Carbothermal Shock Synthesis of High Entropy Oxide Catalysts: Dynamic Structural and Chemical Reconstruction Boosting the Catalytic Activity and Stability toward Oxygen Evolution Reaction
Mixed transition‐metals (TM) based catalysts have shown huge promise for water splitting. Conventional synthesis of nanomaterials is strongly constrained by room‐temperature equilibria and Ostwald ripening. Ultra‐fast temperature cycling enables the synthesis of metastable metallic phases of high en...
Uložené v:
| Vydané v: | Advanced energy materials Ročník 12; číslo 35 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
01.09.2022
|
| Predmet: | |
| ISSN: | 1614-6832, 1614-6840 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Mixed transition‐metals (TM) based catalysts have shown huge promise for water splitting. Conventional synthesis of nanomaterials is strongly constrained by room‐temperature equilibria and Ostwald ripening. Ultra‐fast temperature cycling enables the synthesis of metastable metallic phases of high entropy alloy nanoparticles, which later transform to oxide/hydroxide nanoparticles upon use in aqueous electrolytes. Herein, an in situ synthesis of non‐noble metal high entropy oxide (HEO) catalysts on carbon fibers by rapid Joule heating and quenching is reported. Different compositions of ternary to senary (FeNiCoCrMnV) HEO nanoparticles show higher activity towards catalyzing the oxygen evolution reaction (OER) compared to a noble metal IrO2 catalyst. The synthesized HEO also show two orders of magnitude higher stability than IrO2, due to stronger carbide‐mediated intimacy with the substrate, activated through the OER process. Alloying elements Cr, Mn and V affect OER activity by promoting different oxidation states of the catalytically active TM (Fe, Ni and Co). Dissolution of less stable elements (Mn, V and Cr) leads to enhancements of OER activity. Dynamic structural and chemical perturbations of HEO oxide nanoparticles activate under OER conditions, leading to enlargement in ECSA by forming mixed single atom catalysts and ultra‐fine oxyhydroxide nanoparticles HEOs.
In situ structural and morphological perturbations that occur during an electrocatalytic reaction process, yield an ever‐improving catalyst, and an exceptionally intimate interaction with catalyst‐support for ultra‐prolonged operations. A revolutionary nanomaterials synthesis strategy overcomes thermodynamic governing rules, produces novel chemistries at a millionfold greater throughput rate than conventional methods. |
|---|---|
| AbstractList | Mixed transition‐metals (TM) based catalysts have shown huge promise for water splitting. Conventional synthesis of nanomaterials is strongly constrained by room‐temperature equilibria and Ostwald ripening. Ultra‐fast temperature cycling enables the synthesis of metastable metallic phases of high entropy alloy nanoparticles, which later transform to oxide/hydroxide nanoparticles upon use in aqueous electrolytes. Herein, an in situ synthesis of non‐noble metal high entropy oxide (HEO) catalysts on carbon fibers by rapid Joule heating and quenching is reported. Different compositions of ternary to senary (FeNiCoCrMnV) HEO nanoparticles show higher activity towards catalyzing the oxygen evolution reaction (OER) compared to a noble metal IrO2 catalyst. The synthesized HEO also show two orders of magnitude higher stability than IrO2, due to stronger carbide‐mediated intimacy with the substrate, activated through the OER process. Alloying elements Cr, Mn and V affect OER activity by promoting different oxidation states of the catalytically active TM (Fe, Ni and Co). Dissolution of less stable elements (Mn, V and Cr) leads to enhancements of OER activity. Dynamic structural and chemical perturbations of HEO oxide nanoparticles activate under OER conditions, leading to enlargement in ECSA by forming mixed single atom catalysts and ultra‐fine oxyhydroxide nanoparticles HEOs.
In situ structural and morphological perturbations that occur during an electrocatalytic reaction process, yield an ever‐improving catalyst, and an exceptionally intimate interaction with catalyst‐support for ultra‐prolonged operations. A revolutionary nanomaterials synthesis strategy overcomes thermodynamic governing rules, produces novel chemistries at a millionfold greater throughput rate than conventional methods. |
| Author | Li, Ju Harutyunyan, Avetik R. Abdelhafiz, Ali Wang, Baoming |
| Author_xml | – sequence: 1 givenname: Ali surname: Abdelhafiz fullname: Abdelhafiz, Ali organization: Massachusetts Institute of Technology – sequence: 2 givenname: Baoming surname: Wang fullname: Wang, Baoming organization: Massachusetts Institute of Technology – sequence: 3 givenname: Avetik R. surname: Harutyunyan fullname: Harutyunyan, Avetik R. organization: Honda Research Institute USA, Inc – sequence: 4 givenname: Ju orcidid: 0000-0002-7841-8058 surname: Li fullname: Li, Ju email: liju@mit.edu organization: Massachusetts Institute of Technology |
| BookMark | eNo9kE1OwzAQhS0EEqV0y9oXSLEdNz_sSggUqVCpgXXkJE5jSOwqdlt8Ni6HG6rOZua90XwjvRtwKZXkANxhNMUIkXvGZTcliBCEQkouwAgHmHpBRNHlefbJNZho_YVc0Rgj3x-B34T1hTIN7zvWwqxR5TfMrHSGFhqqGi7EpoGpNL3aWrj6ERWHCTOstdroB_hkJetECTPT70qz6x2DyQomDXeuE2teKqmHpVASPiqljZAb6PgnjHHXc7fdC2OH28ywQrRHZdSB9ZV7ajdcwnSv2t1AWXM24G7BVc1azSenPgafz-lHsvCWq5fXZL70Skp84sUBreuIIVSgqCARCYOYVeEsKvyaliTAqCYxp5EfxTXFKGBBTEiIZkVRzUgdY-qPQfzPPYiW23zbi471NscoP0afH6PPz9Hn8_T97az8P36sf_4 |
| CitedBy_id | crossref_primary_10_1002_asia_202401688 crossref_primary_10_1016_j_pmatsci_2024_101385 crossref_primary_10_1039_D4SC05539J crossref_primary_10_1039_D4EE01093K crossref_primary_10_1002_smll_202310786 crossref_primary_10_1002_adma_202506117 crossref_primary_10_1002_smll_202406685 crossref_primary_10_1016_j_scitotenv_2025_179330 crossref_primary_10_1039_D4TA09220A crossref_primary_10_1016_j_apsusc_2025_163015 crossref_primary_10_1007_s11708_023_0892_6 crossref_primary_10_1016_j_jallcom_2024_178337 crossref_primary_10_1016_j_ijhydene_2024_12_510 crossref_primary_10_1016_j_mtchem_2025_102987 crossref_primary_10_1126_science_adr5604 crossref_primary_10_1016_j_jallcom_2025_181112 crossref_primary_10_1021_acsami_4c21521 crossref_primary_10_1016_j_mtchem_2025_102871 crossref_primary_10_3390_nano14100889 crossref_primary_10_6023_A23020020 crossref_primary_10_1002_advs_202300426 crossref_primary_10_1002_advs_202502244 crossref_primary_10_1002_adfm_202403948 crossref_primary_10_1016_j_surfin_2024_104902 crossref_primary_10_1039_D5QI00777A crossref_primary_10_1002_ange_202218493 crossref_primary_10_1021_acsestwater_5c00460 crossref_primary_10_1002_advs_202511072 crossref_primary_10_1016_j_ijhydene_2025_150758 crossref_primary_10_1002_smll_202410304 crossref_primary_10_1007_s40820_025_01891_1 crossref_primary_10_1002_adfm_202306889 crossref_primary_10_1039_D4EY00210E crossref_primary_10_1002_adfm_202314820 crossref_primary_10_1016_j_jallcom_2024_175696 crossref_primary_10_1002_smll_202309773 crossref_primary_10_1002_adma_202412337 crossref_primary_10_1016_j_ccr_2025_216656 crossref_primary_10_1002_adfm_202512495 crossref_primary_10_1007_s40242_025_5010_3 crossref_primary_10_1016_j_jiec_2024_11_050 crossref_primary_10_1007_s11814_024_00249_4 crossref_primary_10_1039_D4CY00066H crossref_primary_10_1039_D3MH00360D crossref_primary_10_1016_j_colsurfa_2023_133073 crossref_primary_10_1134_S0036029524701520 crossref_primary_10_1016_j_jpowsour_2024_235207 crossref_primary_10_1002_advs_202413424 crossref_primary_10_1016_j_jelechem_2025_119354 crossref_primary_10_1016_j_cej_2025_160641 crossref_primary_10_1002_smll_202309937 crossref_primary_10_1016_j_cclet_2025_110852 crossref_primary_10_1002_metm_31 crossref_primary_10_1002_cssc_202500750 crossref_primary_10_1016_j_nanoen_2023_109153 crossref_primary_10_1016_j_ccr_2025_216546 crossref_primary_10_1038_s41467_025_60399_9 crossref_primary_10_1007_s10562_024_04737_4 crossref_primary_10_1039_D5CS00090D crossref_primary_10_1016_j_jelechem_2025_119083 crossref_primary_10_1016_j_jallcom_2024_175879 crossref_primary_10_1007_s40820_024_01507_0 crossref_primary_10_1016_j_apcata_2024_119796 crossref_primary_10_1002_adma_202312369 crossref_primary_10_1016_j_coelec_2025_101694 crossref_primary_10_1016_j_jpowsour_2025_238329 crossref_primary_10_3762_bjnano_16_84 crossref_primary_10_1016_j_mtcomm_2025_112365 crossref_primary_10_1039_D3MH01339A crossref_primary_10_1002_adma_202303439 crossref_primary_10_1039_D5QI00538H crossref_primary_10_1016_j_electacta_2023_142599 crossref_primary_10_1002_adfm_202513322 crossref_primary_10_1016_j_ijhydene_2025_04_276 crossref_primary_10_1016_j_mtcata_2024_100039 crossref_primary_10_1016_j_nanoen_2023_108994 crossref_primary_10_1039_D3EE04513G crossref_primary_10_1016_j_ensm_2025_104357 crossref_primary_10_1016_j_jallcom_2024_176180 crossref_primary_10_1016_j_nanoen_2025_110843 crossref_primary_10_1016_j_rechem_2025_102569 crossref_primary_10_1002_adfm_202309438 crossref_primary_10_1016_j_jechem_2025_07_012 crossref_primary_10_1002_smtd_202500736 crossref_primary_10_1007_s12598_025_03401_z crossref_primary_10_1021_acsnano_5c04768 crossref_primary_10_1021_jacs_4c14696 crossref_primary_10_1016_j_intermet_2024_108358 crossref_primary_10_1016_j_jcis_2023_11_124 crossref_primary_10_1039_D4QI00770K crossref_primary_10_1016_j_mser_2025_101091 crossref_primary_10_1039_D5SC01961C crossref_primary_10_1002_anie_202218493 crossref_primary_10_1002_adfm_202210656 crossref_primary_10_1002_cnl2_105 crossref_primary_10_1016_j_apcatb_2023_122717 crossref_primary_10_1016_j_jre_2025_01_011 crossref_primary_10_1002_aesr_202300297 crossref_primary_10_1002_bmm2_12043 crossref_primary_10_1016_j_jechem_2025_03_065 crossref_primary_10_1126_sciadv_ads7154 crossref_primary_10_1016_j_desal_2025_118630 crossref_primary_10_1016_j_jallcom_2025_180248 crossref_primary_10_1016_j_cej_2023_148428 crossref_primary_10_1002_smll_202403967 crossref_primary_10_1016_j_cej_2024_150521 crossref_primary_10_1021_acscatal_5c01964 crossref_primary_10_1088_2752_5724_accbd8 crossref_primary_10_1007_s12598_023_02460_4 crossref_primary_10_1016_j_jechem_2025_04_013 crossref_primary_10_1021_jacs_5c06732 crossref_primary_10_1016_j_ensm_2025_104295 crossref_primary_10_1039_D3SC04962K crossref_primary_10_1016_j_apcatb_2024_123845 crossref_primary_10_1016_j_ceramint_2024_02_313 crossref_primary_10_1002_smll_202403162 crossref_primary_10_1016_j_apcatb_2023_123668 crossref_primary_10_1016_j_jallcom_2023_172786 crossref_primary_10_1002_aenm_202303350 crossref_primary_10_1007_s40820_025_01779_0 crossref_primary_10_1021_acs_langmuir_5c00528 crossref_primary_10_1016_j_apcatb_2024_124775 crossref_primary_10_1016_j_ijhydene_2025_150172 |
| ContentType | Journal Article |
| Copyright | 2022 The Authors. Advanced Energy Materials published by Wiley‐VCH GmbH |
| Copyright_xml | – notice: 2022 The Authors. Advanced Energy Materials published by Wiley‐VCH GmbH |
| DBID | 24P |
| DOI | 10.1002/aenm.202200742 |
| DatabaseName | Wiley Online Library Open Access |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1614-6840 |
| EndPage | n/a |
| ExternalDocumentID | AENM202200742 |
| Genre | article |
| GrantInformation_xml | – fundername: Honda Research Institute USA |
| GroupedDBID | 05W 0R~ 1OC 24P 33P 4.4 50Y 5VS 8-0 8-1 A00 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AAXRX AAYCA AAZKR ABCUV ABJNI ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFWVQ AFZJQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI D-A DCZOG EBS G-S HGLYW HZ~ KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY. MY~ O9- P2W P4E RNS ROL RX1 SUPJJ WBKPD WOHZO WXSBR WYJ ZZTAW ~S- |
| ID | FETCH-LOGICAL-c4232-964ff8a00b08b282769ad758b3f4c2610f29e48389f4106a6922705bbd52f9143 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 169 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000831062900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1614-6832 |
| IngestDate | Wed Jan 22 16:24:28 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 35 |
| Language | English |
| License | Attribution |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4232-964ff8a00b08b282769ad758b3f4c2610f29e48389f4106a6922705bbd52f9143 |
| ORCID | 0000-0002-7841-8058 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202200742 |
| PageCount | 13 |
| ParticipantIDs | wiley_primary_10_1002_aenm_202200742_AENM202200742 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-09-01 |
| PublicationDateYYYYMMDD | 2022-09-01 |
| PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Advanced energy materials |
| PublicationYear | 2022 |
| References | 2017; 4 2019; 11 2021; 246 2019; 12 2019; 14 2019; 19 2020; 13 2020; 11 2020; 10 2020; 329 2017; 9 2020; 19 2020; 8 1952; 23 2018; 9 2020; 5 2018; 8 2020; 4 2020; 3 2018; 2 2021; 33 2015; 137 2020; 92 2021; 877 2022; 34 2016; 352 2019; 29 2012; 29 2022; 32 2014; 7 2021; 9 2021; 49 2015; 5 2019; 5 2020; 142 2019; 35 2022; 46 2020; 32 2011; 4 2015; 7 2011; 133 2017; 139 2009; 34 2011; 2011 2021; 13 2016; 6 2016; 7 2021; 12 2021; 11 2018; 359 2021 2019; 44 2022; 5 2017; 16 2022; 12 2022; 13 2018 2017 2022; 15 1994; 15 2016; 28 2016; 26 |
| References_xml | – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 13 start-page: 262 year: 2022 publication-title: Nat. Commun. – volume: 15 start-page: 428 year: 1994 publication-title: J. Phase Equilib. – volume: 44 year: 2019 publication-title: Int. J. Hydrogen Energy – volume: 32 year: 2022 publication-title: Adv. Funct. Mater. – volume: 7 start-page: 6180 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 352 start-page: 974 year: 2016 publication-title: Science – volume: 11 start-page: 4066 year: 2020 publication-title: Nat. Commun. – volume: 11 year: 2021 publication-title: Adv. Energy Mater – volume: 9 year: 2021 publication-title: Energy Technol. – volume: 10 year: 2020 publication-title: ACS Catal. – volume: 35 start-page: 5392 year: 2019 publication-title: Langmuir – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 329 year: 2020 publication-title: Electrochim. Acta – volume: 16 start-page: 121 year: 2017 publication-title: Nature Mater. – volume: 4 year: 2017 publication-title: Adv. Mater. Interfaces – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 5 start-page: 30 year: 2022 publication-title: Nat. Catal. – volume: 14 start-page: 851 year: 2019 publication-title: Nat. Nanotechnol. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 5 start-page: 558 year: 2019 publication-title: ACS Cent. Sci. – volume: 359 start-page: 1489 year: 2018 publication-title: Science – volume: 137 start-page: 3638 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 457 year: 2017 publication-title: Nat. Chem. – volume: 12 year: 2022 publication-title: Adv. Energy Mater. – volume: 13 start-page: 3032 year: 2020 publication-title: Energy Environ. Sci. – volume: 13 year: 2021 publication-title: Nanoscale – volume: 34 start-page: 5749 year: 2022 publication-title: Chem. Mater. – volume: 49 year: 2021 publication-title: Extreme Mech. Lett. – start-page: 20 year: 2018 publication-title: Phys. Chem. Chem. Phys. – volume: 133 start-page: 5587 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 46 start-page: 8398 year: 2022 publication-title: New J. Chem. – volume: 29 start-page: 654 year: 2012 publication-title: Energy Procedia – volume: 5 year: 2015 publication-title: J. Appl. Phys. – volume: 139 start-page: 52 year: 2017 publication-title: J. Am. Chem. Soc. – year: 2021 publication-title: Energy Environ. Mater. – volume: 19 start-page: 5149 year: 2019 publication-title: Nano Lett. – volume: 9 start-page: 2885 year: 2018 publication-title: Nat. Commun. – volume: 4 start-page: 1566 year: 2011 publication-title: ChemSusChem – volume: 26 start-page: 5862 year: 2016 publication-title: Adv. Funct. Mater. – volume: 7 year: 2016 publication-title: Nat. Commun. – volume: 11 start-page: 1026 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 28 start-page: 1691 year: 2016 publication-title: Chem. Mater. – volume: 12 start-page: 4218 year: 2021 publication-title: Nat. Commun. – volume: 19 start-page: 1088 year: 2020 publication-title: Nat. Mater. – volume: 23 start-page: 1305 year: 1952 publication-title: J. Appl. Phys. – volume: 2 start-page: 237 year: 2018 publication-title: Sustainable Energy Fuels – volume: 3 start-page: 6078 year: 2020 publication-title: ACS Appl. Nano Mater. – volume: 9 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 4 start-page: 555 year: 2020 publication-title: Joule – volume: 877 year: 2021 publication-title: J. Alloys Compd. – volume: 92 start-page: 31 year: 2020 publication-title: Chem. Ing. Tech. – volume: 12 start-page: 2288 year: 2019 publication-title: Nano Res. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 15 start-page: 4799 year: 2022 publication-title: Nano Res. – volume: 5 start-page: 359 year: 2020 publication-title: Nat. Energy – volume: 7 start-page: 3135 year: 2014 publication-title: Energy Environ. Sci. – volume: 246 year: 2021 publication-title: Energy Convers. Manage. – volume: 2011 year: 2011 publication-title: J. Nanotechnol. – volume: 6 year: 2016 publication-title: Sci. Rep. – volume: 34 start-page: 703 year: 2009 publication-title: Int. J. Hydrogen Energy – year: 2017 – volume: 142 year: 2020 publication-title: J. Am. Chem. Soc. – volume: 8 year: 2020 publication-title: J. Mater. Chem. A |
| SSID | ssj0000491033 |
| Score | 2.67719 |
| Snippet | Mixed transition‐metals (TM) based catalysts have shown huge promise for water splitting. Conventional synthesis of nanomaterials is strongly constrained by... |
| SourceID | wiley |
| SourceType | Publisher |
| SubjectTerms | chemical reconstruction high entropy oxides high‐throughput synthesis hydrogen production non‐noble metal catalysts oxygen evolution reaction structural reconstruction |
| Title | Carbothermal Shock Synthesis of High Entropy Oxide Catalysts: Dynamic Structural and Chemical Reconstruction Boosting the Catalytic Activity and Stability toward Oxygen Evolution Reaction |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202200742 |
| Volume | 12 |
| WOSCitedRecordID | wos000831062900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZQYYCBN-KtG1ijOq4Tx2ylFDFAqVSQukV2EosOJFVTVeS38ec4O32usCVRfLHis_3d-e47Qu4i3IJ5lPqeERFHAyU0nqJB4NFUJrKlNBrRjmf2RfR60XAo-2tZ_DU_xNLhZmeGW6_tBFe6bK5IQ1WW20xyZp1tHBfhbd9vRbZ4A-P9pZcF8a9PXT15RDbcC1F_F8yNlDU3RWzCU7e_PB38v2eHZH-OLaFdK8MR2cryY7K3xjh4Qn46aqJd0tUXvjn4xNUQBlWOD8pRCYUBG_cBXRu-Pq7g7XuUZtCxHp6qnJb38FjXr4eBY521jB2g8hQWrANgjdkVJS08FEVpw6oB5c_FYNegndQlK1xbRLsuPreCqYvgxY9WqNTQnc0nBQqtky9OycdT973z7M3rN3iJPf71ZMiNiRSlmkYaTTsRSpWifaJbhidouVHDZMYjhEyGo2WqQsmYoIHWacCMRCB3Rhp5kWfnBMJEMB6kLEM0xJVERRK-MpnQiL6E4uKCMDci8bjm6IhrNmYW27GIl2MRt7u91-Xd5V8aXZFde12HmV2TBv7S7IbsJLPpqJzcOu37Be7F3WU |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI4QIAEH3og3PnCtlmVp03AbowjEKJM2pN2q9BGxA920Toj-Nv4cTlo2dkUcGzVuVTvJZ9f-TMi1j0cw99Omo4XP0UHxtKOo6zo0lYlsqRidaMsz2xVh6A-HsldnE5pamIofYh5wMyvD7tdmgZuAdGPBGqqy3JSSMxNt47gLr3E8aoypM96bh1kQADepbSiP0IY7HhrwD3UjZY1lEcv41B4w9zv_8Gq7ZLtGl9CuzGGPrGT5Ptn6xTl4QL46ahrbsqt3vLP_hvsh9MscB4pRAWMNJvMDApPAPinh5XOUZtAxMZ6ymBU3cFd1sIe-5Z01nB2g8hR-eAfAuLMLUlq4HY8Lk1gNKL8Wg68G7aRqWmHnIt61GbolzGwOLz60RLOG4KNeFii0Kr84JK_3waDz4NQdHJzE_AB2pMe19hWlMfVjdO6EJ1WKHkrc0jxB341qJjPuI2jSHH1T5UnGBHXjOHWZlqjNI7Kaj_PsmICXCMbdlGWIh7iSaEqiqXQmYsRfQnFxQphVSTSpWDqiio-ZRUYX0VwXUTsIn-dXp3-ZdEU2HgbP3aj7GD6dkU0zXiWdnZNV_LzZBVlPPmajYnppTfEbLzfhUA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI7QQAgOvBFvfOBakWVp03AbYxOIMSYNpN2qtE3EDnTTOk30t_HncNJuwBVxbNS4UeMknx37MyFXIR7BPEzrnhEhRwMlMJ6ivu_RVCayoWI0oh3PbFf0euFwKPtVNKHNhSn5IZYON7sy3H5tF7iepOb6mzVU6cymkjPrbeO4C69yX9StYjPeX7pZEADXqSsoj9CGewEq8IK6kbLr3yJ-41N3wHS2_2FoO2SrQpfQLNVhl6zobI9s_uAc3CefLTWNXdrVO745eMP9EAZFhg35KIexARv5AW0bwD4p4PljlGpoWR9Pkc_yG7grK9jDwPHOWs4OUFkKC94BsObsNykt3I7HuQ2sBpRficGhQTMpi1a4voh3XYRuATMXw4sfLVCtoT2vlgUKLdMvDshrp_3SuveqCg5eYi-APRlwY0JFaUzDGI07EUiVooUSNwxP0HajhknNQwRNhqNtqgLJmKB-HKc-MxKh3CGpZeNMHxEIEsG4nzKNeIgriaok6spoESP-EoqLY8LclESTkqUjKvmYWWTnIlrORdRs956WTyd_6XRJ1vt3naj70Hs8JRu2uYw5OyM1_Lv6nKwl89kon144TfwC_Rfg1A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Carbothermal+Shock+Synthesis+of+High+Entropy+Oxide+Catalysts%3A+Dynamic+Structural+and+Chemical+Reconstruction+Boosting+the+Catalytic+Activity+and+Stability+toward+Oxygen+Evolution+Reaction&rft.jtitle=Advanced+energy+materials&rft.au=Abdelhafiz%2C+Ali&rft.au=Wang%2C+Baoming&rft.au=Harutyunyan%2C+Avetik+R.&rft.au=Li%2C+Ju&rft.date=2022-09-01&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=12&rft.issue=35&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faenm.202200742&rft.externalDBID=10.1002%252Faenm.202200742&rft.externalDocID=AENM202200742 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon |