Carbothermal Shock Synthesis of High Entropy Oxide Catalysts: Dynamic Structural and Chemical Reconstruction Boosting the Catalytic Activity and Stability toward Oxygen Evolution Reaction

Mixed transition‐metals (TM) based catalysts have shown huge promise for water splitting. Conventional synthesis of nanomaterials is strongly constrained by room‐temperature equilibria and Ostwald ripening. Ultra‐fast temperature cycling enables the synthesis of metastable metallic phases of high en...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Advanced energy materials Ročník 12; číslo 35
Hlavní autori: Abdelhafiz, Ali, Wang, Baoming, Harutyunyan, Avetik R., Li, Ju
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: 01.09.2022
Predmet:
ISSN:1614-6832, 1614-6840
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Mixed transition‐metals (TM) based catalysts have shown huge promise for water splitting. Conventional synthesis of nanomaterials is strongly constrained by room‐temperature equilibria and Ostwald ripening. Ultra‐fast temperature cycling enables the synthesis of metastable metallic phases of high entropy alloy nanoparticles, which later transform to oxide/hydroxide nanoparticles upon use in aqueous electrolytes. Herein, an in situ synthesis of non‐noble metal high entropy oxide (HEO) catalysts on carbon fibers by rapid Joule heating and quenching is reported. Different compositions of ternary to senary (FeNiCoCrMnV) HEO nanoparticles show higher activity towards catalyzing the oxygen evolution reaction (OER) compared to a noble metal IrO2 catalyst. The synthesized HEO also show two orders of magnitude higher stability than IrO2, due to stronger carbide‐mediated intimacy with the substrate, activated through the OER process. Alloying elements Cr, Mn and V affect OER activity by promoting different oxidation states of the catalytically active TM (Fe, Ni and Co). Dissolution of less stable elements (Mn, V and Cr) leads to enhancements of OER activity. Dynamic structural and chemical perturbations of HEO oxide nanoparticles activate under OER conditions, leading to enlargement in ECSA by forming mixed single atom catalysts and ultra‐fine oxyhydroxide nanoparticles HEOs. In situ structural and morphological perturbations that occur during an electrocatalytic reaction process, yield an ever‐improving catalyst, and an exceptionally intimate interaction with catalyst‐support for ultra‐prolonged operations. A revolutionary nanomaterials synthesis strategy overcomes thermodynamic governing rules, produces novel chemistries at a millionfold greater throughput rate than conventional methods.
AbstractList Mixed transition‐metals (TM) based catalysts have shown huge promise for water splitting. Conventional synthesis of nanomaterials is strongly constrained by room‐temperature equilibria and Ostwald ripening. Ultra‐fast temperature cycling enables the synthesis of metastable metallic phases of high entropy alloy nanoparticles, which later transform to oxide/hydroxide nanoparticles upon use in aqueous electrolytes. Herein, an in situ synthesis of non‐noble metal high entropy oxide (HEO) catalysts on carbon fibers by rapid Joule heating and quenching is reported. Different compositions of ternary to senary (FeNiCoCrMnV) HEO nanoparticles show higher activity towards catalyzing the oxygen evolution reaction (OER) compared to a noble metal IrO2 catalyst. The synthesized HEO also show two orders of magnitude higher stability than IrO2, due to stronger carbide‐mediated intimacy with the substrate, activated through the OER process. Alloying elements Cr, Mn and V affect OER activity by promoting different oxidation states of the catalytically active TM (Fe, Ni and Co). Dissolution of less stable elements (Mn, V and Cr) leads to enhancements of OER activity. Dynamic structural and chemical perturbations of HEO oxide nanoparticles activate under OER conditions, leading to enlargement in ECSA by forming mixed single atom catalysts and ultra‐fine oxyhydroxide nanoparticles HEOs. In situ structural and morphological perturbations that occur during an electrocatalytic reaction process, yield an ever‐improving catalyst, and an exceptionally intimate interaction with catalyst‐support for ultra‐prolonged operations. A revolutionary nanomaterials synthesis strategy overcomes thermodynamic governing rules, produces novel chemistries at a millionfold greater throughput rate than conventional methods.
Author Li, Ju
Harutyunyan, Avetik R.
Abdelhafiz, Ali
Wang, Baoming
Author_xml – sequence: 1
  givenname: Ali
  surname: Abdelhafiz
  fullname: Abdelhafiz, Ali
  organization: Massachusetts Institute of Technology
– sequence: 2
  givenname: Baoming
  surname: Wang
  fullname: Wang, Baoming
  organization: Massachusetts Institute of Technology
– sequence: 3
  givenname: Avetik R.
  surname: Harutyunyan
  fullname: Harutyunyan, Avetik R.
  organization: Honda Research Institute USA, Inc
– sequence: 4
  givenname: Ju
  orcidid: 0000-0002-7841-8058
  surname: Li
  fullname: Li, Ju
  email: liju@mit.edu
  organization: Massachusetts Institute of Technology
BookMark eNo9kE1OwzAQhS0EEqV0y9oXSLEdNz_sSggUqVCpgXXkJE5jSOwqdlt8Ni6HG6rOZua90XwjvRtwKZXkANxhNMUIkXvGZTcliBCEQkouwAgHmHpBRNHlefbJNZho_YVc0Rgj3x-B34T1hTIN7zvWwqxR5TfMrHSGFhqqGi7EpoGpNL3aWrj6ERWHCTOstdroB_hkJetECTPT70qz6x2DyQomDXeuE2teKqmHpVASPiqljZAb6PgnjHHXc7fdC2OH28ywQrRHZdSB9ZV7ajdcwnSv2t1AWXM24G7BVc1azSenPgafz-lHsvCWq5fXZL70Skp84sUBreuIIVSgqCARCYOYVeEsKvyaliTAqCYxp5EfxTXFKGBBTEiIZkVRzUgdY-qPQfzPPYiW23zbi471NscoP0afH6PPz9Hn8_T97az8P36sf_4
CitedBy_id crossref_primary_10_1002_asia_202401688
crossref_primary_10_1016_j_pmatsci_2024_101385
crossref_primary_10_1039_D4SC05539J
crossref_primary_10_1039_D4EE01093K
crossref_primary_10_1002_smll_202310786
crossref_primary_10_1002_adma_202506117
crossref_primary_10_1002_smll_202406685
crossref_primary_10_1016_j_scitotenv_2025_179330
crossref_primary_10_1039_D4TA09220A
crossref_primary_10_1016_j_apsusc_2025_163015
crossref_primary_10_1007_s11708_023_0892_6
crossref_primary_10_1016_j_jallcom_2024_178337
crossref_primary_10_1016_j_ijhydene_2024_12_510
crossref_primary_10_1016_j_mtchem_2025_102987
crossref_primary_10_1126_science_adr5604
crossref_primary_10_1016_j_jallcom_2025_181112
crossref_primary_10_1021_acsami_4c21521
crossref_primary_10_1016_j_mtchem_2025_102871
crossref_primary_10_3390_nano14100889
crossref_primary_10_6023_A23020020
crossref_primary_10_1002_advs_202300426
crossref_primary_10_1002_advs_202502244
crossref_primary_10_1002_adfm_202403948
crossref_primary_10_1016_j_surfin_2024_104902
crossref_primary_10_1039_D5QI00777A
crossref_primary_10_1002_ange_202218493
crossref_primary_10_1021_acsestwater_5c00460
crossref_primary_10_1002_advs_202511072
crossref_primary_10_1016_j_ijhydene_2025_150758
crossref_primary_10_1002_smll_202410304
crossref_primary_10_1007_s40820_025_01891_1
crossref_primary_10_1002_adfm_202306889
crossref_primary_10_1039_D4EY00210E
crossref_primary_10_1002_adfm_202314820
crossref_primary_10_1016_j_jallcom_2024_175696
crossref_primary_10_1002_smll_202309773
crossref_primary_10_1002_adma_202412337
crossref_primary_10_1016_j_ccr_2025_216656
crossref_primary_10_1002_adfm_202512495
crossref_primary_10_1007_s40242_025_5010_3
crossref_primary_10_1016_j_jiec_2024_11_050
crossref_primary_10_1007_s11814_024_00249_4
crossref_primary_10_1039_D4CY00066H
crossref_primary_10_1039_D3MH00360D
crossref_primary_10_1016_j_colsurfa_2023_133073
crossref_primary_10_1134_S0036029524701520
crossref_primary_10_1016_j_jpowsour_2024_235207
crossref_primary_10_1002_advs_202413424
crossref_primary_10_1016_j_jelechem_2025_119354
crossref_primary_10_1016_j_cej_2025_160641
crossref_primary_10_1002_smll_202309937
crossref_primary_10_1016_j_cclet_2025_110852
crossref_primary_10_1002_metm_31
crossref_primary_10_1002_cssc_202500750
crossref_primary_10_1016_j_nanoen_2023_109153
crossref_primary_10_1016_j_ccr_2025_216546
crossref_primary_10_1038_s41467_025_60399_9
crossref_primary_10_1007_s10562_024_04737_4
crossref_primary_10_1039_D5CS00090D
crossref_primary_10_1016_j_jelechem_2025_119083
crossref_primary_10_1016_j_jallcom_2024_175879
crossref_primary_10_1007_s40820_024_01507_0
crossref_primary_10_1016_j_apcata_2024_119796
crossref_primary_10_1002_adma_202312369
crossref_primary_10_1016_j_coelec_2025_101694
crossref_primary_10_1016_j_jpowsour_2025_238329
crossref_primary_10_3762_bjnano_16_84
crossref_primary_10_1016_j_mtcomm_2025_112365
crossref_primary_10_1039_D3MH01339A
crossref_primary_10_1002_adma_202303439
crossref_primary_10_1039_D5QI00538H
crossref_primary_10_1016_j_electacta_2023_142599
crossref_primary_10_1002_adfm_202513322
crossref_primary_10_1016_j_ijhydene_2025_04_276
crossref_primary_10_1016_j_mtcata_2024_100039
crossref_primary_10_1016_j_nanoen_2023_108994
crossref_primary_10_1039_D3EE04513G
crossref_primary_10_1016_j_ensm_2025_104357
crossref_primary_10_1016_j_jallcom_2024_176180
crossref_primary_10_1016_j_nanoen_2025_110843
crossref_primary_10_1016_j_rechem_2025_102569
crossref_primary_10_1002_adfm_202309438
crossref_primary_10_1016_j_jechem_2025_07_012
crossref_primary_10_1002_smtd_202500736
crossref_primary_10_1007_s12598_025_03401_z
crossref_primary_10_1021_acsnano_5c04768
crossref_primary_10_1021_jacs_4c14696
crossref_primary_10_1016_j_intermet_2024_108358
crossref_primary_10_1016_j_jcis_2023_11_124
crossref_primary_10_1039_D4QI00770K
crossref_primary_10_1016_j_mser_2025_101091
crossref_primary_10_1039_D5SC01961C
crossref_primary_10_1002_anie_202218493
crossref_primary_10_1002_adfm_202210656
crossref_primary_10_1002_cnl2_105
crossref_primary_10_1016_j_apcatb_2023_122717
crossref_primary_10_1016_j_jre_2025_01_011
crossref_primary_10_1002_aesr_202300297
crossref_primary_10_1002_bmm2_12043
crossref_primary_10_1016_j_jechem_2025_03_065
crossref_primary_10_1126_sciadv_ads7154
crossref_primary_10_1016_j_desal_2025_118630
crossref_primary_10_1016_j_jallcom_2025_180248
crossref_primary_10_1016_j_cej_2023_148428
crossref_primary_10_1002_smll_202403967
crossref_primary_10_1016_j_cej_2024_150521
crossref_primary_10_1021_acscatal_5c01964
crossref_primary_10_1088_2752_5724_accbd8
crossref_primary_10_1007_s12598_023_02460_4
crossref_primary_10_1016_j_jechem_2025_04_013
crossref_primary_10_1021_jacs_5c06732
crossref_primary_10_1016_j_ensm_2025_104295
crossref_primary_10_1039_D3SC04962K
crossref_primary_10_1016_j_apcatb_2024_123845
crossref_primary_10_1016_j_ceramint_2024_02_313
crossref_primary_10_1002_smll_202403162
crossref_primary_10_1016_j_apcatb_2023_123668
crossref_primary_10_1016_j_jallcom_2023_172786
crossref_primary_10_1002_aenm_202303350
crossref_primary_10_1007_s40820_025_01779_0
crossref_primary_10_1021_acs_langmuir_5c00528
crossref_primary_10_1016_j_apcatb_2024_124775
crossref_primary_10_1016_j_ijhydene_2025_150172
ContentType Journal Article
Copyright 2022 The Authors. Advanced Energy Materials published by Wiley‐VCH GmbH
Copyright_xml – notice: 2022 The Authors. Advanced Energy Materials published by Wiley‐VCH GmbH
DBID 24P
DOI 10.1002/aenm.202200742
DatabaseName Wiley Online Library Open Access
DatabaseTitleList
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1614-6840
EndPage n/a
ExternalDocumentID AENM202200742
Genre article
GrantInformation_xml – fundername: Honda Research Institute USA
GroupedDBID 05W
0R~
1OC
24P
33P
4.4
50Y
5VS
8-0
8-1
A00
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
D-A
DCZOG
EBS
G-S
HGLYW
HZ~
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY.
MY~
O9-
P2W
P4E
RNS
ROL
RX1
SUPJJ
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
~S-
ID FETCH-LOGICAL-c4232-964ff8a00b08b282769ad758b3f4c2610f29e48389f4106a6922705bbd52f9143
IEDL.DBID 24P
ISICitedReferencesCount 169
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000831062900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1614-6832
IngestDate Wed Jan 22 16:24:28 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 35
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4232-964ff8a00b08b282769ad758b3f4c2610f29e48389f4106a6922705bbd52f9143
ORCID 0000-0002-7841-8058
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202200742
PageCount 13
ParticipantIDs wiley_primary_10_1002_aenm_202200742_AENM202200742
PublicationCentury 2000
PublicationDate 2022-09-01
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-01
  day: 01
PublicationDecade 2020
PublicationTitle Advanced energy materials
PublicationYear 2022
References 2017; 4
2019; 11
2021; 246
2019; 12
2019; 14
2019; 19
2020; 13
2020; 11
2020; 10
2020; 329
2017; 9
2020; 19
2020; 8
1952; 23
2018; 9
2020; 5
2018; 8
2020; 4
2020; 3
2018; 2
2021; 33
2015; 137
2020; 92
2021; 877
2022; 34
2016; 352
2019; 29
2012; 29
2022; 32
2014; 7
2021; 9
2021; 49
2015; 5
2019; 5
2020; 142
2019; 35
2022; 46
2020; 32
2011; 4
2015; 7
2011; 133
2017; 139
2009; 34
2011; 2011
2021; 13
2016; 6
2016; 7
2021; 12
2021; 11
2018; 359
2021
2019; 44
2022; 5
2017; 16
2022; 12
2022; 13
2018
2017
2022; 15
1994; 15
2016; 28
2016; 26
References_xml – volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 13
  start-page: 262
  year: 2022
  publication-title: Nat. Commun.
– volume: 15
  start-page: 428
  year: 1994
  publication-title: J. Phase Equilib.
– volume: 44
  year: 2019
  publication-title: Int. J. Hydrogen Energy
– volume: 32
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 7
  start-page: 6180
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 352
  start-page: 974
  year: 2016
  publication-title: Science
– volume: 11
  start-page: 4066
  year: 2020
  publication-title: Nat. Commun.
– volume: 11
  year: 2021
  publication-title: Adv. Energy Mater
– volume: 9
  year: 2021
  publication-title: Energy Technol.
– volume: 10
  year: 2020
  publication-title: ACS Catal.
– volume: 35
  start-page: 5392
  year: 2019
  publication-title: Langmuir
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 329
  year: 2020
  publication-title: Electrochim. Acta
– volume: 16
  start-page: 121
  year: 2017
  publication-title: Nature Mater.
– volume: 4
  year: 2017
  publication-title: Adv. Mater. Interfaces
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 5
  start-page: 30
  year: 2022
  publication-title: Nat. Catal.
– volume: 14
  start-page: 851
  year: 2019
  publication-title: Nat. Nanotechnol.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 5
  start-page: 558
  year: 2019
  publication-title: ACS Cent. Sci.
– volume: 359
  start-page: 1489
  year: 2018
  publication-title: Science
– volume: 137
  start-page: 3638
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 457
  year: 2017
  publication-title: Nat. Chem.
– volume: 12
  year: 2022
  publication-title: Adv. Energy Mater.
– volume: 13
  start-page: 3032
  year: 2020
  publication-title: Energy Environ. Sci.
– volume: 13
  year: 2021
  publication-title: Nanoscale
– volume: 34
  start-page: 5749
  year: 2022
  publication-title: Chem. Mater.
– volume: 49
  year: 2021
  publication-title: Extreme Mech. Lett.
– start-page: 20
  year: 2018
  publication-title: Phys. Chem. Chem. Phys.
– volume: 133
  start-page: 5587
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 46
  start-page: 8398
  year: 2022
  publication-title: New J. Chem.
– volume: 29
  start-page: 654
  year: 2012
  publication-title: Energy Procedia
– volume: 5
  year: 2015
  publication-title: J. Appl. Phys.
– volume: 139
  start-page: 52
  year: 2017
  publication-title: J. Am. Chem. Soc.
– year: 2021
  publication-title: Energy Environ. Mater.
– volume: 19
  start-page: 5149
  year: 2019
  publication-title: Nano Lett.
– volume: 9
  start-page: 2885
  year: 2018
  publication-title: Nat. Commun.
– volume: 4
  start-page: 1566
  year: 2011
  publication-title: ChemSusChem
– volume: 26
  start-page: 5862
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 7
  year: 2016
  publication-title: Nat. Commun.
– volume: 11
  start-page: 1026
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 28
  start-page: 1691
  year: 2016
  publication-title: Chem. Mater.
– volume: 12
  start-page: 4218
  year: 2021
  publication-title: Nat. Commun.
– volume: 19
  start-page: 1088
  year: 2020
  publication-title: Nat. Mater.
– volume: 23
  start-page: 1305
  year: 1952
  publication-title: J. Appl. Phys.
– volume: 2
  start-page: 237
  year: 2018
  publication-title: Sustainable Energy Fuels
– volume: 3
  start-page: 6078
  year: 2020
  publication-title: ACS Appl. Nano Mater.
– volume: 9
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 4
  start-page: 555
  year: 2020
  publication-title: Joule
– volume: 877
  year: 2021
  publication-title: J. Alloys Compd.
– volume: 92
  start-page: 31
  year: 2020
  publication-title: Chem. Ing. Tech.
– volume: 12
  start-page: 2288
  year: 2019
  publication-title: Nano Res.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 15
  start-page: 4799
  year: 2022
  publication-title: Nano Res.
– volume: 5
  start-page: 359
  year: 2020
  publication-title: Nat. Energy
– volume: 7
  start-page: 3135
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 246
  year: 2021
  publication-title: Energy Convers. Manage.
– volume: 2011
  year: 2011
  publication-title: J. Nanotechnol.
– volume: 6
  year: 2016
  publication-title: Sci. Rep.
– volume: 34
  start-page: 703
  year: 2009
  publication-title: Int. J. Hydrogen Energy
– year: 2017
– volume: 142
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 8
  year: 2020
  publication-title: J. Mater. Chem. A
SSID ssj0000491033
Score 2.67719
Snippet Mixed transition‐metals (TM) based catalysts have shown huge promise for water splitting. Conventional synthesis of nanomaterials is strongly constrained by...
