Control of Polymorphism and Morphology in Solution Sheared Organic Field‐Effect Transistors

During the last decades, small molecule organic semiconductors have been successfully used as active layer in organic field‐effect transistors (OFETs). Despite the high mobility achieved so far with organic molecules, in order to progress in the field it is crucial to find techniques to process them...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Advanced functional materials Ročník 27; číslo 25
Hlavní autori: Galindo, Sergi, Tamayo, Adrián, Leonardi, Francesca, Mas‐Torrent, Marta
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Hoboken Wiley Subscription Services, Inc 05.07.2017
Predmet:
ISSN:1616-301X, 1616-3028
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract During the last decades, small molecule organic semiconductors have been successfully used as active layer in organic field‐effect transistors (OFETs). Despite the high mobility achieved so far with organic molecules, in order to progress in the field it is crucial to find techniques to process them from solution. The device reproducibility is one of the principal weak points of organic electronics for further commercialization. To achieve a high device‐to‐device reproducibility it is essential to control the morphology and polymorphism of the active layer for OFET application. In this work, the preparation of thin films is reported based on blends of the organic semiconductor dibenzo‐tetrathiafulvalene (DB‐TTF) and polystyrene by a solution shearing technique compatible with upscaling. Here, it is demonstrated that varying the deposition parameters (i.e., speed and temperature) or the solution formulation (i.e., semiconductor/binder polymer ratio) is possible to control the film morphology and semiconductor polymorphism and, hence, the different intermolecular interactions. It is demonstrated that the control of the thermodynamics and kinetics of the crystallization process is key for the device performance optimization. Further, this is the first time that DB‐TTF thin films of the α‐polymorph are reported. Printed organic semiconductors require high control of polymorphism and morphology to enhance device reproducibility. Thin‐film organic field‐effect transistors have been prepared by solution shearing using blends of a small molecule semiconductor and a binder polymer. The deposition parameters and solution formulation determine the thin‐film morphology and polymorphism, which, in turn, has a crucial impact on the device performance.
AbstractList During the last decades, small molecule organic semiconductors have been successfully used as active layer in organic field‐effect transistors (OFETs). Despite the high mobility achieved so far with organic molecules, in order to progress in the field it is crucial to find techniques to process them from solution. The device reproducibility is one of the principal weak points of organic electronics for further commercialization. To achieve a high device‐to‐device reproducibility it is essential to control the morphology and polymorphism of the active layer for OFET application. In this work, the preparation of thin films is reported based on blends of the organic semiconductor dibenzo‐tetrathiafulvalene (DB‐TTF) and polystyrene by a solution shearing technique compatible with upscaling. Here, it is demonstrated that varying the deposition parameters (i.e., speed and temperature) or the solution formulation (i.e., semiconductor/binder polymer ratio) is possible to control the film morphology and semiconductor polymorphism and, hence, the different intermolecular interactions. It is demonstrated that the control of the thermodynamics and kinetics of the crystallization process is key for the device performance optimization. Further, this is the first time that DB‐TTF thin films of the α‐polymorph are reported.
During the last decades, small molecule organic semiconductors have been successfully used as active layer in organic field-effect transistors (OFETs). Despite the high mobility achieved so far with organic molecules, in order to progress in the field it is crucial to find techniques to process them from solution. The device reproducibility is one of the principal weak points of organic electronics for further commercialization. To achieve a high device-to-device reproducibility it is essential to control the morphology and polymorphism of the active layer for OFET application. In this work, the preparation of thin films is reported based on blends of the organic semiconductor dibenzo-tetrathiafulvalene (DB-TTF) and polystyrene by a solution shearing technique compatible with upscaling. Here, it is demonstrated that varying the deposition parameters (i.e., speed and temperature) or the solution formulation (i.e., semiconductor/binder polymer ratio) is possible to control the film morphology and semiconductor polymorphism and, hence, the different intermolecular interactions. It is demonstrated that the control of the thermodynamics and kinetics of the crystallization process is key for the device performance optimization. Further, this is the first time that DB-TTF thin films of the [alpha]-polymorph are reported.
During the last decades, small molecule organic semiconductors have been successfully used as active layer in organic field‐effect transistors (OFETs). Despite the high mobility achieved so far with organic molecules, in order to progress in the field it is crucial to find techniques to process them from solution. The device reproducibility is one of the principal weak points of organic electronics for further commercialization. To achieve a high device‐to‐device reproducibility it is essential to control the morphology and polymorphism of the active layer for OFET application. In this work, the preparation of thin films is reported based on blends of the organic semiconductor dibenzo‐tetrathiafulvalene (DB‐TTF) and polystyrene by a solution shearing technique compatible with upscaling. Here, it is demonstrated that varying the deposition parameters (i.e., speed and temperature) or the solution formulation (i.e., semiconductor/binder polymer ratio) is possible to control the film morphology and semiconductor polymorphism and, hence, the different intermolecular interactions. It is demonstrated that the control of the thermodynamics and kinetics of the crystallization process is key for the device performance optimization. Further, this is the first time that DB‐TTF thin films of the α‐polymorph are reported. Printed organic semiconductors require high control of polymorphism and morphology to enhance device reproducibility. Thin‐film organic field‐effect transistors have been prepared by solution shearing using blends of a small molecule semiconductor and a binder polymer. The deposition parameters and solution formulation determine the thin‐film morphology and polymorphism, which, in turn, has a crucial impact on the device performance.
Author Leonardi, Francesca
Tamayo, Adrián
Mas‐Torrent, Marta
Galindo, Sergi
Author_xml – sequence: 1
  givenname: Sergi
  surname: Galindo
  fullname: Galindo, Sergi
  organization: Campus de la Universitat Autònoma de Barcelona
– sequence: 2
  givenname: Adrián
  surname: Tamayo
  fullname: Tamayo, Adrián
  organization: Campus de la Universitat Autònoma de Barcelona
– sequence: 3
  givenname: Francesca
  surname: Leonardi
  fullname: Leonardi, Francesca
  organization: Campus de la Universitat Autònoma de Barcelona
– sequence: 4
  givenname: Marta
  surname: Mas‐Torrent
  fullname: Mas‐Torrent, Marta
  email: mmas@icmab.es
  organization: Campus de la Universitat Autònoma de Barcelona
BookMark eNqFkE1LAzEQhoNUsK1ePQc8b83XfvRYqlWhpYI9eJGQ3SRtym5Sky2yN3-Cv9Ff4i6VCoJ4mhl4nhnmHYCedVYBcInRCCNEroXU1YggnCIUk-QE9HGCk4gikvWOPX4-A4MQtqjFUsr64GXqbO1dCZ2Gj65sKud3GxMqKKyEi25wpVs30Fj45Mp9bVzbbJTwSsKlXwtrCjgzqpSf7x-3WquihisvbDChdj6cg1MtyqAuvusQrGa3q-l9NF_ePUwn86hghCZRLnCcooQJiiRlgpGMsYwoifJY5CormKIyYSSmKlO5FAUlMR4TmutU60QiOgRXh7U77173KtR86_bethd5yyGGyTiJW4odqMK7ELzSvDC16D6qvTAlx4h3OfIuR37MsdVGv7SdN5Xwzd_C-CC8mVI1_9B8cjNb_LhfkIqJsQ
CitedBy_id crossref_primary_10_1016_j_mattod_2018_07_018
crossref_primary_10_1002_ange_202421769
crossref_primary_10_1002_admt_202101535
crossref_primary_10_1002_aelm_201900067
crossref_primary_10_1002_admt_202401518
crossref_primary_10_1016_j_cis_2019_102080
crossref_primary_10_1039_D2NR05625A
crossref_primary_10_1039_D4EE01073F
crossref_primary_10_26599_NR_2025_94907343
crossref_primary_10_1016_j_apsusc_2019_143822
crossref_primary_10_1038_s41428_018_0069_z
crossref_primary_10_1002_adfm_202006115
crossref_primary_10_1016_j_jiec_2021_09_023
crossref_primary_10_1038_s41467_020_15974_7
crossref_primary_10_1002_admi_202500599
crossref_primary_10_1016_j_orgel_2022_106448
crossref_primary_10_1038_s41467_020_20209_w
crossref_primary_10_1039_D0NH00096E
crossref_primary_10_1002_adma_202401822
crossref_primary_10_1016_j_comptc_2024_115060
crossref_primary_10_1039_D4TC05403B
crossref_primary_10_3390_cryst13060861
crossref_primary_10_3390_molecules27217235
crossref_primary_10_1002_adma_202110468
crossref_primary_10_1002_adfm_201807786
crossref_primary_10_1021_acs_cgd_5c00046
crossref_primary_10_1016_j_dyepig_2019_107847
crossref_primary_10_1002_aelm_202400887
crossref_primary_10_1002_cptc_201700123
crossref_primary_10_1016_j_matpr_2024_06_009
crossref_primary_10_1002_adfm_202413904
crossref_primary_10_1002_admt_201900104
crossref_primary_10_1002_smll_202006043
crossref_primary_10_1088_1361_6528_aaaa7a
crossref_primary_10_1016_j_chemphys_2019_02_012
crossref_primary_10_1002_adfm_202202071
crossref_primary_10_1002_aelm_201700349
crossref_primary_10_1002_adfm_201706372
crossref_primary_10_1002_aelm_201800076
crossref_primary_10_3390_coatings11101222
crossref_primary_10_1038_s41563_020_0760_2
crossref_primary_10_1002_adfm_202105456
crossref_primary_10_1016_j_synthmet_2022_117209
crossref_primary_10_1109_LED_2020_2967024
crossref_primary_10_1039_D0QM00567C
crossref_primary_10_1002_aelm_201700271
crossref_primary_10_1002_anie_202421769
crossref_primary_10_1002_aelm_201800141
crossref_primary_10_3390_cryst14030207
crossref_primary_10_1002_admi_202101679
crossref_primary_10_1016_j_orgel_2019_02_011
crossref_primary_10_1002_aelm_202400500
crossref_primary_10_1002_smll_202300151
crossref_primary_10_1002_admi_201900950
crossref_primary_10_1016_j_polymer_2020_122208
crossref_primary_10_1016_j_progpolymsci_2022_101548
Cites_doi 10.1002/adfm.201502412
10.1038/srep32620
10.1039/c1jm12837j
10.1021/ja5091035
10.1002/adma.200803328
10.1039/C5TC02488A
10.1002/adma.201302439
10.1103/PhysRevB.80.085201
10.1021/cr100142w
10.1038/ncomms6954
10.1063/1.2940593
10.1063/1.1491009
10.1063/1.2338587
10.1016/S0379-6779(00)01351-5
10.1002/admt.201600090
10.1002/adfm.201500468
10.1021/ja051755e
10.1021/ja507179d
10.1021/ar9000873
10.1021/acs.chemmater.5b00884
10.1016/j.orgel.2008.08.011
10.1063/1.1848179
10.1016/j.cplett.2011.12.026
10.1038/nature10683
10.1002/adma.201001446
10.1038/ncomms9598
10.1039/C3NR04341J
10.1002/adfm.200700207
10.1063/1.1486253
10.1021/ja054276o
10.1021/cm503439r
10.1002/adfm.201502428
10.1080/15321790500471244
10.1017/jfm.2013.382
10.1002/adfm.201400219
10.1021/cr050140x
10.1021/ja9728381
10.1039/b810993a
10.1039/c2cp41712j
10.1002/adma.201602479
10.1039/c1cp21507h
10.1073/pnas.1419771112
10.1063/1.4939464
10.1088/0957-4484/18/42/424009
10.1002/adfm.201401228
10.1002/adma.201404806
10.1039/c2ra20272g
10.1002/adfm.200701019
10.1021/cg2007793
10.1021/cm503780u
10.1038/nmat3650
10.1002/adfm.201502274
10.1039/C4CP02413C
10.1021/jp9114755
ContentType Journal Article
Copyright 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.201700526
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList CrossRef
Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_201700526
ADFM201700526
Genre article
GrantInformation_xml – fundername: European Research Council
  funderid: 2012‐306826; 2014‐640120
– fundername: Generalitat de Catalunya
  funderid: 2014‐SGR‐17
– fundername: Networking Research Center on Bioengineering, Biomaterials, and Nanomedicine
– fundername: Spanish Ministry of Economy and Competitiveness
  funderid: CTQ 2013‐40480‐R; CTQ2016‐80030‐R
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AAMMB
AANHP
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
HF~
HVGLF
O8X
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c4236-ba157064a30d34a4284482ed0b5abe8c4e3d64253e8ebdac3251923bf7ff6d03
IEDL.DBID DRFUL
ISICitedReferencesCount 93
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000404550600010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1616-301X
IngestDate Sun Nov 09 06:12:31 EST 2025
Tue Nov 18 21:16:32 EST 2025
Sat Nov 29 07:23:40 EST 2025
