1021/ja5091035 10.1002/adma.200803328 10.1039/C5TC02488A 10.1002/adma.201302439 10.1103/PhysRevB.80.085201 10.1021/cr100142w 10.1038/ncomms6954 10.1063/1.2940593 10.1063/1.1491009 10.1063/1.2338587 10.1016/S0379-6779(00)01351-5 10.1002/admt.201600090 10.1002/adfm.201500468 10.1021/ja051755e 10.1021/ja507179d 10.1021/ar9000873 10.1021/acs.chemmater.5b00884 10.1016/j.orgel.2008.08.011 10.1063/1.1848179 10.1016/j.cplett.2011.12.026 10.1038/nature10683 10.1002/adma.201001446 10.1038/ncomms9598 10.1039/C3NR04341J 10.1002/adfm.200700207 10.1063/1.1486253 10.1021/ja054276o 10.1021/cm503439r 10.1002/adfm.201502428 10.1080/15321790500471244 10.1017/jfm.2013.382 10.1002/adfm.201400219 10.1021/cr050140x 10.1021/ja9728381 10.1039/b810993a 10.1039/c2cp41712j 10.1002/adma.201602479 10.1039/c1cp21507h 10.1073/pnas.1419771112 10.1063/1.4939464 10.1088/0957-4484/18/42/424009 10.1002/adfm.201401228 10.1002/adma.201404806 10.1039/c2ra20272g 10.1002/adfm.200701019 10.1021/cg2007793 10.1021/cm503780u 10.1038/nmat3650 10.1002/adfm.201502274 10.1039/C4CP02413C 10.1021/jp9114755 |
| ContentType | Journal Article |
| Copyright | 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
| Copyright_xml | – notice: 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
| DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
| DOI | 10.1002/adfm.201700526 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
| DatabaseTitleList | CrossRef Materials Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1616-3028 |
| EndPage | n/a |
| ExternalDocumentID | 10_1002_adfm_201700526 ADFM201700526 |
| Genre | article |
| GrantInformation_xml | – fundername: European Research Council funderid: 2012‐306826; 2014‐640120 – fundername: Generalitat de Catalunya funderid: 2014‐SGR‐17 – fundername: Networking Research Center on Bioengineering, Biomaterials, and Nanomedicine – fundername: Spanish Ministry of Economy and Competitiveness funderid: CTQ 2013‐40480‐R; CTQ2016‐80030‐R |
| GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AAMMB AANHP AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY ASPBG AVWKF AZFZN CITATION FEDTE HF~ HVGLF O8X 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
| ID | FETCH-LOGICAL-c4236-ba157064a30d34a4284482ed0b5abe8c4e3d64253e8ebdac3251923bf7ff6d03 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 93 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000404550600010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1616-301X |
| IngestDate | Sun Nov 09 06:12:31 EST 2025 Tue Nov 18 21:16:32 EST 2025 Sat Nov 29 07:23:40 EST 2025 Wed Jan 22 16:55:05 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 25 |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4236-ba157064a30d34a4284482ed0b5abe8c4e3d64253e8ebdac3251923bf7ff6d03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | http://hdl.handle.net/10261/151398 |
| PQID | 1920412965 |
| PQPubID | 2045204 |
| PageCount | 9 |
| ParticipantIDs | proquest_journals_1920412965 crossref_citationtrail_10_1002_adfm_201700526 crossref_primary_10_1002_adfm_201700526 wiley_primary_10_1002_adfm_201700526_ADFM201700526 |
| PublicationCentury | 2000 |
| PublicationDate | July 5, 2017 |
| PublicationDateYYYYMMDD | 2017-07-05 |
| PublicationDate_xml | – month: 07 year: 2017 text: July 5, 2017 day: 05 |
| PublicationDecade | 2010 |
| PublicationPlace | Hoboken |
| PublicationPlace_xml | – name: Hoboken |
| PublicationTitle | Advanced functional materials |
| PublicationYear | 2017 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2007; 17 2001; 122 2007; 18 2007; 107 2015; 6 2015; 17 2009; 21 2009; 42 2015; 3 2009; 80 2008; 18 2008; 9 2014; 26 2007; 91 2011; 11 2005; 86 2014; 24 2008; 10 2011; 13 2002; 81 2012; 14 2012; 523 2008; 92 2014; 136 2011; 111 2016; 4 2010; 22 2016; 6 2015; 25 2012; 2 2015; 27 2016; 1 1942; 17 2006; 89 2006; 46 2013; 12 2010; 114 2013; 732 2015; 112 2005; 127 2011; 21 2002; 92 2016; 28 2011; 480 2014; 6 2016; 26 1998; 120 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 Landau L. (e_1_2_7_55_1) 1942; 17 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 Jiang H. (e_1_2_7_9_1) 2007; 91 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_38_1 |
| References_xml | – volume: 18 start-page: 1363 year: 2008 publication-title: Adv. Funct. Mater. – volume: 480 start-page: 504 year: 2011 publication-title: Nature – volume: 81 start-page: 268 year: 2002 publication-title: Appl. Phys. Lett. – volume: 127 start-page: 13476 year: 2005 publication-title: J. Am. Chem. Soc. – volume: 523 start-page: 74 year: 2012 publication-title: Chem. Phys. Lett. – volume: 111 start-page: 4833 year: 2011 publication-title: Chem. Rev. – volume: 21 start-page: 2294 year: 2009 publication-title: Adv. Mater. – volume: 26 start-page: 2357 year: 2016 publication-title: Adv. Funct. Mater. – volume: 11 start-page: 3663 year: 2011 publication-title: Cryst. Growth Des. – volume: 22 start-page: 4198 year: 2010 publication-title: Adv. Mater. – volume: 89 start-page: 14 year: 2006 publication-title: Appl. Phys. Lett. – volume: 6 start-page: 5954 year: 2015 publication-title: Nat. Commun. – volume: 17 start-page: 42 year: 1942 publication-title: Acta Physicochim. URSS – volume: 92 start-page: 233306 year: 2008 publication-title: Appl. Phys. Lett. – volume: 25 start-page: 3131 year: 2015 publication-title: Adv. Funct. Mater. – volume: 14 start-page: 14165 year: 2012 publication-title: Phys. Chem. Chem. Phys. – volume: 136 start-page: 17046 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 1 start-page: 1600090 year: 2016 publication-title: Adv. Mater. Technol. – volume: 10 start-page: 1899 year: 2008 publication-title: CrystEngComm – volume: 42 start-page: 1573 year: 2009 publication-title: Acc. Chem. Res. – volume: 80 start-page: 085201 year: 2009 publication-title: Phys. Rev. B – volume: 127 start-page: 10142 year: 2005 publication-title: J. Am. Chem. Soc. – volume: 27 start-page: 3979 year: 2015 publication-title: Chem. Mater. – volume: 6 start-page: 449 year: 2014 publication-title: Nanoscale – volume: 136 start-page: 15749 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 27 start-page: 825 year: 2015 publication-title: Adv. Mater. – volume: 92 start-page: 330 year: 2002 publication-title: J. Appl. Phys. – volume: 27 start-page: 112 year: 2015 publication-title: Chem. Mater. – volume: 24 start-page: 5052 year: 2014 publication-title: Adv. Funct. Mater. – volume: 91 start-page: 2005 year: 2007 publication-title: Appl. Phys. Lett. – volume: 28 start-page: 10311 year: 2016 publication-title: Adv. Mater. – volume: 86 start-page: 12110 year: 2005 publication-title: Appl. Phys. Lett. – volume: 13 start-page: 14370 year: 2011 publication-title: Phys. Chem. Chem. Phys. – volume: 112 start-page: 5561 year: 2015 publication-title: Proc. Natl. Acad. Sci. USA – volume: 122 start-page: 185 year: 2001 publication-title: Synth. Met. – volume: 2 start-page: 4404 year: 2012 publication-title: RSC Adv. – volume: 46 start-page: 79 year: 2006 publication-title: J. Macromol. Sci., Part C: Polym. Rev. – volume: 24 start-page: 7211 year: 2014 publication-title: Adv. Funct. Mater. – volume: 4 start-page: 016103 year: 2016 publication-title: APL Mater. – volume: 27 start-page: 2350 year: 2015 publication-title: Chem. Mater. – volume: 21 start-page: 17033 year: 2011 publication-title: J. Mater. Chem. – volume: 3 start-page: 12199 year: 2015 publication-title: J. Mater. Chem. C – volume: 17 start-page: 26553 year: 2015 publication-title: Phys. Chem. Chem. Phys. – volume: 114 start-page: 7637 year: 2010 publication-title: J. Phys. Chem. C – volume: 732 start-page: 5 year: 2013 publication-title: J. Fluid Mech. – volume: 26 start-page: 2371 year: 2016 publication-title: Adv. Funct. Mater. – volume: 18 start-page: 424009 year: 2007 publication-title: Nanotechnology – volume: 26 start-page: 487 year: 2014 publication-title: Adv. Mater. – volume: 107 start-page: 926 year: 2007 publication-title: Chem. Rev. – volume: 120 start-page: 664 year: 1998 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 32620 year: 2016 publication-title: Sci. Rep. – volume: 26 start-page: 2379 year: 2016 publication-title: Adv. Funct. Mater. – volume: 9 start-page: 1101 year: 2008 publication-title: Org. Electron. – volume: 12 start-page: 665 year: 2013 publication-title: Nat. Mater. – volume: 17 start-page: 3639 year: 2007 publication-title: Adv. Funct. Mater. – volume: 6 start-page: 8598 year: 2015 publication-title: Nat. Commun. – ident: e_1_2_7_22_1 doi: 10.1002/adfm.201502412 – ident: e_1_2_7_18_1 doi: 10.1038/srep32620 – ident: e_1_2_7_54_1 doi: 10.1039/c1jm12837j – volume: 91 start-page: 2005 year: 2007 ident: e_1_2_7_9_1 publication-title: Appl. Phys. Lett. – ident: e_1_2_7_21_1 doi: 10.1021/ja5091035 – ident: e_1_2_7_24_1 doi: 10.1002/adma.200803328 – ident: e_1_2_7_39_1 doi: 10.1039/C5TC02488A – ident: e_1_2_7_48_1 doi: 10.1002/adma.201302439 – ident: e_1_2_7_10_1 doi: 10.1103/PhysRevB.80.085201 – ident: e_1_2_7_7_1 doi: 10.1021/cr100142w – ident: e_1_2_7_11_1 doi: 10.1038/ncomms6954 – ident: e_1_2_7_37_1 doi: 10.1063/1.2940593 – ident: e_1_2_7_44_1 doi: 10.1063/1.1491009 – ident: e_1_2_7_12_1 doi: 10.1063/1.2338587 – ident: e_1_2_7_43_1 doi: 10.1016/S0379-6779(00)01351-5 – ident: e_1_2_7_41_1 doi: 10.1002/admt.201600090 – ident: e_1_2_7_52_1 doi: 10.1002/adfm.201500468 – ident: e_1_2_7_35_1 doi: 10.1021/ja051755e – ident: e_1_2_7_28_1 doi: 10.1021/ja507179d – ident: e_1_2_7_3_1 doi: 10.1021/ar9000873 – ident: e_1_2_7_25_1 doi: 10.1021/acs.chemmater.5b00884 – ident: e_1_2_7_34_1 doi: 10.1016/j.orgel.2008.08.011 – ident: e_1_2_7_33_1 doi: 10.1063/1.1848179 – ident: e_1_2_7_31_1 doi: 10.1016/j.cplett.2011.12.026 – ident: e_1_2_7_26_1 doi: 10.1038/nature10683 – ident: e_1_2_7_8_1 doi: 10.1002/adma.201001446 – ident: e_1_2_7_49_1 doi: 10.1038/ncomms9598 – ident: e_1_2_7_20_1 doi: 10.1039/C3NR04341J – ident: e_1_2_7_23_1 doi: 10.1002/adfm.200700207 – ident: e_1_2_7_47_1 doi: 10.1063/1.1486253 – ident: e_1_2_7_45_1 doi: 10.1021/ja054276o – ident: e_1_2_7_13_1 doi: 10.1021/cm503439r – ident: e_1_2_7_50_1 doi: 10.1002/adfm.201502428 – volume: 17 start-page: 42 year: 1942 ident: e_1_2_7_55_1 publication-title: Acta Physicochim. URSS – ident: e_1_2_7_46_1 doi: 10.1080/15321790500471244 – ident: e_1_2_7_56_1 doi: 10.1017/jfm.2013.382 – ident: e_1_2_7_5_1 doi: 10.1002/adfm.201400219 – ident: e_1_2_7_6_1 doi: 10.1021/cr050140x – ident: e_1_2_7_42_1 doi: 10.1021/ja9728381 – ident: e_1_2_7_32_1 doi: 10.1039/b810993a – ident: e_1_2_7_4_1 doi: 10.1039/c2cp41712j – ident: e_1_2_7_40_1 doi: 10.1002/adma.201602479 – ident: e_1_2_7_38_1 doi: 10.1039/c1cp21507h – ident: e_1_2_7_2_1 doi: 10.1073/pnas.1419771112 – ident: e_1_2_7_17_1 doi: 10.1063/1.4939464 – ident: e_1_2_7_36_1 doi: 10.1088/0957-4484/18/42/424009 – ident: e_1_2_7_15_1 doi: 10.1002/adfm.201401228 – ident: e_1_2_7_14_1 doi: 10.1002/adma.201404806 – ident: e_1_2_7_27_1 doi: 10.1039/c2ra20272g – ident: e_1_2_7_19_1 doi: 10.1002/adfm.200701019 – ident: e_1_2_7_16_1 doi: 10.1021/cg2007793 – ident: e_1_2_7_51_1 doi: 10.1021/cm503780u – ident: e_1_2_7_1_1 doi: 10.1038/nmat3650 – ident: e_1_2_7_30_1 doi: 10.1002/adfm.201502274 – ident: e_1_2_7_29_1 doi: 10.1039/C4CP02413C – ident: e_1_2_7_53_1 doi: 10.1021/jp9114755 |
| SSID | ssj0017734 |
| Score | 2.526861 |
| Snippet | During the last decades, small molecule organic semiconductors have been successfully used as active layer in organic field‐effect transistors (OFETs). Despite... During the last decades, small molecule organic semiconductors have been successfully used as active layer in organic field-effect transistors (OFETs). Despite... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Active control Commercialization Crystallization Field effect transistors Materials science Morphology Organic chemistry organic field‐effect transistors Organic semiconductors Polymer blends Polymorphism Polystyrene resins printed electronics Reproducibility Semiconductor devices Shearing solution shearing Thermodynamics Thin films Transistors |
| Title | Control of Polymorphism and Morphology in Solution Sheared Organic Field‐Effect Transistors |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201700526 https://www.proquest.com/docview/1920412965 |
| Volume | 27 |
| WOSCitedRecordID | wos000404550600010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1616-3028 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017734 issn: 1616-301X databaseCode: DRFUL dateStart: 20010101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1PS8MwFH_o5kEP_henU3IQPJW1TdM_x7FZPLgxZMIuUpImhcHWyjoFb34EP6OfxKRpu-0ggt4aSNPwkvT93st7vwdwwzwrkTCVG5ZDseEEPjYCCTMMwbHEciaROoUVxSa84dCfTILRWha_5oeoHW7qZBT_a3XAKcs7K9JQyhOVSa745YjtbkPTlpuXNKDZfwyfHuqbBM_TN8uupWK8rElF3Gjanc0RNhXTCm2uY9ZC6YQH_5_uIeyXgBN19Q45gi2RHsPeGg3hCTz3dLw6yhI0ymbv80wKf5rPEU05GqhG4XtH0xRVXjSkK2FzpHM5YxSqSLivj0_NhowKFVgwkOSnMA7vxr17oyy7YMQSW7kGoxbxJFKh2OTYodI-kSacLbjJCGXCjx2BubRaCBa-YJzGWCW_2pglXpK43MRn0EizVJwDIo4ImMm4I40shRwDYcUOS-RnTIqJm7TAqEQexSUluaqMMYs0mbIdKalFtdRacFv3f9FkHD_2bFcrGJWHMo_kLBW7WOCSFtjFWv0yStTth4O6dfGXly5hVz0XAb6kDY3l4lVcwU78tpzmi-tys34DSPbqOQ |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1PS8MwFH_oJqgH_4vTqTkInsrapmnX49gsE7cxZMIuUpImhcHWyjYFb34EP6OfxKTpuu0ggnhMSdPw8tL3ey_v_QJwwzwrljCVG5ZDseH4dWz4EmYYgmOJ5UwibQrLLpvwer36cOj382xCVQuj-SGKgJvaGdn_Wm1wFZCuLVlDKY9VKbkimCO2uwllR-qSVPJy6zF46hRHCZ6nj5ZdSyV5WcMFc6Np19ZHWLdMS7i5ClozqxPs_8N8D2Avh5yooXXkEDZEcgS7K0SEx_Dc1BnrKI1RPx2_T1Ip_tFsgmjCUVc1sug7GiVoEUdD-i5sjnQ1Z4QClQv39fGp-ZBRZgQzDpLZCQyCu0GzbeQXLxiRRFeuwahFPIlVKDY5dqj0UKQTZwtuMkKZqEeOwFz6LQSLumCcRliVv9qYxV4cu9zEp1BK0kScASKO8JnJuCPdLIUdfWFFDovlZ0yKiRtXwFjIPIxyUnJ1N8Y41HTKdqikFhZSq8Bt0f9F03H82LO6WMIw35azUM5S8Yv5LqmAnS3WL6OEjVbQLVrnf3npGrbbg24n7Nz3Hi5gRz3P0n1JFUrz6au4hK3obT6aTa9yzf0GWzTuKQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1PS8MwFH_oJqIH_4vzbw6Cp7K2adr1OJxFcRtDJuwiJWkSGGgndgre_Ah-Rj-JSdN220EE8ZiSpuEl6fu9l_d-D-CcBY5UMJVbjkex5YUtbIUKZliCY4XlbKJ0CsuLTQT9fms0CgdFNKHOhTH8EJXDTZ-M_H-tD7h45rI5Yw2lXOpUck0wR1x_GeqeriRTg3rnLrrvVlcJQWCuln1HB3k5o5K50XabiyMsaqYZ3JwHrbnWiTb_Yb5bsFFATtQ2e2QblkS6A-tzRIS78HBpItbRRKLB5PH9aaLEP86eEE056ulG7n1H4xSVfjRkamFzZLI5ExTpWLivj0_Dh4xyJZhzkGR7MIyuhpfXVlF4wUoUuvItRh0SKKxCsc2xR5WFoow4V3CbEcpEK_EE5spuIVi0BOM0wTr91cVMBlL63Mb7UEsnqTgARDwRMptxT5lZGjuGwkk8JtVnbIqJLxtglTKPk4KUXNfGeIwNnbIba6nFldQacFH1fzZ0HD_2PC6XMC6OZRarWWp-sdAnDXDzxfpllLjdiXpV6_AvL53B6qATxd2b_u0RrOnHebQvOYba9OVVnMBK8jYdZy-nxcb9Bv8F7aQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Control+of+Polymorphism+and+Morphology+in+Solution+Sheared+Organic+Field-Effect+Transistors&rft.jtitle=Advanced+functional+materials&rft.au=Galindo%2C+Sergi&rft.au=Tamayo%2C+Adri%C3%A1n&rft.au=Leonardi%2C+Francesca&rft.au=Mas-Torrent%2C+Marta&rft.date=2017-07-05&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=27&rft.issue=25&rft_id=info:doi/10.1002%2Fadfm.201700526&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |