EPA and DHA acylcarnitines are less cardiotoxic than are saturated and monounsaturated long‐chain acylcarnitines

Elevated levels of fatty acid‐derived long‐chain acylcarnitines are detrimental to cardiac health, primarily because of their adverse effects on mitochondrial function and key metabolic pathways in the heart. While trans‐fatty acids are considered harmful and omega‐3 polyunsaturated fatty acids (PUF...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BioFactors (Oxford) Jg. 51; H. 2; S. e70014 - n/a
Hauptverfasser: Liepinsh, Edgars, Gukalova, Baiba, Krims‐Davis, Kristaps, Kuka, Janis, Leduskrasta, Aiga, Korzh, Stanislava, Vilskersts, Reinis, Makrecka‐Kuka, Marina, Konrade, Ilze, Dambrova, Maija
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Hoboken, USA John Wiley & Sons, Inc 01.03.2025
Schlagworte:
ISSN:0951-6433, 1872-8081, 1872-8081
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Elevated levels of fatty acid‐derived long‐chain acylcarnitines are detrimental to cardiac health, primarily because of their adverse effects on mitochondrial function and key metabolic pathways in the heart. While trans‐fatty acids are considered harmful and omega‐3 polyunsaturated fatty acids (PUFAs) are considered beneficial, the specific properties of acylcarnitines derived from these types of fatty acids are not characterized. This study aimed to compare the effects of saturated palmitoylcarnitine (PC), monounsaturated cis‐oleoylcarnitine (cis‐OC), trans‐elaidoylcarnitine (trans‐EC), and polyunsaturated eicosapentaenoylcarnitine (EPAC) and docosahexaenoylcarnitine (DHAC) on heart function, cardiac cell viability, mitochondrial functionality, and insulin signaling pathways. Saturated and monounsaturated acylcarnitines, particularly trans‐EC, significantly reduced cardiac contractility at concentrations of 8–12 μM, and trans‐EC was identified as the most cardiotoxic acylcarnitine. Conversely, the presence of EPAC and DHAC in the perfusion buffer did not impair heart functionality. Saturated and monounsaturated acylcarnitines also drastically reduced H9C2 cell viability and suppressed mitochondrial OXPHOS by up to 70% at 25 μM, whereas PUFA‐derived acylcarnitines caused only a 20%–25% reduction in OXPHOS and did not decrease cell viability. Furthermore, PC, cis‐OC, and trans‐EC significantly inhibited Akt phosphorylation, whereas EPAC and DHAC had a much weaker effect on insulin signaling. In conclusion, saturated and monounsaturated acylcarnitines, particularly trans‐EC, exert significant cardiotoxic effects, primarily through the impairment of cardiac mitochondrial function. The omega‐3 PUFA‐derived acylcarnitines EPAC and DHAC are safe and less likely to damage cardiac mitochondria, cardiac cells, and the heart than other acylcarnitines. PUFA intake might be safer than other long‐chain fatty acid‐containing lipid sources in patients with FAODs and cardiometabolic diseases. Saturated and monounsaturated acylcarnitines, particularly trans‐EC, exert significant cardiotoxic effects, primarily through the impairment of cardiac mitochondrial function. The omega‐3 PUFA‐derived acylcarnitines EPAC and DHAC are safe and less likely to damage cardiac mitochondria, cardiac cells, and the heart than other acylcarnitines.
AbstractList Elevated levels of fatty acid‐derived long‐chain acylcarnitines are detrimental to cardiac health, primarily because of their adverse effects on mitochondrial function and key metabolic pathways in the heart. While trans‐fatty acids are considered harmful and omega‐3 polyunsaturated fatty acids (PUFAs) are considered beneficial, the specific properties of acylcarnitines derived from these types of fatty acids are not characterized. This study aimed to compare the effects of saturated palmitoylcarnitine (PC), monounsaturated cis‐oleoylcarnitine (cis‐OC), trans‐elaidoylcarnitine (trans‐EC), and polyunsaturated eicosapentaenoylcarnitine (EPAC) and docosahexaenoylcarnitine (DHAC) on heart function, cardiac cell viability, mitochondrial functionality, and insulin signaling pathways. Saturated and monounsaturated acylcarnitines, particularly trans‐EC, significantly reduced cardiac contractility at concentrations of 8–12 μM, and trans‐EC was identified as the most cardiotoxic acylcarnitine. Conversely, the presence of EPAC and DHAC in the perfusion buffer did not impair heart functionality. Saturated and monounsaturated acylcarnitines also drastically reduced H9C2 cell viability and suppressed mitochondrial OXPHOS by up to 70% at 25 μM, whereas PUFA‐derived acylcarnitines caused only a 20%–25% reduction in OXPHOS and did not decrease cell viability. Furthermore, PC, cis‐OC, and trans‐EC significantly inhibited Akt phosphorylation, whereas EPAC and DHAC had a much weaker effect on insulin signaling. In conclusion, saturated and monounsaturated acylcarnitines, particularly trans‐EC, exert significant cardiotoxic effects, primarily through the impairment of cardiac mitochondrial function. The omega‐3 PUFA‐derived acylcarnitines EPAC and DHAC are safe and less likely to damage cardiac mitochondria, cardiac cells, and the heart than other acylcarnitines. PUFA intake might be safer than other long‐chain fatty acid‐containing lipid sources in patients with FAODs and cardiometabolic diseases.
Elevated levels of fatty acid‐derived long‐chain acylcarnitines are detrimental to cardiac health, primarily because of their adverse effects on mitochondrial function and key metabolic pathways in the heart. While trans‐fatty acids are considered harmful and omega‐3 polyunsaturated fatty acids (PUFAs) are considered beneficial, the specific properties of acylcarnitines derived from these types of fatty acids are not characterized. This study aimed to compare the effects of saturated palmitoylcarnitine (PC), monounsaturated cis‐oleoylcarnitine (cis‐OC), trans‐elaidoylcarnitine (trans‐EC), and polyunsaturated eicosapentaenoylcarnitine (EPAC) and docosahexaenoylcarnitine (DHAC) on heart function, cardiac cell viability, mitochondrial functionality, and insulin signaling pathways. Saturated and monounsaturated acylcarnitines, particularly trans‐EC, significantly reduced cardiac contractility at concentrations of 8–12 μM, and trans‐EC was identified as the most cardiotoxic acylcarnitine. Conversely, the presence of EPAC and DHAC in the perfusion buffer did not impair heart functionality. Saturated and monounsaturated acylcarnitines also drastically reduced H9C2 cell viability and suppressed mitochondrial OXPHOS by up to 70% at 25 μM, whereas PUFA‐derived acylcarnitines caused only a 20%–25% reduction in OXPHOS and did not decrease cell viability. Furthermore, PC, cis‐OC, and trans‐EC significantly inhibited Akt phosphorylation, whereas EPAC and DHAC had a much weaker effect on insulin signaling. In conclusion, saturated and monounsaturated acylcarnitines, particularly trans‐EC, exert significant cardiotoxic effects, primarily through the impairment of cardiac mitochondrial function. The omega‐3 PUFA‐derived acylcarnitines EPAC and DHAC are safe and less likely to damage cardiac mitochondria, cardiac cells, and the heart than other acylcarnitines. PUFA intake might be safer than other long‐chain fatty acid‐containing lipid sources in patients with FAODs and cardiometabolic diseases. Saturated and monounsaturated acylcarnitines, particularly trans‐EC, exert significant cardiotoxic effects, primarily through the impairment of cardiac mitochondrial function. The omega‐3 PUFA‐derived acylcarnitines EPAC and DHAC are safe and less likely to damage cardiac mitochondria, cardiac cells, and the heart than other acylcarnitines.
Elevated levels of fatty acid‐derived long‐chain acylcarnitines are detrimental to cardiac health, primarily because of their adverse effects on mitochondrial function and key metabolic pathways in the heart. While trans‐fatty acids are considered harmful and omega‐3 polyunsaturated fatty acids (PUFAs) are considered beneficial, the specific properties of acylcarnitines derived from these types of fatty acids are not characterized. This study aimed to compare the effects of saturated palmitoylcarnitine (PC), monounsaturated cis‐oleoylcarnitine (cis‐OC), trans‐elaidoylcarnitine (trans‐EC), and polyunsaturated eicosapentaenoylcarnitine (EPAC) and docosahexaenoylcarnitine (DHAC) on heart function, cardiac cell viability, mitochondrial functionality, and insulin signaling pathways. Saturated and monounsaturated acylcarnitines, particularly trans‐EC, significantly reduced cardiac contractility at concentrations of 8–12 μM, and trans‐EC was identified as the most cardiotoxic acylcarnitine. Conversely, the presence of EPAC and DHAC in the perfusion buffer did not impair heart functionality. Saturated and monounsaturated acylcarnitines also drastically reduced H9C2 cell viability and suppressed mitochondrial OXPHOS by up to 70% at 25 μM, whereas PUFA‐derived acylcarnitines caused only a 20%–25% reduction in OXPHOS and did not decrease cell viability. Furthermore, PC, cis‐OC, and trans‐EC significantly inhibited Akt phosphorylation, whereas EPAC and DHAC had a much weaker effect on insulin signaling. In conclusion, saturated and monounsaturated acylcarnitines, particularly trans‐EC, exert significant cardiotoxic effects, primarily through the impairment of cardiac mitochondrial function. The omega‐3 PUFA‐derived acylcarnitines EPAC and DHAC are safe and less likely to damage cardiac mitochondria, cardiac cells, and the heart than other acylcarnitines. PUFA intake might be safer than other long‐chain fatty acid‐containing lipid sources in patients with FAODs and cardiometabolic diseases. Saturated and monounsaturated acylcarnitines, particularly trans‐EC, exert significant cardiotoxic effects, primarily through the impairment of cardiac mitochondrial function. The omega‐3 PUFA‐derived acylcarnitines EPAC and DHAC are safe and less likely to damage cardiac mitochondria, cardiac cells, and the heart than other acylcarnitines.
Elevated levels of fatty acid-derived long-chain acylcarnitines are detrimental to cardiac health, primarily because of their adverse effects on mitochondrial function and key metabolic pathways in the heart. While trans-fatty acids are considered harmful and omega-3 polyunsaturated fatty acids (PUFAs) are considered beneficial, the specific properties of acylcarnitines derived from these types of fatty acids are not characterized. This study aimed to compare the effects of saturated palmitoylcarnitine (PC), monounsaturated cis-oleoylcarnitine (cis-OC), trans-elaidoylcarnitine (trans-EC), and polyunsaturated eicosapentaenoylcarnitine (EPAC) and docosahexaenoylcarnitine (DHAC) on heart function, cardiac cell viability, mitochondrial functionality, and insulin signaling pathways. Saturated and monounsaturated acylcarnitines, particularly trans-EC, significantly reduced cardiac contractility at concentrations of 8-12 μM, and trans-EC was identified as the most cardiotoxic acylcarnitine. Conversely, the presence of EPAC and DHAC in the perfusion buffer did not impair heart functionality. Saturated and monounsaturated acylcarnitines also drastically reduced H9C2 cell viability and suppressed mitochondrial OXPHOS by up to 70% at 25 μM, whereas PUFA-derived acylcarnitines caused only a 20%-25% reduction in OXPHOS and did not decrease cell viability. Furthermore, PC, cis-OC, and trans-EC significantly inhibited Akt phosphorylation, whereas EPAC and DHAC had a much weaker effect on insulin signaling. In conclusion, saturated and monounsaturated acylcarnitines, particularly trans-EC, exert significant cardiotoxic effects, primarily through the impairment of cardiac mitochondrial function. The omega-3 PUFA-derived acylcarnitines EPAC and DHAC are safe and less likely to damage cardiac mitochondria, cardiac cells, and the heart than other acylcarnitines. PUFA intake might be safer than other long-chain fatty acid-containing lipid sources in patients with FAODs and cardiometabolic diseases.Elevated levels of fatty acid-derived long-chain acylcarnitines are detrimental to cardiac health, primarily because of their adverse effects on mitochondrial function and key metabolic pathways in the heart. While trans-fatty acids are considered harmful and omega-3 polyunsaturated fatty acids (PUFAs) are considered beneficial, the specific properties of acylcarnitines derived from these types of fatty acids are not characterized. This study aimed to compare the effects of saturated palmitoylcarnitine (PC), monounsaturated cis-oleoylcarnitine (cis-OC), trans-elaidoylcarnitine (trans-EC), and polyunsaturated eicosapentaenoylcarnitine (EPAC) and docosahexaenoylcarnitine (DHAC) on heart function, cardiac cell viability, mitochondrial functionality, and insulin signaling pathways. Saturated and monounsaturated acylcarnitines, particularly trans-EC, significantly reduced cardiac contractility at concentrations of 8-12 μM, and trans-EC was identified as the most cardiotoxic acylcarnitine. Conversely, the presence of EPAC and DHAC in the perfusion buffer did not impair heart functionality. Saturated and monounsaturated acylcarnitines also drastically reduced H9C2 cell viability and suppressed mitochondrial OXPHOS by up to 70% at 25 μM, whereas PUFA-derived acylcarnitines caused only a 20%-25% reduction in OXPHOS and did not decrease cell viability. Furthermore, PC, cis-OC, and trans-EC significantly inhibited Akt phosphorylation, whereas EPAC and DHAC had a much weaker effect on insulin signaling. In conclusion, saturated and monounsaturated acylcarnitines, particularly trans-EC, exert significant cardiotoxic effects, primarily through the impairment of cardiac mitochondrial function. The omega-3 PUFA-derived acylcarnitines EPAC and DHAC are safe and less likely to damage cardiac mitochondria, cardiac cells, and the heart than other acylcarnitines. PUFA intake might be safer than other long-chain fatty acid-containing lipid sources in patients with FAODs and cardiometabolic diseases.
Author Korzh, Stanislava
Kuka, Janis
Liepinsh, Edgars
Vilskersts, Reinis
Konrade, Ilze
Gukalova, Baiba
Leduskrasta, Aiga
Krims‐Davis, Kristaps
Makrecka‐Kuka, Marina
Dambrova, Maija
AuthorAffiliation 1 Latvian Institute of Organic Synthesis Riga Latvia
3 Riga East Clinical Hospital Riga Latvia
2 Riga Stradins University Riga Latvia
AuthorAffiliation_xml – name: 2 Riga Stradins University Riga Latvia
– name: 3 Riga East Clinical Hospital Riga Latvia
– name: 1 Latvian Institute of Organic Synthesis Riga Latvia
Author_xml – sequence: 1
  givenname: Edgars
  orcidid: 0000-0003-2213-8337
  surname: Liepinsh
  fullname: Liepinsh, Edgars
  email: ledgars@farm.osi.lv
  organization: Riga Stradins University
– sequence: 2
  givenname: Baiba
  surname: Gukalova
  fullname: Gukalova, Baiba
  organization: Riga Stradins University
– sequence: 3
  givenname: Kristaps
  surname: Krims‐Davis
  fullname: Krims‐Davis, Kristaps
  organization: Latvian Institute of Organic Synthesis
– sequence: 4
  givenname: Janis
  surname: Kuka
  fullname: Kuka, Janis
  organization: Latvian Institute of Organic Synthesis
– sequence: 5
  givenname: Aiga
  surname: Leduskrasta
  fullname: Leduskrasta, Aiga
  organization: Latvian Institute of Organic Synthesis
– sequence: 6
  givenname: Stanislava
  surname: Korzh
  fullname: Korzh, Stanislava
  organization: Latvian Institute of Organic Synthesis
– sequence: 7
  givenname: Reinis
  surname: Vilskersts
  fullname: Vilskersts, Reinis
  organization: Riga Stradins University
– sequence: 8
  givenname: Marina
  surname: Makrecka‐Kuka
  fullname: Makrecka‐Kuka, Marina
  organization: Latvian Institute of Organic Synthesis
– sequence: 9
  givenname: Ilze
  surname: Konrade
  fullname: Konrade, Ilze
  organization: Riga East Clinical Hospital
– sequence: 10
  givenname: Maija
  surname: Dambrova
  fullname: Dambrova, Maija
  organization: Riga Stradins University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40197855$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1OHDEQhS0ECgPJhgNEvUSRmthjd9u9QoRAQEKCRbK2bHcN48hjg-1OMjuOwBk5CZ4ZCD9CrEqq-t4r6b0ttO6DB4R2CN4jGI-_ahsmexxjwtbQiAg-rgUWZB2NcNeQumWUbqKtlH4XgmImPqBNhknHRdOMUDy6OKiU76vvJ2WauTMqeputh1SpCJWDlKqy623I4Z81VZ4qv7wklYeoMvRL-Sz4MPinnQv-8u7m1kyV9a98P6KNiXIJPj3MbfTr-Ojn4Ul9dv7j9PDgrDZsTFktuFAcCzZRmmvSUW2oBkYbzVveUdEy6IkmGqiARgvoAXfcQMPEWDWaYE230f7K92rQM-gN-ByVk1fRzlScy6CsfHnxdiovwx9JSjht25HisPvgEMP1ACnLmU0GnFMewpAkLWE3tFTQFvTz82f_vzwmXQC8AkwMKUWYSGOzyjYsflsnCZaLMuWiTLkss0i-vJI8ur4JkxX81zqYv0PKb6fnxyvNPaMhsvE
CitedBy_id crossref_primary_10_1007_s00216_025_05943_8
Cites_doi 10.1111/bph.16363
10.1016/j.molmet.2024.102015
10.3390/ijms22126470
10.1042/BCJ20160164
10.1210/endocr/bqz046
10.1146/annurev-physiol-021115-105045
10.1002/ehf2.14449
10.1371/journal.pbio.3000410
10.1007/s11010-014-2106-3
10.1161/01.CIR.0000038493.65177.94
10.1097/JSM.0b013e31820f8c2f
10.1016/j.cjca.2021.07.026
10.3390/biom5031319
10.1002/biof.1378
10.1042/CS20080433
10.1093/eurjpc/zwae184
10.1001/jama.296.15.1885
10.1016/S0014-5793(00)01817-2
10.1124/pharmrev.121.000408
10.1007/s11154-020-09568-3
10.1007/BF02533469
10.1093/hmg/ddu218
10.3390/nu12030719
10.3390/ijms24065528
10.1152/ajpheart.00184.2021
10.1017/S0007114524001934
10.1016/j.freeradbiomed.2021.10.035
10.1016/j.ymgme.2017.05.003
10.1371/journal.pgen.1000543
10.1016/j.biopha.2023.115803
10.1007/s11745-999-0376-6
10.1016/j.eclinm.2021.100997
10.1038/nrendo.2015.129
10.3390/antiox13080955
10.1023/a:1013560828090
10.1210/jc.2016-1859
10.14797/mdcj-15-3-171
10.1056/NEJMra054035
10.1096/fj.14-255901
10.1016/j.jacc.2024.04.067
10.1038/s41598-017-17797-x
10.3389/fphys.2021.704290
10.1152/ajpheart.01307.2007
ContentType Journal Article
Copyright 2025 The Author(s). published by Wiley Periodicals LLC on behalf of International Union of Biochemistry and Molecular Biology.
2025 The Author(s). BioFactors published by Wiley Periodicals LLC on behalf of International Union of Biochemistry and Molecular Biology.
Copyright_xml – notice: 2025 The Author(s). published by Wiley Periodicals LLC on behalf of International Union of Biochemistry and Molecular Biology.
– notice: 2025 The Author(s). BioFactors published by Wiley Periodicals LLC on behalf of International Union of Biochemistry and Molecular Biology.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1002/biof.70014
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList CrossRef


MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
DocumentTitleAlternate Liepinsh et al
EISSN 1872-8081
EndPage n/a
ExternalDocumentID PMC11976691
40197855
10_1002_biof_70014
BIOF70014
Genre researchArticle
Journal Article
GrantInformation_xml – fundername: European Union's Horizon 2020 Research and Innovation Programme
  funderid: 857287
– fundername: The Ministry of Economics of the Republic of Latvia
  funderid: VPP‐EM‐BIOMEDICĪNA‐2022/1‐0001
– fundername: The Ministry of Economics of the Republic of Latvia
  grantid: VPP-EM-BIOMEDICĪNA-2022/1-0001
– fundername: European Union's Horizon 2020 Research and Innovation Programme
  grantid: 857287
– fundername: The Ministry of Economics of the Republic of Latvia
  grantid: VPP‐EM‐BIOMEDICĪNA‐2022/1‐0001
GroupedDBID ---
-~X
.GJ
05W
0R~
10A
1OC
23N
24P
31~
33P
36B
3SF
4.4
4P2
52S
52U
52V
53G
5GY
5RE
8-1
A8Z
AAESR
AAEVG
AAFNC
AAHBH
AAHQN
AAIPD
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABDBF
ABQWH
ABUBZ
ABXGK
ACAHQ
ACBWZ
ACCZN
ACGFS
ACGOF
ACMXC
ACPOU
ACPQW
ACRPL
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZMO
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRHK
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIACR
AIDQK
AIDYY
AITYG
AIURR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BHBCM
BMXJE
BNHUX
BOGZA
BRXPI
C45
CAG
COF
DCZOG
DRFUL
DRMAN
DRSTM
DU5
EAD
EAP
EAS
EBD
EBS
EDH
EJD
EMB
EMK
EMOBN
ESX
F5P
FEDTE
FUBAC
G-S
GODZA
HGLYW
HVGLF
HZ~
IOS
KBYEO
LATKE
LEEKS
LH4
LITHE
LOXES
LUTES
LW6
LYRES
MET
MEWTI
MIO
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
MY~
O66
O9-
OIG
OVD
P2P
P2W
QB0
ROL
SUPJJ
SV3
TEORI
TUS
WBKPD
WIH
WIJ
WIK
WNSPC
WOHZO
WXSBR
WYISQ
XG1
XV2
Y6R
ZZTAW
AAYXX
BANNL
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c4234-878a7084fab7b193bc3be435b76793864ed1b1be38e5b8ede097ce5482a5b10b3
IEDL.DBID DRFUL
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001460984500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0951-6433
1872-8081
IngestDate Tue Nov 04 02:06:02 EST 2025
Fri Sep 05 17:42:55 EDT 2025
Mon Jul 21 05:13:43 EDT 2025
Tue Nov 18 21:49:04 EST 2025
Sat Nov 29 07:36:35 EST 2025
Sun Jul 06 04:45:35 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords trans fatty acids
omega‐3
PUFA
mitochondria
MUFA
heart
unsaturated
Language English
License Attribution-NonCommercial-NoDerivs
2025 The Author(s). BioFactors published by Wiley Periodicals LLC on behalf of International Union of Biochemistry and Molecular Biology.
This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4234-878a7084fab7b193bc3be435b76793864ed1b1be38e5b8ede097ce5482a5b10b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-2213-8337
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbiof.70014
PMID 40197855
PQID 3187530026
PQPubID 23479
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11976691
proquest_miscellaneous_3187530026
pubmed_primary_40197855
crossref_citationtrail_10_1002_biof_70014
crossref_primary_10_1002_biof_70014
wiley_primary_10_1002_biof_70014_BIOF70014
PublicationCentury 2000
PublicationDate March/April 2025
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: March/April 2025
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: Netherlands
PublicationTitle BioFactors (Oxford)
PublicationTitleAlternate Biofactors
PublicationYear 2025
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2023; 10
2017; 7
2015; 5
2021; 22
1979; 14
2021; 321
2000; 478
2023; 168
2017; 43
2019; 15
2015; 11
2002; 7
2020; 161
2016; 101
2006; 296
2024; 31
2020; 12
2024; 13
2014; 395
2006; 354
2014; 23
2024; 181
2016; 78
2009; 116
2020; 18
2021; 38
2021; 37
2023; 24
2021; 12
2015; 29
2002; 106
2024; 84
1999; 34
2016; 473
2024; 132
2011; 21
2022; 74
2024; 89
2021; 177
2009; 5
2017; 121
2020; 21
2008; 295
e_1_2_10_23_1
e_1_2_10_24_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_22_1
e_1_2_10_43_1
e_1_2_10_42_1
e_1_2_10_20_1
e_1_2_10_41_1
e_1_2_10_40_1
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_31_1
e_1_2_10_30_1
e_1_2_10_29_1
e_1_2_10_27_1
e_1_2_10_28_1
e_1_2_10_25_1
e_1_2_10_26_1
References_xml – volume: 11
  start-page: 617
  issue: 10
  year: 2015
  end-page: 625
  article-title: Acylcarnitines — old actors auditioning for new roles in metabolic physiology
  publication-title: Nat Rev Endocrinol
– volume: 177
  start-page: 370
  year: 2021
  end-page: 380
  article-title: Low cardiac content of long‐chain acylcarnitines in TMLHE knockout mice prevents ischaemia‐reperfusion‐induced mitochondrial and cardiac damage
  publication-title: Free Radic Biol Med
– volume: 37
  start-page: S4
  issue: 10
  year: 2021
  end-page: S5
  article-title: Meta‐analysis of 17 clinical trials using OMEGA‐3 fatty acids in patients with cardiovascular disease
  publication-title: Can J Cardiol
– volume: 116
  start-page: 585
  issue: 7
  year: 2009
  end-page: 592
  article-title: Muscle acylcarnitines during short‐term fasting in lean healthy men
  publication-title: Clin Sci (Lond)
– volume: 478
  start-page: 19
  issue: 1–2
  year: 2000
  end-page: 25
  article-title: Regulation of the activity of caspases by L‐carnitine and palmitoylcarnitine
  publication-title: FEBS Lett
– volume: 84
  start-page: 663
  issue: 7
  year: 2024
  end-page: 674
  article-title: Ending trans fat‐the first‐ever global elimination program for a noncommunicable disease risk factor: JACC international
  publication-title: J Am Coll Cardiol
– volume: 31
  start-page: 1863
  issue: 15
  year: 2024
  end-page: 1875
  article-title: Effects of omega‐3 fatty acids on coronary revascularization and cardiovascular events: a meta‐analysis
  publication-title: Eur J Prev Cardiol
– volume: 295
  start-page: H105
  issue: 1
  year: 2008
  end-page: H112
  article-title: Different effects of palmitoyl‐L‐carnitine and palmitoyl‐CoA on mitochondrial function in rat ventricular myocytes
  publication-title: Am J Physiol Heart Circ Physiol
– volume: 13
  issue: 8
  year: 2024
  article-title: Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) ameliorate heart failure through reductions in oxidative stress: a systematic review and meta‐analysis
  publication-title: Antioxidants (Basel, Switzerland)
– volume: 21
  start-page: 131
  issue: 2
  year: 2011
  end-page: 137
  article-title: Omega‐3 fatty acids supplementation attenuates inflammatory markers after eccentric exercise in untrained men
  publication-title: Clin J Sport Med
– volume: 43
  start-page: 718
  issue: 5
  year: 2017
  end-page: 730
  article-title: Acute and long‐term administration of palmitoylcarnitine induces muscle‐specific insulin resistance in mice
  publication-title: BioFactors (Oxford, England)
– volume: 12
  issue: 3
  year: 2020
  article-title: Supplementation of re‐esterified docosahexaenoic and eicosapentaenoic acids reduce inflammatory and muscle damage markers after exercise in endurance athletes: a randomized controlled crossover trial
  publication-title: Nutrients
– volume: 101
  start-page: 5044
  issue: 12
  year: 2016
  end-page: 5052
  article-title: Liver and muscle contribute differently to the plasma acylcarnitine pool during fasting and exercise in humans
  publication-title: J Clin Endocrinol Metab
– volume: 14
  start-page: 501
  issue: 5
  year: 1979
  end-page: 503
  article-title: Beta‐oxidation of the coenzyme A esters of vaccenic, elaidic, and petroselaidic acids by rat heart mitochondria
  publication-title: Lipids
– volume: 12
  year: 2021
  article-title: Exercise, nutrition, and supplements in the muscle carnitine palmitoyl‐transferase II deficiency: new theoretical bases for potential applications
  publication-title: Front Physiol
– volume: 29
  start-page: 336
  issue: 1
  year: 2015
  end-page: 345
  article-title: Acylcarnitines: potential implications for skeletal muscle insulin resistance
  publication-title: FASEB J
– volume: 5
  start-page: 1319
  issue: 3
  year: 2015
  end-page: 1338
  article-title: High‐resolution respirometry for simultaneous measurement of oxygen and hydrogen peroxide fluxes in permeabilized cells, tissue homogenate and isolated mitochondria
  publication-title: Biomolecules
– volume: 74
  start-page: 506
  issue: 3
  year: 2022
  end-page: 551
  article-title: Acylcarnitines: nomenclature, biomarkers, therapeutic potential, drug targets, and clinical trials
  publication-title: Pharmacol Rev
– volume: 106
  start-page: 2747
  issue: 21
  year: 2002
  end-page: 2757
  article-title: Fish consumption, fish oil, omega‐3 fatty acids, and cardiovascular disease
  publication-title: Circulation
– volume: 121
  start-page: 279
  issue: 3
  year: 2017
  end-page: 282
  article-title: Identification and diagnostic value of phytanoyl‐ and pristanoyl‐carnitine in plasma from patients with peroxisomal disorders
  publication-title: Mol Genet Metab
– volume: 7
  start-page: 41
  issue: 1
  year: 2002
  end-page: 47
  article-title: Annexin V expression in apoptotic peripheral blood lymphocytes: an electron microscopic evaluation
  publication-title: Apoptosis
– volume: 21
  start-page: 479
  issue: 4
  year: 2020
  end-page: 493
  article-title: Clinical manifestations and management of fatty acid oxidation disorders
  publication-title: Rev Endocr Metab Disord
– volume: 296
  start-page: 1885
  issue: 15
  year: 2006
  end-page: 1899
  article-title: Fish intake, contaminants, and human health: evaluating the risks and the benefits
  publication-title: JAMA
– volume: 132
  start-page: 1
  issue: 7
  year: 2024
  end-page: 11
  article-title: Serum concentrations of lipids, ketones and acylcarnitines during the postprandial and fasting state: the postprandial metabolism (PoMet) study in healthy young adults
  publication-title: Br J Nutr
– volume: 10
  start-page: 3114
  issue: 5
  year: 2023
  end-page: 3122
  article-title: Increased acylcarnitines in infant heart failure indicate fatty acid oxidation inhibition: towards therapeutic options?
  publication-title: ESC Heart Failure
– volume: 18
  issue: 7
  year: 2020
  article-title: The ARRIVE guidelines 2.0: updated guidelines for reporting animal research
  publication-title: PLoS Biol
– volume: 34
  start-page: 381
  issue: 4
  year: 1999
  end-page: 386
  article-title: Metabolism of trans fatty acids by hepatocytes
  publication-title: Lipids
– volume: 38
  year: 2021
  article-title: Effect of omega‐3 fatty acids on cardiovascular outcomes: a systematic review and meta‐analysis
  publication-title: eClinicalMedicine
– volume: 5
  issue: 7
  year: 2009
  article-title: Mitochondrial 2,4‐dienoyl‐CoA reductase deficiency in mice results in severe hypoglycemia with stress intolerance and unimpaired ketogenesis
  publication-title: PLoS Genet
– volume: 168
  year: 2023
  article-title: Decreased long‐chain acylcarnitine content increases mitochondrial coupling efficiency and prevents ischemia‐induced brain damage in rats
  publication-title: Biomed Pharmacother
– volume: 24
  issue: 6
  year: 2023
  article-title: Heart‐type fatty acid binding protein binds long‐chain acylcarnitines and protects against lipotoxicity
  publication-title: Int J Mol Sci
– volume: 15
  start-page: 171
  issue: 3
  year: 2019
  end-page: 178
  article-title: Recent clinical trials shed new light on the cardiovascular benefits of Omega‐3 fatty acids
  publication-title: Methodist Debakey Cardiovasc J
– volume: 354
  start-page: 1601
  issue: 15
  year: 2006
  end-page: 1613
  article-title: Trans fatty acids and cardiovascular disease
  publication-title: N Engl J Med
– volume: 161
  issue: 2
  year: 2020
  article-title: CPT1A‐mediated fat oxidation, mechanisms, and therapeutic potential
  publication-title: Endocrinology
– volume: 395
  start-page: 1
  issue: 1–2
  year: 2014
  end-page: 10
  article-title: Long‐chain acylcarnitine content determines the pattern of energy metabolism in cardiac mitochondria
  publication-title: Mol Cell Biochem
– volume: 181
  start-page: 2750
  year: 2024
  end-page: 2773
  article-title: Hydroxymethylglutaryl‐CoA reductase activity is essential for mitochondrial β‐oxidation of fatty acids to prevent lethal accumulation of long‐chain acylcarnitines in the mouse liver
  publication-title: Br J Pharmacol
– volume: 7
  start-page: 17528
  issue: 1
  year: 2017
  article-title: Plasma acylcarnitine concentrations reflect the acylcarnitine profile in cardiac tissues
  publication-title: Sci Rep
– volume: 22
  issue: 12
  year: 2021
  article-title: Long‐chain acylcarnitines decrease the phosphorylation of the insulin receptor at Tyr1151 through a PTP1B‐dependent mechanism
  publication-title: Int J Mol Sci
– volume: 321
  start-page: H162
  issue: 1
  year: 2021
  end-page: H174
  article-title: Long‐chain acylcarnitine 18:1 acutely increases human atrial myocardial contractility and arrhythmia susceptibility
  publication-title: Am J Physiol Heart Circ Physiol
– volume: 473
  start-page: 1191
  issue: 9
  year: 2016
  end-page: 1202
  article-title: Long‐chain acylcarnitines determine ischaemia/reperfusion‐induced damage in heart mitochondria
  publication-title: Biochem J
– volume: 89
  year: 2024
  article-title: Loss of mitochondria long‐chain fatty acid oxidation impairs skeletal muscle contractility by disrupting myofibril structure and calcium homeostasis
  publication-title: Mol Metab
– volume: 78
  start-page: 23
  year: 2016
  end-page: 44
  article-title: The biochemistry and physiology of mitochondrial fatty acid β‐oxidation and its genetic disorders
  publication-title: Annu Rev Physiol
– volume: 23
  start-page: 5009
  issue: 18
  year: 2014
  end-page: 5016
  article-title: Mitochondrial NADP(H) deficiency due to a mutation in NADK2 causes dienoyl‐CoA reductase deficiency with hyperlysinemia
  publication-title: Hum Mol Genet
– ident: e_1_2_10_4_1
  doi: 10.1111/bph.16363
– ident: e_1_2_10_23_1
  doi: 10.1016/j.molmet.2024.102015
– ident: e_1_2_10_22_1
  doi: 10.3390/ijms22126470
– ident: e_1_2_10_14_1
  doi: 10.1042/BCJ20160164
– ident: e_1_2_10_13_1
  doi: 10.1210/endocr/bqz046
– ident: e_1_2_10_16_1
  doi: 10.1146/annurev-physiol-021115-105045
– ident: e_1_2_10_17_1
  doi: 10.1002/ehf2.14449
– ident: e_1_2_10_27_1
  doi: 10.1371/journal.pbio.3000410
– ident: e_1_2_10_20_1
  doi: 10.1007/s11010-014-2106-3
– ident: e_1_2_10_5_1
  doi: 10.1161/01.CIR.0000038493.65177.94
– ident: e_1_2_10_43_1
  doi: 10.1097/JSM.0b013e31820f8c2f
– ident: e_1_2_10_10_1
  doi: 10.1016/j.cjca.2021.07.026
– ident: e_1_2_10_30_1
  doi: 10.3390/biom5031319
– ident: e_1_2_10_26_1
  doi: 10.1002/biof.1378
– ident: e_1_2_10_31_1
  doi: 10.1042/CS20080433
– ident: e_1_2_10_11_1
  doi: 10.1093/eurjpc/zwae184
– ident: e_1_2_10_6_1
  doi: 10.1001/jama.296.15.1885
– ident: e_1_2_10_24_1
  doi: 10.1016/S0014-5793(00)01817-2
– ident: e_1_2_10_2_1
  doi: 10.1124/pharmrev.121.000408
– ident: e_1_2_10_39_1
  doi: 10.1007/s11154-020-09568-3
– ident: e_1_2_10_35_1
  doi: 10.1007/BF02533469
– ident: e_1_2_10_38_1
  doi: 10.1093/hmg/ddu218
– ident: e_1_2_10_44_1
  doi: 10.3390/nu12030719
– ident: e_1_2_10_25_1
  doi: 10.3390/ijms24065528
– ident: e_1_2_10_33_1
  doi: 10.1152/ajpheart.00184.2021
– ident: e_1_2_10_32_1
  doi: 10.1017/S0007114524001934
– ident: e_1_2_10_28_1
  doi: 10.1016/j.freeradbiomed.2021.10.035
– ident: e_1_2_10_3_1
  doi: 10.1016/j.ymgme.2017.05.003
– ident: e_1_2_10_37_1
  doi: 10.1371/journal.pgen.1000543
– ident: e_1_2_10_18_1
  doi: 10.1016/j.biopha.2023.115803
– ident: e_1_2_10_36_1
  doi: 10.1007/s11745-999-0376-6
– ident: e_1_2_10_9_1
  doi: 10.1016/j.eclinm.2021.100997
– ident: e_1_2_10_15_1
  doi: 10.1038/nrendo.2015.129
– ident: e_1_2_10_7_1
  doi: 10.3390/antiox13080955
– ident: e_1_2_10_29_1
  doi: 10.1023/a:1013560828090
– ident: e_1_2_10_40_1
  doi: 10.1210/jc.2016-1859
– ident: e_1_2_10_8_1
  doi: 10.14797/mdcj-15-3-171
– ident: e_1_2_10_12_1
  doi: 10.1056/NEJMra054035
– ident: e_1_2_10_21_1
  doi: 10.1096/fj.14-255901
– ident: e_1_2_10_34_1
  doi: 10.1016/j.jacc.2024.04.067
– ident: e_1_2_10_41_1
  doi: 10.1038/s41598-017-17797-x
– ident: e_1_2_10_42_1
  doi: 10.3389/fphys.2021.704290
– ident: e_1_2_10_19_1
  doi: 10.1152/ajpheart.01307.2007
SSID ssj0013048
Score 2.4255855
Snippet Elevated levels of fatty acid‐derived long‐chain acylcarnitines are detrimental to cardiac health, primarily because of their adverse effects on mitochondrial...
Elevated levels of fatty acid-derived long-chain acylcarnitines are detrimental to cardiac health, primarily because of their adverse effects on mitochondrial...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e70014
SubjectTerms Animals
Cardiotoxicity
Carnitine - analogs & derivatives
Carnitine - pharmacology
Carnitine - toxicity
Cell Survival - drug effects
Docosahexaenoic Acids - pharmacology
Docosahexaenoic Acids - toxicity
Eicosapentaenoic Acid - analogs & derivatives
Eicosapentaenoic Acid - pharmacology
heart
Insulin - metabolism
mitochondria
Mitochondria, Heart - drug effects
Mitochondria, Heart - metabolism
MUFA
Myocytes, Cardiac - drug effects
Myocytes, Cardiac - metabolism
omega‐3
PUFA
Rats
Signal Transduction - drug effects
trans fatty acids
unsaturated
Title EPA and DHA acylcarnitines are less cardiotoxic than are saturated and monounsaturated long‐chain acylcarnitines
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbiof.70014
https://www.ncbi.nlm.nih.gov/pubmed/40197855
https://www.proquest.com/docview/3187530026
https://pubmed.ncbi.nlm.nih.gov/PMC11976691
Volume 51
WOSCitedRecordID wos001460984500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1872-8081
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0013048
  issn: 0951-6433
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9swFD70Mlhf2q7dOq9r0dgYbJA1tmVbhr2kl9BB6cJYR96MJMutIZVHkpb1bT9hv7G_pOfIidOsYzD2YhvrgpCOjs5N3wF4o7g0MglUKyjCqMVzchJKreg2mi8jxX3jksF8O0lOT0W_n_YW4OP0LkyND9EY3GhnOH5NG1yq0d4MNFSVVfGBvKZ8EZbpVhWqXsuHX7pnJzMvQttlz3Kp5PHkDRt40mBv1nr-QHogZT4MlrwvxLpTqLv2f-Nfh9WJ9Mk6Nbk8gQVjN2CzY1Hzvrxhb5mLB3WG9g14fDDNBbcJw6Neh0mbs8NjfOubgSaDyphC5pkcGjZAfsm0C20dVz9Kzcgg70pGBByK8mzumiPN0x345t-gsue3P3_pC1na3_p9Cmfdo68Hx61JtoaWRpGMI1sVMmkLXkiVKBQLlQ6VQWFMJTHyABFzk_vKVyYUJlLC5KadJtqgwhQgTfhtFT6DJVtZ8xxYYXyeh7lI0kBz7EPxOJKFSDlPucET1YN30yXL9ATKnDJqDLIahDnIaHIzN7kevG7qfq8BPP5Y69V05TOcWnKaSGuqq1GGPA81OlJVPdiqKaHpB3VTVMKjyAMxRyNNBcLuni-x5YXD8CbvbRynvgfvHZH8ZWzZ_qfPXff14l8qb8NKQLmKXbzcS1gaD6_MDjzS1-NyNNyFxYD38Jn0xe5k29wBV88crA
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD4aA2m8MNi4hDEwAiGB1K1JnMR57C5VJ0rpw0B7i2zH2SIVB7Ud2t72E_Yb90s4x2lTyhAS4ilR7FiWfXzu_g7AW8WlkUmgWkERRi2eU5BQakW30XwZKe4bVwzmaz8ZDMTJSTqc5ebQXZgaH6JxuNHJcPyaDjg5pHcXqKGqrIodCpvyO3CXo1iijL6ADxdBhLYrnuUqyaPgDRt00mB38e-yPLqlZN7OlfxVh3VCqLv-n9N_CA9m2ifr1OTyCFaM3YDNjkXL-9sle8dcPqhztG_A2v68FtwmjA-HHSZtzg56-NSXI00OlSmlzDM5NmyE_JJpl9o6rS5Kzcgh71omBByK-mzufkeapzvwzbdRZU9vrq71mSztb-M-hi_dw-P9XmtWraGlUSXjyFaFTNqCF1IlCtVCpUNlUBlTSYw8QMTc5L7ylQmFiZQwuWmniTZoMAVIE35bhU9g1VbWPANWGJ_nYS6SNNAcx1A8jmQhUs5TblCievB-vmeZnkGZU0WNUVaDMAcZLW7mFteDN03f7zWAxx97vZ5vfYZLS0ETaU11PsmQ56FFR6aqB09rUmjGQdsUjfAo8kAsEUnTgbC7l1tseeYwvCl6G8ep78EHRyV_mVu2d_S5696e_0vnV7DWO_7Uz_pHg49bcD-gusUud-4FrE7H52Yb7ukf03IyfulOzU-_8x1C
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BQcCFR8sjPI1ASCAt3SRO4hyXtqtWVMseAPUW2c6ERlqcaneL6I2fwG_klzDj7GZZipAQp0SxY1n2PD3jbwCeG6lRZ5HpRVWc9GTJQUJtDd9GC3ViZIi-GMzHw2w0UkdH-XiRm8N3YVp8iO7AjTnDy2tmcDwpq-0Vaqipm-o1h03lRbgkk8zzZSTHqyBC3xfP8pXkSfHGHTpptL36d10fnTMyz-dK_mrDeiU0vPGf078J1xfWpxi05HILLqDbhK2BI8_785l4IXw-qD9o34SrO8tacFsw3RsPhHal2N2npz2bWD5QmXPKvNBTFBOSl8L61NZ587W2gg_kfcuMgUPJni3970TzfAe--zZp3Kcf377bY12738a9DR-Ge-939nuLag09SyaZJLGqdNZXstImM2QWGhsbJGPMZCnJAJVKLEMTGowVJkZhif08s0gOU0Q0EfZNfAc2XOPwHogKQ1nGpcryyEoaw8g00ZXKpcwlkkYN4OVyzwq7gDLnihqTogVhjgpe3MIvbgDPur4nLYDHH3s9XW59QUvLQRPtsDmdFSTzyKNjVzWAuy0pdOOQb0pOeJIEoNaIpOvA2N3rLa4-9hjeHL1N0zwM4JWnkr_MrXhz8G7o3-7_S-cncGW8OywOD0ZvH8C1iMsW-9S5h7Axn57iI7hsv8zr2fSxZ5qfIvEcvQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EPA+and+DHA+acylcarnitines+are+less+cardiotoxic+than+are+saturated+and+monounsaturated+long-chain+acylcarnitines&rft.jtitle=BioFactors+%28Oxford%29&rft.au=Liepinsh%2C+Edgars&rft.au=Gukalova%2C+Baiba&rft.au=Krims-Davis%2C+Kristaps&rft.au=Kuka%2C+Janis&rft.date=2025-03-01&rft.eissn=1872-8081&rft.volume=51&rft.issue=2&rft.spage=e70014&rft_id=info:doi/10.1002%2Fbiof.70014&rft_id=info%3Apmid%2F40197855&rft.externalDocID=40197855
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0951-6433&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0951-6433&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0951-6433&client=summon