Wed Jan 22 16:55:05 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 25
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4236-ba157064a30d34a4284482ed0b5abe8c4e3d64253e8ebdac3251923bf7ff6d03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink http://hdl.handle.net/10261/151398
PQID 1920412965
PQPubID 2045204
PageCount 9
ParticipantIDs proquest_journals_1920412965
crossref_citationtrail_10_1002_adfm_201700526
crossref_primary_10_1002_adfm_201700526
wiley_primary_10_1002_adfm_201700526_ADFM201700526
PublicationCentury 2000
PublicationDate July 5, 2017
PublicationDateYYYYMMDD 2017-07-05
PublicationDate_xml – month: 07
  year: 2017
  text: July 5, 2017
  day: 05
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2017
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2007; 17
2001; 122
2007; 18
2007; 107
2015; 6
2015; 17
2009; 21
2009; 42
2015; 3
2009; 80
2008; 18
2008; 9
2014; 26
2007; 91
2011; 11
2005; 86
2014; 24
2008; 10
2011; 13
2002; 81
2012; 14
2012; 523
2008; 92
2014; 136
2011; 111
2016; 4
2010; 22
2016; 6
2015; 25
2012; 2
2015; 27
2016; 1
1942; 17
2006; 89
2006; 46
2013; 12
2010; 114
2013; 732
2015; 112
2005; 127
2011; 21
2002; 92
2016; 28
2011; 480
2014; 6
2016; 26
1998; 120
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
Landau L. (e_1_2_7_55_1) 1942; 17
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
Jiang H. (e_1_2_7_9_1) 2007; 91
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_38_1
References_xml – volume: 18
  start-page: 1363
  year: 2008
  publication-title: Adv. Funct. Mater.
– volume: 480
  start-page: 504
  year: 2011
  publication-title: Nature
– volume: 81
  start-page: 268
  year: 2002
  publication-title: Appl. Phys. Lett.
– volume: 127
  start-page: 13476
  year: 2005
  publication-title: J. Am. Chem. Soc.
– volume: 523
  start-page: 74
  year: 2012
  publication-title: Chem. Phys. Lett.
– volume: 111
  start-page: 4833
  year: 2011
  publication-title: Chem. Rev.
– volume: 21
  start-page: 2294
  year: 2009
  publication-title: Adv. Mater.
– volume: 26
  start-page: 2357
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 11
  start-page: 3663
  year: 2011
  publication-title: Cryst. Growth Des.
– volume: 22
  start-page: 4198
  year: 2010
  publication-title: Adv. Mater.
– volume: 89
  start-page: 14
  year: 2006
  publication-title: Appl. Phys. Lett.
– volume: 6
  start-page: 5954
  year: 2015
  publication-title: Nat. Commun.
– volume: 17
  start-page: 42
  year: 1942
  publication-title: Acta Physicochim. URSS
– volume: 92
  start-page: 233306
  year: 2008
  publication-title: Appl. Phys. Lett.
– volume: 25
  start-page: 3131
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 14
  start-page: 14165
  year: 2012
  publication-title: Phys. Chem. Chem. Phys.
– volume: 136
  start-page: 17046
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 1
  start-page: 1600090
  year: 2016
  publication-title: Adv. Mater. Technol.
– volume: 10
  start-page: 1899
  year: 2008
  publication-title: CrystEngComm
– volume: 42
  start-page: 1573
  year: 2009
  publication-title: Acc. Chem. Res.
– volume: 80
  start-page: 085201
  year: 2009
  publication-title: Phys. Rev. B
– volume: 127
  start-page: 10142
  year: 2005
  publication-title: J. Am. Chem. Soc.
– volume: 27
  start-page: 3979
  year: 2015
  publication-title: Chem. Mater.
– volume: 6
  start-page: 449
  year: 2014
  publication-title: Nanoscale
– volume: 136
  start-page: 15749
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 27
  start-page: 825
  year: 2015
  publication-title: Adv. Mater.
– volume: 92
  start-page: 330
  year: 2002
  publication-title: J. Appl. Phys.
– volume: 27
  start-page: 112
  year: 2015
  publication-title: Chem. Mater.
– volume: 24
  start-page: 5052
  year: 2014
  publication-title: Adv. Funct. Mater.
– volume: 91
  start-page: 2005
  year: 2007
  publication-title: Appl. Phys. Lett.
– volume: 28
  start-page: 10311
  year: 2016
  publication-title: Adv. Mater.
– volume: 86
  start-page: 12110
  year: 2005
  publication-title: Appl. Phys. Lett.
– volume: 13
  start-page: 14370
  year: 2011
  publication-title: Phys. Chem. Chem. Phys.
– volume: 112
  start-page: 5561
  year: 2015
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 122
  start-page: 185
  year: 2001
  publication-title: Synth. Met.
– volume: 2
  start-page: 4404
  year: 2012
  publication-title: RSC Adv.
– volume: 46
  start-page: 79
  year: 2006
  publication-title: J. Macromol. Sci., Part C: Polym. Rev.
– volume: 24
  start-page: 7211
  year: 2014
  publication-title: Adv. Funct. Mater.
– volume: 4
  start-page: 016103
  year: 2016
  publication-title: APL Mater.
– volume: 27
  start-page: 2350
  year: 2015
  publication-title: Chem. Mater.
– volume: 21
  start-page: 17033
  year: 2011
  publication-title: J. Mater. Chem.
– volume: 3
  start-page: 12199
  year: 2015
  publication-title: J. Mater. Chem. C
– volume: 17
  start-page: 26553
  year: 2015
  publication-title: Phys. Chem. Chem. Phys.
– volume: 114
  start-page: 7637
  year: 2010
  publication-title: J. Phys. Chem. C
– volume: 732
  start-page: 5
  year: 2013
  publication-title: J. Fluid Mech.
– volume: 26
  start-page: 2371
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 18
  start-page: 424009
  year: 2007
  publication-title: Nanotechnology
– volume: 26
  start-page: 487
  year: 2014
  publication-title: Adv. Mater.
– volume: 107
  start-page: 926
  year: 2007
  publication-title: Chem. Rev.
– volume: 120
  start-page: 664
  year: 1998
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 32620
  year: 2016
  publication-title: Sci. Rep.
– volume: 26
  start-page: 2379
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 9
  start-page: 1101
  year: 2008
  publication-title: Org. Electron.
– volume: 12
  start-page: 665
  year: 2013
  publication-title: Nat. Mater.
– volume: 17
  start-page: 3639
  year: 2007
  publication-title: Adv. Funct. Mater.
– volume: 6
  start-page: 8598
  year: 2015
  publication-title: Nat. Commun.
– ident: e_1_2_7_22_1
  doi: 10.1002/adfm.201502412
– ident: e_1_2_7_18_1
  doi: 10.1038/srep32620
– ident: e_1_2_7_54_1
  doi: 10.1039/c1jm12837j
– volume: 91
  start-page: 2005
  year: 2007
  ident: e_1_2_7_9_1
  publication-title: Appl. Phys. Lett.
– ident: e_1_2_7_21_1
  doi: 10.1021/ja5091035
– ident: e_1_2_7_24_1
  doi: 10.1002/adma.200803328
– ident: e_1_2_7_39_1
  doi: 10.1039/C5TC02488A
– ident: e_1_2_7_48_1
  doi: 10.1002/adma.201302439
– ident: e_1_2_7_10_1
  doi: 10.1103/PhysRevB.80.085201
– ident: e_1_2_7_7_1
  doi: 10.1021/cr100142w
– ident: e_1_2_7_11_1
  doi: 10.1038/ncomms6954
– ident: e_1_2_7_37_1
  doi: 10.1063/1.2940593
– ident: e_1_2_7_44_1
  doi: 10.1063/1.1491009
– ident: e_1_2_7_12_1
  doi: 10.1063/1.2338587
– ident: e_1_2_7_43_1
  doi: 10.1016/S0379-6779(00)01351-5
– ident: e_1_2_7_41_1
  doi: 10.1002/admt.201600090
– ident: e_1_2_7_52_1
  doi: 10.1002/adfm.201500468
– ident: e_1_2_7_35_1
  doi: 10.1021/ja051755e
– ident: e_1_2_7_28_1
  doi: 10.1021/ja507179d
– ident: e_1_2_7_3_1
  doi: 10.1021/ar9000873
– ident: e_1_2_7_25_1
  doi: 10.1021/acs.chemmater.5b00884
– ident: e_1_2_7_34_1
  doi: 10.1016/j.orgel.2008.08.011
– ident: e_1_2_7_33_1
  doi: 10.1063/1.1848179
– ident: e_1_2_7_31_1
  doi: 10.1016/j.cplett.2011.12.026
– ident: e_1_2_7_26_1
  doi: 10.1038/nature10683
– ident: e_1_2_7_8_1
  doi: 10.1002/adma.201001446
– ident: e_1_2_7_49_1
  doi: 10.1038/ncomms9598
– ident: e_1_2_7_20_1
  doi: 10.1039/C3NR04341J
– ident: e_1_2_7_23_1
  doi: 10.1002/adfm.200700207
– ident: e_1_2_7_47_1
  doi: 10.1063/1.1486253
– ident: e_1_2_7_45_1
  doi: 10.1021/ja054276o
– ident: e_1_2_7_13_1
  doi: 10.1021/cm503439r
– ident: e_1_2_7_50_1
  doi: 10.1002/adfm.201502428
– volume: 17
  start-page: 42
  year: 1942
  ident: e_1_2_7_55_1
  publication-title: Acta Physicochim. URSS
– ident: e_1_2_7_46_1
  doi: 10.1080/15321790500471244
– ident: e_1_2_7_56_1
  doi: 10.1017/jfm.2013.382
– ident: e_1_2_7_5_1
  doi: 10.1002/adfm.201400219
– ident: e_1_2_7_6_1
  doi: 10.1021/cr050140x
– ident: e_1_2_7_42_1
  doi: 10.1021/ja9728381
– ident: e_1_2_7_32_1
  doi: 10.1039/b810993a
– ident: e_1_2_7_4_1
  doi: 10.1039/c2cp41712j
– ident: e_1_2_7_40_1
  doi: 10.1002/adma.201602479
– ident: e_1_2_7_38_1
  doi: 10.1039/c1cp21507h
– ident: e_1_2_7_2_1
  doi: 10.1073/pnas.1419771112
– ident: e_1_2_7_17_1
  doi: 10.1063/1.4939464
– ident: e_1_2_7_36_1
  doi: 10.1088/0957-4484/18/42/424009
– ident: e_1_2_7_15_1
  doi: 10.1002/adfm.201401228
– ident: e_1_2_7_14_1
  doi: 10.1002/adma.201404806
– ident: e_1_2_7_27_1
  doi: 10.1039/c2ra20272g
– ident: e_1_2_7_19_1
  doi: 10.1002/adfm.200701019
– ident: e_1_2_7_16_1
  doi: 10.1021/cg2007793
– ident: e_1_2_7_51_1
  doi: 10.1021/cm503780u
– ident: e_1_2_7_1_1
  doi: 10.1038/nmat3650
– ident: e_1_2_7_30_1
  doi: 10.1002/adfm.201502274
– ident: e_1_2_7_29_1
  doi: 10.1039/C4CP02413C
– ident: e_1_2_7_53_1
  doi: 10.1021/jp9114755
SSID ssj0017734
Score 2.526861
Snippet During the last decades, small molecule organic semiconductors have been successfully used as active layer in organic field‐effect transistors (OFETs). Despite...
During the last decades, small molecule organic semiconductors have been successfully used as active layer in organic field-effect transistors (OFETs). Despite...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Active control
Commercialization
Crystallization
Field effect transistors
Materials science
Morphology
Organic chemistry
organic field‐effect transistors
Organic semiconductors
Polymer blends
Polymorphism
Polystyrene resins
printed electronics
Reproducibility
Semiconductor devices
Shearing
solution shearing
Thermodynamics
Thin films
Transistors
Title Control of Polymorphism and Morphology in Solution Sheared Organic Field‐Effect Transistors
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201700526
https://www.proquest.com/docview/1920412965
Volume 27
WOSCitedRecordID wos000404550600010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1616-3028
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017734
  issn: 1616-301X
  databaseCode: DRFUL
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1PS8MwFH_o5kEP_henU3IQPJW1TdM_x7FZPLgxZMIuUpImhcHWyjoFb34EP6OfxKRpu-0ggt4aSNPwkvT93st7vwdwwzwrkTCVG5ZDseEEPjYCCTMMwbHEciaROoUVxSa84dCfTILRWha_5oeoHW7qZBT_a3XAKcs7K9JQyhOVSa745YjtbkPTlpuXNKDZfwyfHuqbBM_TN8uupWK8rElF3Gjanc0RNhXTCm2uY9ZC6YQH_5_uIeyXgBN19Q45gi2RHsPeGg3hCTz3dLw6yhI0ymbv80wKf5rPEU05GqhG4XtH0xRVXjSkK2FzpHM5YxSqSLivj0_NhowKFVgwkOSnMA7vxr17oyy7YMQSW7kGoxbxJFKh2OTYodI-kSacLbjJCGXCjx2BubRaCBa-YJzGWCW_2pglXpK43MRn0EizVJwDIo4ImMm4I40shRwDYcUOS-RnTIqJm7TAqEQexSUluaqMMYs0mbIdKalFtdRacFv3f9FkHD_2bFcrGJWHMo_kLBW7WOCSFtjFWv0yStTth4O6dfGXly5hVz0XAb6kDY3l4lVcwU78tpzmi-tys34DSPbqOQ
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1PS8MwFH_oJqgH_4vTqTkInsrapmnX49gsE7cxZMIuUpImhcHWyjYFb34EP6OfxKTpuu0ggnhMSdPw8tL3ey_v_QJwwzwrljCVG5ZDseH4dWz4EmYYgmOJ5UwibQrLLpvwer36cOj382xCVQuj-SGKgJvaGdn_Wm1wFZCuLVlDKY9VKbkimCO2uwllR-qSVPJy6zF46hRHCZ6nj5ZdSyV5WcMFc6Np19ZHWLdMS7i5ClozqxPs_8N8D2Avh5yooXXkEDZEcgS7K0SEx_Dc1BnrKI1RPx2_T1Ip_tFsgmjCUVc1sug7GiVoEUdD-i5sjnQ1Z4QClQv39fGp-ZBRZgQzDpLZCQyCu0GzbeQXLxiRRFeuwahFPIlVKDY5dqj0UKQTZwtuMkKZqEeOwFz6LQSLumCcRliVv9qYxV4cu9zEp1BK0kScASKO8JnJuCPdLIUdfWFFDovlZ0yKiRtXwFjIPIxyUnJ1N8Y41HTKdqikFhZSq8Bt0f9F03H82LO6WMIw35azUM5S8Yv5LqmAnS3WL6OEjVbQLVrnf3npGrbbg24n7Nz3Hi5gRz3P0n1JFUrz6au4hK3obT6aTa9yzf0GWzTuKQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1PS8MwFH_oJqIH_4vzbw6Cp7K2adr1OJxFcRtDJuwiJWkSGGgndgre_Ah-Rj-JSdN220EE8ZiSpuEl6fu9l_d-D-CcBY5UMJVbjkex5YUtbIUKZliCY4XlbKJ0CsuLTQT9fms0CgdFNKHOhTH8EJXDTZ-M_H-tD7h45rI5Yw2lXOpUck0wR1x_GeqeriRTg3rnLrrvVlcJQWCuln1HB3k5o5K50XabiyMsaqYZ3JwHrbnWiTb_Yb5bsFFATtQ2e2QblkS6A-tzRIS78HBpItbRRKLB5PH9aaLEP86eEE056ulG7n1H4xSVfjRkamFzZLI5ExTpWLivj0_Dh4xyJZhzkGR7MIyuhpfXVlF4wUoUuvItRh0SKKxCsc2xR5WFoow4V3CbEcpEK_EE5spuIVi0BOM0wTr91cVMBlL63Mb7UEsnqTgARDwRMptxT5lZGjuGwkk8JtVnbIqJLxtglTKPk4KUXNfGeIwNnbIba6nFldQacFH1fzZ0HD_2PC6XMC6OZRarWWp-sdAnDXDzxfpllLjdiXpV6_AvL53B6qATxd2b_u0RrOnHebQvOYba9OVVnMBK8jYdZy-nxcb9Bv8F7aQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Control+of+Polymorphism+and+Morphology+in+Solution+Sheared+Organic+Field-Effect+Transistors&rft.jtitle=Advanced+functional+materials&rft.au=Galindo%2C+Sergi&rft.au=Tamayo%2C+Adri%C3%A1n&rft.au=Leonardi%2C+Francesca&rft.au=Mas-Torrent%2C+Marta&rft.date=2017-07-05&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=27&rft.issue=25&rft_id=info:doi/10.1002%2Fadfm.201700526&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon