Approximate Bayesian computation with the Wasserstein distance

A growing number of generative statistical models do not permit the numerical evaluation of their likelihood functions. Approximate Bayesian computation has become a popular approach to overcome this issue, in which one simulates synthetic data sets given parameters and compares summaries of these d...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the Royal Statistical Society. Series B, Statistical methodology Vol. 81; no. 2; pp. 235 - 269
Main Authors: Bernton, Espen, Jacob, Pierre E., Gerber, Mathieu, Robert, Christian P.
Format: Journal Article
Language:English
Published: Oxford Wiley 01.04.2019
Oxford University Press
Subjects:
ISSN:1369-7412, 1467-9868
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract A growing number of generative statistical models do not permit the numerical evaluation of their likelihood functions. Approximate Bayesian computation has become a popular approach to overcome this issue, in which one simulates synthetic data sets given parameters and compares summaries of these data sets with the corresponding observed values. We propose to avoid the use of summaries and the ensuing loss of information by instead using the Wasserstein distance between the empirical distributions of the observed and synthetic data. This generalizes the well-known approach of using order statistics within approximate Bayesian computation to arbitrary dimensions. We describe how recently developed approximations of the Wasserstein distance allow the method to scale to realistic data sizes, and we propose a new distance based on the Hilbert space filling curve. We provide a theoretical study of the method proposed, describing consistency as the threshold goes to 0 while the observations are kept fixed, and concentration properties as the number of observations grows. Various extensions to time series data are discussed. The approach is illustrated on various examples, including univariate and multivariate g-and-k distributions, a toggle switch model from systems biology, a queuing model and a Lévy-driven stochastic volatility model.
AbstractList Summary A growing number of generative statistical models do not permit the numerical evaluation of their likelihood functions. Approximate Bayesian computation has become a popular approach to overcome this issue, in which one simulates synthetic data sets given parameters and compares summaries of these data sets with the corresponding observed values. We propose to avoid the use of summaries and the ensuing loss of information by instead using the Wasserstein distance between the empirical distributions of the observed and synthetic data. This generalizes the well‐known approach of using order statistics within approximate Bayesian computation to arbitrary dimensions. We describe how recently developed approximations of the Wasserstein distance allow the method to scale to realistic data sizes, and we propose a new distance based on the Hilbert space filling curve. We provide a theoretical study of the method proposed, describing consistency as the threshold goes to 0 while the observations are kept fixed, and concentration properties as the number of observations grows. Various extensions to time series data are discussed. The approach is illustrated on various examples, including univariate and multivariate g‐and‐k distributions, a toggle switch model from systems biology, a queuing model and a Lévy‐driven stochastic volatility model.
A growing number of generative statistical models do not permit the numerical evaluation of their likelihood functions. Approximate Bayesian computation has become a popular approach to overcome this issue, in which one simulates synthetic data sets given parameters and compares summaries of these data sets with the corresponding observed values. We propose to avoid the use of summaries and the ensuing loss of information by instead using the Wasserstein distance between the empirical distributions of the observed and synthetic data. This generalizes the well‐known approach of using order statistics within approximate Bayesian computation to arbitrary dimensions. We describe how recently developed approximations of the Wasserstein distance allow the method to scale to realistic data sizes, and we propose a new distance based on the Hilbert space filling curve. We provide a theoretical study of the method proposed, describing consistency as the threshold goes to 0 while the observations are kept fixed, and concentration properties as the number of observations grows. Various extensions to time series data are discussed. The approach is illustrated on various examples, including univariate and multivariate g‐and‐k distributions, a toggle switch model from systems biology, a queuing model and a Lévy‐driven stochastic volatility model.
Author Robert, Christian P.
Gerber, Mathieu
Jacob, Pierre E.
Bernton, Espen
Author_xml – sequence: 1
  givenname: Espen
  surname: Bernton
  fullname: Bernton, Espen
– sequence: 2
  givenname: Pierre E.
  surname: Jacob
  fullname: Jacob, Pierre E.
– sequence: 3
  givenname: Mathieu
  surname: Gerber
  fullname: Gerber, Mathieu
– sequence: 4
  givenname: Christian P.
  surname: Robert
  fullname: Robert, Christian P.
BookMark eNp9kE1LAzEQQIMo-HnxLix4EWFrMkmT5iJY8QsEwSoeQ5qdxZTtbk1StP_e6KoHEeeSHN4bhrdN1tuuRUL2GR2wPCchxumAAWewRraYkKrUIzlaz38udakEg02yHeOM5pGKb5HTs8UidG9-bhMWY7vC6G1buG6-WCabfNcWrz49F-kZiycbI4aY0LdF5WOyrcNdslHbJuLe17tDHi8vHs6vy9u7q5vzs9vSCeBQalFXdMpqKTQKiQJAVwytrqsKUUHFqBtCBWgFp8qB1bKSoNiUI7rhUNd8hxz1e_OxL0uMycx9dNg0tsVuGQ0AV0NKtYSMHv5CZ90ytPk6A0xzJkagWaaOe8qFLsaAtVmEHCGsDKPmI6X5SGk-U2aY_oKd7-ukYH3zt8J65dU3uPpnubmfTMbfzkHvzGLqwo8DUikOjPJ35lCSHQ
CitedBy_id crossref_primary_10_1016_j_csda_2024_108095
crossref_primary_10_1016_j_ymssp_2021_107954
crossref_primary_10_1093_imaiai_iaae006
crossref_primary_10_1214_25_BA1535
crossref_primary_10_1016_j_eswa_2022_119114
crossref_primary_10_3390_stats4030045
crossref_primary_10_3390_e27070683
crossref_primary_10_1038_s41598_021_96214_w
crossref_primary_10_1371_journal_pcbi_1009910
crossref_primary_10_1007_s11222_019_09909_6
crossref_primary_10_1007_s13253_024_00663_5
crossref_primary_10_3847_1538_4365_ad8ebd
crossref_primary_10_1016_j_csda_2023_107795
crossref_primary_10_1016_j_microrel_2024_115399
crossref_primary_10_1016_j_jmva_2019_06_008
crossref_primary_10_3390_e22111272
crossref_primary_10_1093_jrsssb_qkae005
crossref_primary_10_1080_03461238_2022_2145577
crossref_primary_10_1007_s13571_019_00208_8
crossref_primary_10_1080_01621459_2022_2060836
crossref_primary_10_1214_22_STS875
crossref_primary_10_1007_s00180_021_01093_4
crossref_primary_10_1111_rssc_12487
crossref_primary_10_1214_24_BA1416
crossref_primary_10_1098_rsos_230275
crossref_primary_10_1016_j_epidem_2025_100855
crossref_primary_10_1109_TNNLS_2025_3551275
crossref_primary_10_1051_epjn_2021001
crossref_primary_10_1093_biomtc_ujaf069
crossref_primary_10_1007_s11222_022_10155_6
crossref_primary_10_1016_j_csda_2023_107764
crossref_primary_10_1016_j_ijepes_2023_109427
crossref_primary_10_1093_biomet_asz008
crossref_primary_10_1007_s11222_022_10092_4
crossref_primary_10_1016_j_jedc_2024_104827
crossref_primary_10_1002_sam_11711
crossref_primary_10_1002_zamm_202200481
crossref_primary_10_1109_ACCESS_2020_3009878
crossref_primary_10_1098_rsos_231697
crossref_primary_10_1080_10618600_2024_2374580
crossref_primary_10_1007_s11222_022_10163_6
crossref_primary_10_1109_TPAMI_2024_3363780
crossref_primary_10_1007_s11222_022_10146_7
crossref_primary_10_1007_s42952_024_00295_y
crossref_primary_10_1007_s00180_025_01606_5
crossref_primary_10_1016_j_envsoft_2023_105905
crossref_primary_10_1016_j_watres_2021_117466
crossref_primary_10_3390_biophysica4040039
crossref_primary_10_1016_j_cam_2022_114494
crossref_primary_10_1016_j_engappai_2021_104457
crossref_primary_10_1016_j_ocemod_2023_102275
crossref_primary_10_1371_journal_pone_0236954
crossref_primary_10_1080_00031305_2025_2551223
crossref_primary_10_1371_journal_pone_0285836
crossref_primary_10_1080_10485252_2023_2292690
crossref_primary_10_1111_sjos_12509
crossref_primary_10_1007_s00285_024_02144_2
crossref_primary_10_1080_15376494_2022_2162643
crossref_primary_10_1016_j_insmatheco_2021_06_002
crossref_primary_10_1016_j_ymssp_2022_110012
crossref_primary_10_1111_rssb_12356
crossref_primary_10_1007_s11538_024_01331_y
crossref_primary_10_1093_jrsssb_qkad008
Cites_doi 10.1201/9781315117195-4
10.1111/j.1467-8659.2011.02032.x
10.1007/s11222-011-9288-2
10.1016/j.spl.2006.02.001
10.1201/b10956
10.1093/genetics/162.4.2025
10.1023/A:1013120305780
10.1111/rssb.12104
10.1515/sagmb-2012-0069
10.32614/RJ-2015-030
10.1007/978-3-319-33507-0_28
10.1137/130915376
10.1371/journal.pone.0110214
10.1111/rssb.12236
10.1111/j.1467-9868.2012.01046.x
10.1093/biomet/asy027
10.1073/pnas.1208827110
10.1007/978-1-4612-0871-6
10.1007/978-3-319-20828-2
10.1214/13-EJS819
10.1007/s11222-011-9271-y
10.1007/s00332-003-0534-4
10.1214/aop/1176988735
10.1214/18-AOS1746
10.1093/biomet/asu027
10.3982/ECTA9097
10.1534/genetics.108.098129
10.1111/j.1467-9868.2011.01010.x
10.2202/1544-6115.1684
10.1016/j.csda.2011.03.019
10.1090/gsm/058
10.1111/j.1467-9868.2009.00736.x
10.1007/s10851-017-0726-4
10.1093/biomet/asx078
10.1007/s10851-014-0506-3
10.1016/j.jmaa.2017.02.003
10.3390/e19020047
10.1007/s00440-014-0583-7
10.1111/1467-9868.00336
10.1016/j.comgeo.2007.08.003
10.1137/1.9780898717754
ContentType Journal Article
Copyright 2019 Royal Statistical Society
Copyright © 2019 The Royal Statistical Society and Blackwell Publishing Ltd
Copyright_xml – notice: 2019 Royal Statistical Society
– notice: Copyright © 2019 The Royal Statistical Society and Blackwell Publishing Ltd
DBID AAYXX
CITATION
7SC
8BJ
8FD
FQK
JBE
JQ2
L7M
L~C
L~D
7S9
L.6
DOI 10.1111/rssb.12312
DatabaseName CrossRef
Computer and Information Systems Abstracts
International Bibliography of the Social Sciences (IBSS)
Technology Research Database
International Bibliography of the Social Sciences
International Bibliography of the Social Sciences
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
International Bibliography of the Social Sciences (IBSS)
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
International Bibliography of the Social Sciences (IBSS)
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Biology
EISSN 1467-9868
EndPage 269
ExternalDocumentID 10_1111_rssb_12312
RSSB12312
26773210
Genre article
GrantInformation_xml – fundername: National Science Foundation
  funderid: DMS‐1712872
GroupedDBID -~X
.3N
.4S
.DC
.GA
05W
10A
1OC
29L
2AX
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8UM
8VB
930
A03
AAESR
AAEVG
AAHBH
AAONW
AAPXW
AASGY
AAUAY
AAXRX
AAZKR
ABBHK
ABCQN
ABCUV
ABDFA
ABEHJ
ABEML
ABFAN
ABIVO
ABLJU
ABPFR
ABPQP
ABPTD
ABPVW
ABWST
ABXSQ
ABYWD
ABZEH
ACAHQ
ACCZN
ACGFS
ACIWK
ACMTB
ACNCT
ACPOU
ACSCC
ACTMH
ACUBG
ACXBN
ACXQS
ADBBV
ADEOM
ADIYS
ADIZJ
ADKYN
ADMGS
ADODI
ADOZA
ADRDM
ADVEK
ADZMN
AEGXH
AEIMD
AEMOZ
AEUPB
AFBPY
AFEBI
AFGKR
AFVYC
AFXHP
AFZJQ
AHQJS
AIURR
AJAOE
AJNCP
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALRMG
ALUQN
AMBMR
AMVHM
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZVAB
BAFTC
BCRHZ
BDRZF
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
CJ0
CO8
CS3
D-E
DCZOG
DPXWK
DQDLB
DR2
DRFUL
DRSTM
DSRWC
EBA
EBO
EBR
EBS
EBU
ECEWR
EDO
EJD
EMK
F00
F5P
G-S
G.N
GODZA
H.T
H.X
HQ6
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JAS
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JST
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
NU-
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RNS
ROL
ROX
RX1
SA0
SUPJJ
TH9
TN5
TUS
UB1
UPT
W8V
W99
WBKPD
WH7
WIH
WIK
WOHZO
WQJ
WYISQ
XBAML
XG1
YQT
ZL0
ZZTAW
~02
~IA
~KM
~WT
.Y3
3-9
31~
AANHP
AARHZ
AAWIL
ABAWQ
ABPQH
ACBWZ
ACFRR
ACHJO
ACRPL
ACYXJ
ADNMO
ADQBN
ADULT
AGLNM
AGQPQ
AIHAF
ANFBD
AS~
ATGXG
AZFZN
COF
FEDTE
FVMVE
H13
HF~
HGD
HVGLF
H~9
NHB
RJQFR
ZGI
AAYXX
ABEJV
CITATION
O8X
OJZSN
7SC
8BJ
8FD
FQK
JBE
JQ2
L7M
L~C
L~D
7S9
L.6
ID FETCH-LOGICAL-c4232-94fd0b1f649e46e4229d1ea9fddee72d10c52d2ea4307c2a96d6271b3eec559f3
IEDL.DBID DRFUL
ISICitedReferencesCount 89
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000461872300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1369-7412
IngestDate Fri Oct 03 00:01:47 EDT 2025
Sun Nov 09 06:52:14 EST 2025
Tue Nov 18 20:52:04 EST 2025
Sat Nov 29 05:52:11 EST 2025
Sun Sep 21 06:18:11 EDT 2025
Thu Jul 03 21:54:10 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4232-94fd0b1f649e46e4229d1ea9fddee72d10c52d2ea4307c2a96d6271b3eec559f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 2193148291
PQPubID 39359
PageCount 35
ParticipantIDs proquest_miscellaneous_2237500962
proquest_journals_2193148291
crossref_primary_10_1111_rssb_12312
crossref_citationtrail_10_1111_rssb_12312
wiley_primary_10_1111_rssb_12312_RSSB12312
jstor_primary_26773210
PublicationCentury 2000
PublicationDate April 2019
PublicationDateYYYYMMDD 2019-04-01
PublicationDate_xml – month: 04
  year: 2019
  text: April 2019
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Journal of the Royal Statistical Society. Series B, Statistical methodology
PublicationYear 2019
Publisher Wiley
Oxford University Press
Publisher_xml – name: Wiley
– name: Oxford University Press
References 2015; 162
2013; 1
2012
2011
2018; 105
2006; 76
2015; 51
2009; 181
2002; 12
2015; 77
2015; 10
2009
2003; 13
2011; 30
2018; 80
1994; 22
2008
2011; 55
2011; 10
1994
2004
2003
2017; 451
2013; 7
2015; 7
2012; 74
1997; 102
2017; 59
2002; 64
2002; 162
2013; 12
2013; 75
2019
2018
2017
2013; 81
2016
2017; 19
2015
2008; 41
2013; 110
2014
2013
2014; 9
2011; 240
2012; 22
2010; 72
2014; 101
CGAL Project (2023022101111891300_) 2016
Sagan (2023022101111891300_) 1994
Beaumont (2023022101111891300_) 2002; 162
Fearnhead (2023022101111891300_) 2012; 74
Villani (2023022101111891300_) 2003
Bassetti (2023022101111891300_) 2006; 76
Jiang (2023022101111891300_) 2018
Panaretos (2023022101111891300_) 2018
Villani (2023022101111891300_) 2008
Marin (2023022101111891300_) 2012; 22
Bonassi (2023022101111891300_) 2011; 10
Park (2023022101111891300_) 2016
Mengersen (2023022101111891300_) 2013; 110
Muskulus (2023022101111891300_) 2011; 240
Weed (2023022101111891300_) 2017
Talagrand (2023022101111891300_) 1994; 22
Rubio (2023022101111891300_) 2013; 7
Puccetti (2023022101111891300_) 2017; 451
Rayner (2023022101111891300_) 2002; 12
Kantz (2023022101111891300_) 2004
Thorpe (2023022101111891300_) 2017; 59
Gottschlich (2023022101111891300_) 2014; 9
Del Moral (2023022101111891300_) 2012; 22
Sisson (2023022101111891300_) 2018
Bonneel (2023022101111891300_) 2015; 51
Bernton (2023022101111891300_) 2017
Nunes (2023022101111891300_) 2015; 7
Rabin (2023022101111891300_) 2011
Berndt (2023022101111891300_) 1994
Ramdas (2023022101111891300_) 2017; 19
Miller (2023022101111891300_) 2018
Gerber (2023022101111891300_) 2019
Li (2023022101111891300_) 2018; 105
Mérigot (2023022101111891300_) 2011; 30
Schuhmacher (2023022101111891300_) 2017
Lee (2023022101111891300_) 2012
Filippi (2023022101111891300_) 2013; 12
Lee (2023022101111891300_) 2014; 101
Moeckel (2023022101111891300_) 1997; 102
Peyré (2023022101111891300_) 2018
Frazier (2023022101111891300_) 2018; 105
Schretter (2023022101111891300_) 2016
Sommerfeld (2023022101111891300_) 2018; 80
Fournier (2023022101111891300_) 2015; 162
Cuturi (2023022101111891300_) 2013
Barndorff-Nielsen (2023022101111891300_) 2002; 64
Buchin (2023022101111891300_) 2008; 41
Chopin (2023022101111891300_) 2013; 75
Müller (2023022101111891300_) 2013; 81
Majumdar (2023022101111891300_) 2015
Gerber (2023022101111891300_) 2015; 77
Bonassi (2023022101111891300_) 2015; 10
Basu (2023022101111891300_) 2011
Sousa (2023022101111891300_) 2009; 181
Genevay (2023022101111891300_) 2017
Shestopaloff (2023022101111891300_) 2014
Santambrogio (2023022101111891300_) 2015
Andrieu (2023022101111891300_) 2010; 72
Stark (2023022101111891300_) 2003; 13
Prangle (2023022101111891300_) 2016
Srivastava (2023022101111891300_) 2015
Graham (2023022101111891300_) 2017
del Barrio (2023022101111891300_) 2017
Murray (2023022101111891300_) 2013; 1
Burkard (2023022101111891300_) 2009
Drovandi (2023022101111891300_) 2011; 55
References_xml – year: 2011
– volume: 51
  start-page: 22
  year: 2015
  end-page: 45
  article-title: Sliced and Radon Wasserstein barycenters of measures
  publication-title: J. Math. Imgng Visn
– volume: 75
  start-page: 397
  year: 2013
  end-page: 426
  article-title: SMC : an efficient algorithm for sequential analysis of state space models
  publication-title: J. R. Statist. Soc.
– volume: 41
  start-page: 2
  year: 2008
  end-page: 20
  article-title: Computing the Fréchet distance between simple polygons
  publication-title: Computnl Geom.
– year: 2009
– volume: 77
  start-page: 509
  year: 2015
  end-page: 579
  article-title: Sequential quasi‐Monte Carlo (with discussion)
  publication-title: J. R. Statist. Soc.
– start-page: 199
  year: 2015
  end-page: 208
– volume: 101
  start-page: 655
  year: 2014
  end-page: 671
  article-title: Variance bounding and geometric ergodicity of Markov chain Monte Carlo kernels for approximate Bayesian computation
  publication-title: Biometrika
– year: 2018
  article-title: Robust Bayesian inference via coarsening
  publication-title: J. Am. Statist. Ass.
– year: 2019
  article-title: Negative association, ordering and convergence of resampling methods
  publication-title: Ann. Statist
– volume: 64
  start-page: 253
  year: 2002
  end-page: 280
  article-title: Econometric analysis of realized volatility and its use in estimating stochastic volatility models
  publication-title: J. R. Statist. Soc.
– volume: 105
  start-page: 593
  year: 2018
  end-page: 607
  article-title: Asymptotic properties of approximate Bayesian computation
  publication-title: Biometrika
– volume: 162
  start-page: 707
  year: 2015
  end-page: 738
  article-title: On the rate of convergence in Wasserstein distance of the empirical measure
  publication-title: Probab. Theory Reltd Flds
– year: 1994
– year: 2014
– volume: 22
  start-page: 919
  year: 1994
  end-page: 959
  article-title: The transportation cost from the uniform measure to the empirical measure in dimension 3
  publication-title: Ann. Probab.
– volume: 105
  start-page: 285
  year: 2018
  end-page: 299
  article-title: On the asymptotic efficiency of approximate Bayesian computation estimators
  publication-title: Biometrika
– volume: 55
  start-page: 2541
  year: 2011
  end-page: 2556
  article-title: Likelihood‐free Bayesian estimation of multivariate quantile distributions
  publication-title: Computnl Statist. Data Anal.
– volume: 19
  year: 2017
  article-title: On Wasserstein two‐sample testing and related families of nonparametric tests
  publication-title: Entropy
– volume: 451
  start-page: 132
  year: 2017
  end-page: 145
  article-title: An algorithm to approximate the optimal expected inner product of two vectors with given marginals
  publication-title: J. Math. Anal. Appl.
– start-page: 2292
  year: 2013
  end-page: 2300
– volume: 181
  start-page: 1507
  year: 2009
  end-page: 1519
  article-title: Approximate Bayesian computation without summary statistics: the case of admixture
  publication-title: Genetics
– start-page: 1608
  year: 2017
  end-page: 1617
– year: 2008
– year: 2004
– volume: 80
  start-page: 219
  year: 2018
  end-page: 238
  article-title: Inference for empirical Wasserstein distances on finite spaces
  publication-title: J. R. Statist. Soc.
– volume: 76
  start-page: 1298
  year: 2006
  end-page: 1302
  article-title: On minimum Kantorovich distance estimators
  publication-title: Statist. Probab. Lett.
– volume: 30
  start-page: 1583
  year: 2011
  end-page: 1592
  article-title: A multiscale approach to optimal transport
  publication-title: Comput. Graph. Forum
– start-page: 912
  year: 2015
  end-page: 920
– start-page: 435
  year: 2011
  end-page: 446
– start-page: 359
  year: 1994
  end-page: 370
– volume: 110
  start-page: 1321
  year: 2013
  end-page: 1326
  article-title: Bayesian computation via empirical likelihood
  publication-title: Proc. Natn. Acad. Sci. USA
– volume: 10
  year: 2011
  article-title: Bayesian learning from marginal data in bionetwork models
  publication-title: Statist. Appl. Genet. Molec. Biol.
– year: 2015
– start-page: 87
  year: 2018
  end-page: 123
– volume: 240
  start-page: 45
  year: 2011
  end-page: 58
  article-title: Wasserstein distances in the analysis of time series and dynamical systems
  publication-title: Physica
– volume: 9
  start-page: e110214
  year: 2014
  article-title: The shortlist method for fast computation of the earth mover's distance and finding optimal solutions to transportation problems
  publication-title: PLOS One
– volume: 74
  start-page: 419
  year: 2012
  end-page: 474
  article-title: Constructing summary statistics for approximate Bayesian computation: semi‐automatic approximate Bayesian computation (with discussion)
  publication-title: J. R. Statist. Soc.
– start-page: 499
  year: 2017
  end-page: 508
– volume: 59
  start-page: 187
  year: 2017
  end-page: 210
  article-title: A transportation distance for signal analysis
  publication-title: J. Math. Imgng Visn
– volume: 22
  start-page: 1167
  year: 2012
  end-page: 1180
  article-title: Approximate Bayesian computational methods
  publication-title: Statist. Comput.
– volume: 12
  start-page: 87
  year: 2013
  end-page: 107
  article-title: On optimality of kernels for approximate Bayesian computation using sequential Monte Carlo
  publication-title: Statist. Appl. Genet. Molec. Biol.
– year: 2003
– volume: 72
  start-page: 269
  year: 2010
  end-page: 342
  article-title: Particle Markov chain Monte Carlo methods (with discussion)
  publication-title: J. R. Statist. Soc.
– start-page: 531
  year: 2016
  end-page: 544
– volume: 102
  start-page: 187
  year: 1997
  end-page: 194
  article-title: Measuring the distance between time series
  publication-title: Physica
– year: 2016
– volume: 1
  start-page: 494
  year: 2013
  end-page: 521
  article-title: On disturbance state‐space models and the particle marginal Metropolis‐Hastings sampler
  publication-title: J. Uncertnty Quantificn
– start-page: 398
  year: 2016
  end-page: 407
– volume: 13
  start-page: 519
  year: 2003
  end-page: 577
  article-title: Delay embeddings for forced system: II, Stochastic forcing
  publication-title: J. Nonlin. Sci.
– volume: 7
  start-page: 189
  year: 2015
  end-page: 205
  article-title: abctools: an R package for tuning approximate Bayesian computation analyses
  publication-title: R J.
– volume: 162
  start-page: 2025
  year: 2002
  end-page: 2035
  article-title: Approximate Bayesian computation in population genetics
  publication-title: Genetics
– volume: 12
  start-page: 57
  year: 2002
  end-page: 75
  article-title: Numerical maximum likelihood estimation for the g‐and‐k and generalized g‐and‐h distributions
  publication-title: Statist. Comput.
– volume: 81
  start-page: 1805
  year: 2013
  end-page: 1849
  article-title: Risk of Bayesian inference in misspecified models, and the sandwich covariance matrix
  publication-title: Econometrica
– start-page: 304
  year: 2012
  end-page: 315
– year: 2018
  article-title: Statistical aspects of Wasserstein distances
  publication-title: A. Rev. Statist. Appl.
– volume: 7
  start-page: 1632
  year: 2013
  end-page: 1654
  article-title: A simple approach to maximum intractable likelihood estimation
  publication-title: Electron. J. Statist.
– year: 2018
  article-title: Computational optimal transport
  publication-title: Foundns Trends Mach. Learn.
– year: 2017
– volume: 10
  start-page: 171
  year: 2015
  end-page: 187
  article-title: Sequential Monte Carlo with adaptive weights for approximate Bayesian computation
  publication-title: Baysn Anal.
– start-page: 1711
  year: 2018
  end-page: 1721
– volume: 22
  start-page: 1009
  year: 2012
  end-page: 1020
  article-title: An adaptive sequential Monte Carlo method for approximate Bayesian computation
  publication-title: Statist. Comput.
– start-page: 87
  volume-title: Handbook of Approximate Bayesian Computation
  year: 2018
  ident: 2023022101111891300_
  doi: 10.1201/9781315117195-4
– start-page: 1711
  volume-title: Proc. 21st Int. Conf. Artificial Intelligence and Statistics
  year: 2018
  ident: 2023022101111891300_
– volume-title: Sharp asymptotic and finite-sample rates of convergence of empirical measures in Wasserstein distance
  year: 2017
  ident: 2023022101111891300_
– volume: 30
  start-page: 1583
  year: 2011
  ident: 2023022101111891300_
  article-title: A multiscale approach to optimal transport
  publication-title: Comput. Graph. Forum
  doi: 10.1111/j.1467-8659.2011.02032.x
– volume: 22
  start-page: 1167
  year: 2012
  ident: 2023022101111891300_
  article-title: Approximate Bayesian computational methods
  publication-title: Statist. Comput.
  doi: 10.1007/s11222-011-9288-2
– start-page: 499
  volume-title: Artificial Intelligence and Statistics
  year: 2017
  ident: 2023022101111891300_
– volume-title: Optimal Transport, Old and New
  year: 2008
  ident: 2023022101111891300_
– volume: 76
  start-page: 1298
  year: 2006
  ident: 2023022101111891300_
  article-title: On minimum Kantorovich distance estimators
  publication-title: Statist. Probab. Lett.
  doi: 10.1016/j.spl.2006.02.001
– volume-title: Statistical Inference: the Minimum Distance Approach
  year: 2011
  ident: 2023022101111891300_
  doi: 10.1201/b10956
– volume-title: ) Central limit theorems for empirical transportation
  year: 2017
  ident: 2023022101111891300_
– volume: 162
  start-page: 2025
  year: 2002
  ident: 2023022101111891300_
  article-title: Approximate Bayesian computation in population genetics
  publication-title: Genetics
  doi: 10.1093/genetics/162.4.2025
– volume: 12
  start-page: 57
  year: 2002
  ident: 2023022101111891300_
  article-title: Numerical maximum likelihood estimation for the g-and-k and generalized g-and-h distributions
  publication-title: Statist. Comput.
  doi: 10.1023/A:1013120305780
– volume: 77
  start-page: 509
  year: 2015
  ident: 2023022101111891300_
  article-title: Sequential quasi-Monte Carlo (with discussion)
  publication-title: J. R. Statist. Soc.
  doi: 10.1111/rssb.12104
– volume: 10
  start-page: 171
  year: 2015
  ident: 2023022101111891300_
  article-title: Sequential Monte Carlo with adaptive weights for approximate Bayesian computation
  publication-title: Baysn Anal.
– volume: 12
  start-page: 87
  year: 2013
  ident: 2023022101111891300_
  article-title: On optimality of kernels for approximate Bayesian computation using sequential Monte Carlo
  publication-title: Statist. Appl. Genet. Molec. Biol.
  doi: 10.1515/sagmb-2012-0069
– volume: 7
  start-page: 189
  year: 2015
  ident: 2023022101111891300_
  article-title: abctools: an R package for tuning approximate Bayesian computation analyses
  publication-title: R J.
  doi: 10.32614/RJ-2015-030
– start-page: 531
  volume-title: Monte Carlo and Quasi-Monte Carlo Methods
  year: 2016
  ident: 2023022101111891300_
  doi: 10.1007/978-3-319-33507-0_28
– volume: 1
  start-page: 494
  year: 2013
  ident: 2023022101111891300_
  article-title: On disturbance state-space models and the particle marginal Metropolis-Hastings sampler
  publication-title: J. Uncertnty Quantificn
  doi: 10.1137/130915376
– volume: 9
  start-page: e110214
  year: 2014
  ident: 2023022101111891300_
  article-title: The shortlist method for fast computation of the earth mover’s distance and finding optimal solutions to transportation problems
  publication-title: PLOS One
  doi: 10.1371/journal.pone.0110214
– volume: 240
  start-page: 45
  year: 2011
  ident: 2023022101111891300_
  article-title: Wasserstein distances in the analysis of time series and dynamical systems
  publication-title: Physica
– start-page: 912
  volume-title: Artificial Intelligence and Statistics
  year: 2015
  ident: 2023022101111891300_
– volume: 80
  start-page: 219
  year: 2018
  ident: 2023022101111891300_
  article-title: Inference for empirical Wasserstein distances on finite spaces
  publication-title: J. R. Statist. Soc.
  doi: 10.1111/rssb.12236
– volume: 75
  start-page: 397
  year: 2013
  ident: 2023022101111891300_
  article-title: SMC2: an efficient algorithm for sequential analysis of state space models
  publication-title: J. R. Statist. Soc.
  doi: 10.1111/j.1467-9868.2012.01046.x
– start-page: 359
  volume-title: Using dynamic time warping to find patterns in time series
  year: 1994
  ident: 2023022101111891300_
– start-page: 2292
  volume-title: Sinkhorn distances: lightspeed computation of optimal transport
  year: 2013
  ident: 2023022101111891300_
– volume: 105
  start-page: 593
  year: 2018
  ident: 2023022101111891300_
  article-title: Asymptotic properties of approximate Bayesian computation
  publication-title: Biometrika
  doi: 10.1093/biomet/asy027
– volume: 110
  start-page: 1321
  year: 2013
  ident: 2023022101111891300_
  article-title: Bayesian computation via empirical likelihood
  publication-title: Proc. Natn. Acad. Sci. USA
  doi: 10.1073/pnas.1208827110
– volume-title: Space-filling Curves
  year: 1994
  ident: 2023022101111891300_
  doi: 10.1007/978-1-4612-0871-6
– volume-title: On Bayesian inference for the M/G/1 queue with efficient MCMC sampling
  year: 2014
  ident: 2023022101111891300_
– year: 2018
  ident: 2023022101111891300_
  article-title: Computational optimal transport
  publication-title: Foundns Trends Mach. Learn.
– year: 2018
  ident: 2023022101111891300_
  article-title: Robust Bayesian inference via coarsening
  publication-title: J. Am. Statist. Ass.
– start-page: 398
  volume-title: Proc. 19th Int. Conf. Artificial Intelligence and Statistics
  year: 2016
  ident: 2023022101111891300_
– volume-title: Optimal Transport for Applied Mathematicians
  year: 2015
  ident: 2023022101111891300_
  doi: 10.1007/978-3-319-20828-2
– volume: 7
  start-page: 1632
  year: 2013
  ident: 2023022101111891300_
  article-title: A simple approach to maximum intractable likelihood estimation
  publication-title: Electron. J. Statist.
  doi: 10.1214/13-EJS819
– volume-title: CGAL: User and Reference Manual
  year: 2016
  ident: 2023022101111891300_
– volume-title: A rare event approach to high dimensional approximate Bayesian computation
  year: 2016
  ident: 2023022101111891300_
– volume-title: transport: optimal transport in various forms
  year: 2017
  ident: 2023022101111891300_
– volume: 22
  start-page: 1009
  year: 2012
  ident: 2023022101111891300_
  article-title: An adaptive sequential Monte Carlo method for approximate Bayesian computation
  publication-title: Statist. Comput.
  doi: 10.1007/s11222-011-9271-y
– volume: 13
  start-page: 519
  year: 2003
  ident: 2023022101111891300_
  article-title: Delay embeddings for forced system: II, Stochastic forcing
  publication-title: J. Nonlin. Sci.
  doi: 10.1007/s00332-003-0534-4
– volume: 22
  start-page: 919
  year: 1994
  ident: 2023022101111891300_
  article-title: The transportation cost from the uniform measure to the empirical measure in dimension 3
  publication-title: Ann. Probab.
  doi: 10.1214/aop/1176988735
– year: 2019
  ident: 2023022101111891300_
  article-title: Negative association, ordering and convergence of resampling methods
  publication-title: Ann. Statist
  doi: 10.1214/18-AOS1746
– volume: 101
  start-page: 655
  year: 2014
  ident: 2023022101111891300_
  article-title: Variance bounding and geometric ergodicity of Markov chain Monte Carlo kernels for approximate Bayesian computation
  publication-title: Biometrika
  doi: 10.1093/biomet/asu027
– volume: 81
  start-page: 1805
  year: 2013
  ident: 2023022101111891300_
  article-title: Risk of Bayesian inference in misspecified models, and the sandwich covariance matrix
  publication-title: Econometrica
  doi: 10.3982/ECTA9097
– volume: 181
  start-page: 1507
  year: 2009
  ident: 2023022101111891300_
  article-title: Approximate Bayesian computation without summary statistics: the case of admixture
  publication-title: Genetics
  doi: 10.1534/genetics.108.098129
– volume: 74
  start-page: 419
  year: 2012
  ident: 2023022101111891300_
  article-title: Constructing summary statistics for approximate Bayesian computation: semi-automatic approximate Bayesian computation (with discussion)
  publication-title: J. R. Statist. Soc.
  doi: 10.1111/j.1467-9868.2011.01010.x
– volume: 10
  year: 2011
  ident: 2023022101111891300_
  article-title: Bayesian learning from marginal data in bionetwork models
  publication-title: Statist. Appl. Genet. Molec. Biol.
  doi: 10.2202/1544-6115.1684
– volume: 55
  start-page: 2541
  year: 2011
  ident: 2023022101111891300_
  article-title: Likelihood-free Bayesian estimation of multivariate quantile distributions
  publication-title: Computnl Statist. Data Anal.
  doi: 10.1016/j.csda.2011.03.019
– volume-title: Nonlinear Time Series Analysis
  year: 2004
  ident: 2023022101111891300_
– volume-title: Topics in Optimal Transportation
  year: 2003
  ident: 2023022101111891300_
  doi: 10.1090/gsm/058
– volume: 72
  start-page: 269
  year: 2010
  ident: 2023022101111891300_
  article-title: Particle Markov chain Monte Carlo methods (with discussion)
  publication-title: J. R. Statist. Soc.
  doi: 10.1111/j.1467-9868.2009.00736.x
– start-page: 304
  volume-title: Proc. Winter Simulation Conf. (ed. O. Rose)
  year: 2012
  ident: 2023022101111891300_
– volume: 102
  start-page: 187
  year: 1997
  ident: 2023022101111891300_
  article-title: Measuring the distance between time series
  publication-title: Physica
– volume: 59
  start-page: 187
  year: 2017
  ident: 2023022101111891300_
  article-title: A transportation lp distance for signal analysis
  publication-title: J. Math. Imgng Visn
  doi: 10.1007/s10851-017-0726-4
– volume: 105
  start-page: 285
  year: 2018
  ident: 2023022101111891300_
  article-title: On the asymptotic efficiency of approximate Bayesian computation estimators
  publication-title: Biometrika
  doi: 10.1093/biomet/asx078
– start-page: 435
  volume-title: Proc. Int. Conf. Scale Space and Variational Methods in Computer Vision
  year: 2011
  ident: 2023022101111891300_
– volume: 51
  start-page: 22
  year: 2015
  ident: 2023022101111891300_
  article-title: Sliced and Radon Wasserstein barycenters of measures
  publication-title: J. Math. Imgng Visn
  doi: 10.1007/s10851-014-0506-3
– start-page: 199
  volume-title: Proc. 18th Int. Conf. Hybrid Systems: Computation and Control
  year: 2015
  ident: 2023022101111891300_
– volume: 451
  start-page: 132
  year: 2017
  ident: 2023022101111891300_
  article-title: An algorithm to approximate the optimal expected inner product of two vectors with given marginals
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2017.02.003
– volume: 19
  year: 2017
  ident: 2023022101111891300_
  article-title: On Wasserstein two-sample testing and related families of nonparametric tests
  publication-title: Entropy
  doi: 10.3390/e19020047
– volume-title: Inference in generative models using the Wasserstein distance
  year: 2017
  ident: 2023022101111891300_
– volume: 162
  start-page: 707
  year: 2015
  ident: 2023022101111891300_
  article-title: On the rate of convergence in Wasserstein distance of the empirical measure
  publication-title: Probab. Theory Reltd Flds
  doi: 10.1007/s00440-014-0583-7
– volume: 64
  start-page: 253
  year: 2002
  ident: 2023022101111891300_
  article-title: Econometric analysis of realized volatility and its use in estimating stochastic volatility models
  publication-title: J. R. Statist. Soc.
  doi: 10.1111/1467-9868.00336
– volume: 41
  start-page: 2
  year: 2008
  ident: 2023022101111891300_
  article-title: Computing the Fréchet distance between simple polygons
  publication-title: Computnl Geom.
  doi: 10.1016/j.comgeo.2007.08.003
– start-page: 1608
  volume-title: Learning generative models with Sinkhorn divergences
  year: 2017
  ident: 2023022101111891300_
– volume-title: Assignment Problems
  year: 2009
  ident: 2023022101111891300_
  doi: 10.1137/1.9780898717754
– year: 2018
  ident: 2023022101111891300_
  article-title: Statistical aspects of Wasserstein distances
  publication-title: A. Rev. Statist. Appl.
SSID ssj0000673
Score 2.6133783
Snippet A growing number of generative statistical models do not permit the numerical evaluation of their likelihood functions. Approximate Bayesian computation has...
Summary A growing number of generative statistical models do not permit the numerical evaluation of their likelihood functions. Approximate Bayesian...
SourceID proquest
crossref
wiley
jstor
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 235
SubjectTerms Approximate Bayesian computation
Bayesian analysis
Bayesian theory
Biology
Computation
Computer simulation
Data
data collection
Datasets
equations
Generative models
Hilbert curve
Hilbert space
Likelihood‐free inference
Optimal transport
Property
Queueing
Queues
Regression analysis
Statistical methods
Statistical models
Statistics
Summaries
Time series
time series analysis
Volatility
Wasserstein distance
Title Approximate Bayesian computation with the Wasserstein distance
URI https://www.jstor.org/stable/26773210
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Frssb.12312
https://www.proquest.com/docview/2193148291
https://www.proquest.com/docview/2237500962
Volume 81
WOSCitedRecordID wos000461872300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1467-9868
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000673
  issn: 1369-7412
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED_G5sNe_B5Op1T0RaGyplm7gAibOnyQIZvDvZU0uYIgnWxO9L_3knZ1AxHEt0Kubch9_S7J3QGcapRSCJa4jKILl5PLcEVCMY9sYstTNNDmsW02Efb77fFYPJTgcpELk9WHKDbcjGZYe20UXMazJSWfzmbxBdld02K4wkhwW2Wo3Ax6o_tlS-xneVfCJc_J8vKk5ibP99srDim7k7iCNpcxq3U6vY3_TXcT1nOw6XQy6diCEqbbUDX4MivPvANXHVNT_OOZcCs6XfmJJqfSUbbVg-WZYzZqHUKJzpO0mZmmO6ajDeokcdmFUe_28frOzVsquMqcyLqCJ7oZe0nABfIAOWNCeyhFQlYOQ6a9pmoxzVBy0n3FpAh0wEIv9hEVxR6JX4NyOklxDxyJItZezGNfKi4pbiPfjz5R-ehp0uw6nC3WNVJ5vXHT9uIlWsQdZkkiuyR1OCloX7MqGz9S1Sx7ChIWhKHJQapDY8GvKFfBWUSm2DdFTgXN5LgYJuUxJyIyxcmcaJhPiImiOPr2ueXeL7-PBsNh1z7t_4X4AKoEskR226cB5bfpHA9hTb0Tq6dHuch-ASUA7z8
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA8yBffi93B-RvRFobKmsTUvwqaOiXPIPnBvJU2uIMiUTUX_e-_Sbm4ggvhWyLUNua_fJbk7xo4saK2USD2B0YUn0WV4KsWYR1fgzDc4cC4T12wiarXO-311n9_NoVyYrD7EZMONNMPZa1Jw2pCe0vLhaJScouGlHsPzEuUIBXz-ql3vNadNcZAlXikPXafI65PSVZ7vt2c8UnYpcQZuToNW53Xqy_-c7wpbyuEmr2byscrmYLDGioQwswLN6-yiSlXFPx4RuQKv6U-grEpuXLMHxzVOW7UccSJ_0C43k_pjcku4EwVmg_Xq193Lhpc3VfAMncl6Sqa2kvhpKBXIEKQQyvqgVYp2DiJh_Yo5E1aAlqj9RmgV2lBEfhIAGIw-0qDECoPnAWwyrkEl1k9kEmgjNUZu6P0hQKoAfIu6XWbH44WNTV5xnBpfPMXjyIOWJHZLUmaHE9qXrM7Gj1Qlx58JiQijiLKQymxnzLA4V8JRjMY4oDKnCmdyMBlG9aEzET2A5zekEQFiJozj8Nsnjn2__D5udzo197T1F-J9ttjo3jXj5k3rdpsVEXKp7O7PDiu8Dt9gly2Yd2T7cC-X3y93-fMv
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED9kiuzF7-H8rOiLQmVNY2teBL-G4hiiDvdW0uQKgnSyqeh_713azQ1EEN8KubYhl7v7XXIfAHsWtVZKZL4g78KXZDJ8lZHPoxt4FBgaOJapazYRt9vH3a66LWNzOBemqA8xOnBjyXD6mgUcX2w2JuX9wSA9JMXLPYanJXeRqcD0xV2z0xpXxWGReKV8Mp2irE_KoTzfb09YpCIocQJujoNWZ3Wa8_-c7wLMlXDTOy32xyJMYb4EVUaYRYHmZTg55ariH0-EXNE705_IWZWecc0eHNc8Pqr1CCd6j9rlZnJ_TM8y7qQNswKd5uXD-ZVfNlXwDd_J-kpmtpEGWSQVygilEMoGqFVGeg5jYYOGORJWoJYk_UZoFdlIxEEaIhryPrKwBpW8l-MqeBpVaoNUpqE2UpPnRtYfQ6IKMbAk23XYHy5sYsqK49z44jkZeh68JIlbkjrsjmhfijobP1LVHH9GJCKKY85CqsPGkGFJKYSDhJRxyGVOFc1kZzRM4sN3IjrH3hvRiJAwE_lx9O0Dx75ffp_c3d-fuae1vxBvw-ztRTNpXbdv1qFKiEsVoT8bUHntv-EmzJh34np_q9y-XxZ48qo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Approximate+Bayesian+computation+with+the+Wasserstein+distance&rft.jtitle=Journal+of+the+Royal+Statistical+Society.+Series+B%2C+Statistical+methodology&rft.au=Bernton%2C+Espen&rft.au=Jacob%2C+Pierre+E.&rft.au=Gerber%2C+Mathieu&rft.au=Robert%2C+Christian+P.&rft.date=2019-04-01&rft.pub=Wiley&rft.issn=1369-7412&rft.eissn=1467-9868&rft.volume=81&rft.issue=2&rft.spage=235&rft.epage=269&rft_id=info:doi/10.1111%2Frssb.12312&rft.externalDocID=26773210
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1369-7412&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1369-7412&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1369-7412&client=summon