SourceID wiley
SourceType Publisher
SubjectTerms chemical reconstruction
high entropy oxides
high‐throughput synthesis
hydrogen production
non‐noble metal catalysts
oxygen evolution reaction
structural reconstruction
Title Carbothermal Shock Synthesis of High Entropy Oxide Catalysts: Dynamic Structural and Chemical Reconstruction Boosting the Catalytic Activity and Stability toward Oxygen Evolution Reaction
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202200742
Volume 12
WOSCitedRecordID wos000831062900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZQYYCBN-KtG1ijOq4Tx2ylFDFAqVSQukV2EosOJFVTVeS38ec4O32usCVRfLHis_3d-e47Qu4i3IJ5lPqeERFHAyU0nqJB4NFUJrKlNBrRjmf2RfR60XAo-2tZ_DU_xNLhZmeGW6_tBFe6bK5IQ1WW20xyZp1tHBfhbd9vRbZ4A-P9pZcF8a9PXT15RDbcC1F_F8yNlDU3RWzCU7e_PB38v2eHZH-OLaFdK8MR2cryY7K3xjh4Qn46aqJd0tUXvjn4xNUQBlWOD8pRCYUBG_cBXRu-Pq7g7XuUZtCxHp6qnJb38FjXr4eBY521jB2g8hQWrANgjdkVJS08FEVpw6oB5c_FYNegndQlK1xbRLsuPreCqYvgxY9WqNTQnc0nBQqtky9OycdT973z7M3rN3iJPf71ZMiNiRSlmkYaTTsRSpWifaJbhidouVHDZMYjhEyGo2WqQsmYoIHWacCMRCB3Rhp5kWfnBMJEMB6kLEM0xJVERRK-MpnQiL6E4uKCMDci8bjm6IhrNmYW27GIl2MRt7u91-Xd5V8aXZFde12HmV2TBv7S7IbsJLPpqJzcOu37Be7F3WU
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI4QIAEH3og3PnCtlmVp03AbowjEKJM2pN2q9BGxA920Toj-Nv4cTlo2dkUcGzVuVTvJZ9f-TMi1j0cw99Omo4XP0UHxtKOo6zo0lYlsqRidaMsz2xVh6A-HsldnE5pamIofYh5wMyvD7tdmgZuAdGPBGqqy3JSSMxNt47gLr3E8aoypM96bh1kQADepbSiP0IY7HhrwD3UjZY1lEcv41B4w9zv_8Gq7ZLtGl9CuzGGPrGT5Ptn6xTl4QL46ahrbsqt3vLP_hvsh9MscB4pRAWMNJvMDApPAPinh5XOUZtAxMZ6ymBU3cFd1sIe-5Z01nB2g8hR-eAfAuLMLUlq4HY8Lk1gNKL8Wg68G7aRqWmHnIt61GbolzGwOLz60RLOG4KNeFii0Kr84JK_3waDz4NQdHJzE_AB2pMe19hWlMfVjdO6EJ1WKHkrc0jxB341qJjPuI2jSHH1T5UnGBHXjOHWZlqjNI7Kaj_PsmICXCMbdlGWIh7iSaEqiqXQmYsRfQnFxQphVSTSpWDqiio-ZRUYX0VwXUTsIn-dXp3-ZdEU2HgbP3aj7GD6dkU0zXiWdnZNV_LzZBVlPPmajYnppTfEbLzfhUA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI7QQAgOvBFvfOBakWVp03AbYxOIMSYNpN2qtE3EDnTTOk30t_HncNJuwBVxbNS4UeMknx37MyFXIR7BPEzrnhEhRwMlMJ6ivu_RVCayoWI0oh3PbFf0euFwKPtVNKHNhSn5IZYON7sy3H5tF7iepOb6mzVU6cymkjPrbeO4C69yX9StYjPeX7pZEADXqSsoj9CGewEq8IK6kbLr3yJ-41N3wHS2_2FoO2SrQpfQLNVhl6zobI9s_uAc3CefLTWNXdrVO745eMP9EAZFhg35KIexARv5AW0bwD4p4PljlGpoWR9Pkc_yG7grK9jDwPHOWs4OUFkKC94BsObsNykt3I7HuQ2sBpRficGhQTMpi1a4voh3XYRuATMXw4sfLVCtoT2vlgUKLdMvDshrp_3SuveqCg5eYi-APRlwY0JFaUzDGI07EUiVooUSNwxP0HajhknNQwRNhqNtqgLJmKB-HKc-MxKh3CGpZeNMHxEIEsG4nzKNeIgriaok6spoESP-EoqLY8LclESTkqUjKvmYWWTnIlrORdRs956WTyd_6XRJ1vt3naj70Hs8JRu2uYw5OyM1_Lv6nKwl89kon144TfwC_Rfg1A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Carbothermal+Shock+Synthesis+of+High+Entropy+Oxide+Catalysts%3A+Dynamic+Structural+and+Chemical+Reconstruction+Boosting+the+Catalytic+Activity+and+Stability+toward+Oxygen+Evolution+Reaction&rft.jtitle=Advanced+energy+materials&rft.au=Abdelhafiz%2C+Ali&rft.au=Wang%2C+Baoming&rft.au=Harutyunyan%2C+Avetik+R.&rft.au=Li%2C+Ju&rft.date=2022-09-01&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=12&rft.issue=35&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faenm.202200742&rft.externalDBID=10.1002%252Faenm.202200742&rft.externalDocID=AENM202200742
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon