How Much Technological Progress is Needed to Make Solar Hydrogen Cost‐Competitive?

Cost‐effective production of green hydrogen is a major challenge for global adoption of a hydrogen economy. Technologies such as photoelectrochemical (PEC) or photocatalytic (PC) water splitting and photovoltaic + electrolysis (PV+E) allow for sustainable hydrogen production from sunlight and water,...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Advanced energy materials Ročník 12; číslo 18
Hlavný autor: Schneidewind, Jacob
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: 01.05.2022
Predmet:
ISSN:1614-6832, 1614-6840
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Cost‐effective production of green hydrogen is a major challenge for global adoption of a hydrogen economy. Technologies such as photoelectrochemical (PEC) or photocatalytic (PC) water splitting and photovoltaic + electrolysis (PV+E) allow for sustainable hydrogen production from sunlight and water, but are not yet competitive with fossil fuel‐derived hydrogen. Herein, open‐source software for techno‐economic analysis (pyH2A) along with a Monte Carlo‐based methodology for modelling of technological progress are developed. Together, these tools allow for the study of required technological improvement to reach a competitive target cost. They are applied to PEC, PC, and PV+E to identify required progress for each and derive actionable research targets. For PEC, it is found that cell lifetime improvements (>2 years) and operation under high solar concentration (>50‐fold) are crucial, necessitating systems with high space‐time yields. In the case of PC, solar‐to‐hydrogen efficiency has to reach at least 6%, and lowering catalyst concentration (<0.2 g L−1) by improving absorption properties is identified as a promising path to low‐cost hydrogen. PV+E requires ≈two or threefold capital cost reductions for photovoltaic and electrolyzer components. It is hoped that these insights can inform materials research efforts to improve these technologies in the most impactful ways. An open‐source software and Monte Carlo‐based methodology for the analysis of green hydrogen production are developed. These tools are used to analyze the required technological progress for cost‐competitive hydrogen production via photoelectrochemical and photocatalytic water splitting as well photovoltaic + electrolysis. Based on the results, actionable targets for materials research are derived.
AbstractList Cost‐effective production of green hydrogen is a major challenge for global adoption of a hydrogen economy. Technologies such as photoelectrochemical (PEC) or photocatalytic (PC) water splitting and photovoltaic + electrolysis (PV+E) allow for sustainable hydrogen production from sunlight and water, but are not yet competitive with fossil fuel‐derived hydrogen. Herein, open‐source software for techno‐economic analysis (pyH2A) along with a Monte Carlo‐based methodology for modelling of technological progress are developed. Together, these tools allow for the study of required technological improvement to reach a competitive target cost. They are applied to PEC, PC, and PV+E to identify required progress for each and derive actionable research targets. For PEC, it is found that cell lifetime improvements (>2 years) and operation under high solar concentration (>50‐fold) are crucial, necessitating systems with high space‐time yields. In the case of PC, solar‐to‐hydrogen efficiency has to reach at least 6%, and lowering catalyst concentration (<0.2 g L−1) by improving absorption properties is identified as a promising path to low‐cost hydrogen. PV+E requires ≈two or threefold capital cost reductions for photovoltaic and electrolyzer components. It is hoped that these insights can inform materials research efforts to improve these technologies in the most impactful ways. An open‐source software and Monte Carlo‐based methodology for the analysis of green hydrogen production are developed. These tools are used to analyze the required technological progress for cost‐competitive hydrogen production via photoelectrochemical and photocatalytic water splitting as well photovoltaic + electrolysis. Based on the results, actionable targets for materials research are derived.
Author Schneidewind, Jacob
Author_xml – sequence: 1
  givenname: Jacob
  orcidid: 0000-0002-5328-6626
  surname: Schneidewind
  fullname: Schneidewind, Jacob
  email: Jacob.Schneidewind@itmc.rwth-aachen.de
  organization: Leibniz‐Institut für Katalyse e.V
BookMark eNo9kMFOwkAYhDcGExG5et4XKP77b9nSkyENWhNAE_HcLLv_QrV0SbdKuPkIPKNPIkTDXGYmmczhu2ad2tfE2K2AgQDAO031ZoCACCBjvGBdoUQcqVEMnXOWeMX6IbzDUXEqQMouW-R-x2efZs0XZNa1r_yqNLriL41fNRQCLwOfE1myvPV8pj-Iv_pKNzzf2-OEap750P58HzK_2VJbtuUX3d-wS6erQP1_77G3h8kiy6Pp8-NTNp5GJkaJkXS4tNI6Mk5pcChS41BJ44ZDdENjzRJHVikJCRitFAlyaQIWEqWSNEaSPZb-_e7KivbFtik3utkXAooTk-LEpDgzKcaT-ezc5C_EWlrH
CitedBy_id crossref_primary_10_1016_j_jmst_2024_08_014
crossref_primary_10_1039_D5TA01066G
crossref_primary_10_1016_j_esci_2024_100369
crossref_primary_10_1016_j_matlet_2024_136983
crossref_primary_10_1002_cssc_202400937
crossref_primary_10_1021_jacs_3c10369
crossref_primary_10_1016_j_biombioe_2025_107943
crossref_primary_10_1002_adfm_202505281
crossref_primary_10_1002_ente_202201081
crossref_primary_10_1016_j_scitotenv_2023_163914
crossref_primary_10_3389_fsci_2024_1411644
crossref_primary_10_1016_j_ijhydene_2024_01_221
crossref_primary_10_1002_nadc_20224125415
crossref_primary_10_1016_j_ijhydene_2024_04_132
crossref_primary_10_1021_acs_energyfuels_4c00936
crossref_primary_10_1002_cssc_202202017
crossref_primary_10_1016_j_apsusc_2023_157198
crossref_primary_10_1039_D4MH00020J
crossref_primary_10_1016_j_jcat_2025_116160
crossref_primary_10_1038_s41560_025_01736_6
crossref_primary_10_1016_j_ijhydene_2024_11_031
crossref_primary_10_1002_gch2_202500293
crossref_primary_10_1039_D3QI02239K
crossref_primary_10_1002_aesr_202400050
crossref_primary_10_1038_s41570_022_00448_9
crossref_primary_10_1002_ciuz_202300016
crossref_primary_10_1016_j_ijhydene_2025_01_274
crossref_primary_10_1002_gch2_202200146
crossref_primary_10_1002_cssc_202401420
crossref_primary_10_1016_j_cej_2023_145430
crossref_primary_10_1039_D2SC06981D
crossref_primary_10_1039_D5SC03146J
crossref_primary_10_1039_D3QM01179H
ContentType Journal Article
Copyright 2022 The Authors. Advanced Energy Materials published by Wiley‐VCH GmbH
Copyright_xml – notice: 2022 The Authors. Advanced Energy Materials published by Wiley‐VCH GmbH
DBID 24P
DOI 10.1002/aenm.202200342
DatabaseName Wiley Online Library Open Access
DatabaseTitleList
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1614-6840
EndPage n/a
ExternalDocumentID AENM202200342
Genre article
GrantInformation_xml – fundername: Leibniz‐Institute for Catalysis
– fundername: Financial support by Fonds der Chemischen Industrie
– fundername: Aachen University
– fundername: Landesförderinstitut Mecklenburg‐Vorpommern
  funderid: 20‐0001
GroupedDBID 05W
0R~
1OC
24P
33P
4.4
50Y
5VS
8-0
8-1
A00
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
D-A
DCZOG
EBS
G-S
HGLYW
HZ~
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY.
MY~
O9-
P2W
P4E
RNS
ROL
RX1
SUPJJ
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
~S-
ID FETCH-LOGICAL-c4232-3f2bd3dfecf6a0f219cf263cf552f5cdcb28d663070ca66e1ef970d07667942e3
IEDL.DBID 24P
ISICitedReferencesCount 43
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000771990300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1614-6832
IngestDate Wed Jan 22 16:24:12 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4232-3f2bd3dfecf6a0f219cf263cf552f5cdcb28d663070ca66e1ef970d07667942e3
Notes Dedicated to Professor Matthias Beller on the occasion of his 60th birthday
ORCID 0000-0002-5328-6626
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202200342
PageCount 9
ParticipantIDs wiley_primary_10_1002_aenm_202200342_AENM202200342
PublicationCentury 2000
PublicationDate 2022-05-01
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-01
  day: 01
PublicationDecade 2020
PublicationTitle Advanced energy materials
PublicationYear 2022
References 2021; 24
2021; 48
2019; 4
2015; 347
2019; 12
2006; 196
2020; 59
2020; 167
2015; 8
2013; 6
2016; 163
2021; 14
2022; 144
2016; 5
2017; 50
2016; 7
2020; 4
2020; 1
2021
2006; 87
2021; 598
2009; 102
2021; 177
2018; 11
2016; 9
References_xml – volume: 4
  start-page: 216
  year: 2019
  publication-title: Nat. Energy
– volume: 1
  year: 2020
  publication-title: Cell Rep. Phys. Sci.
– volume: 11
  start-page: 1653
  year: 2018
  publication-title: Energy Environ. Sci.
– volume: 7
  year: 2016
  publication-title: Nat. Commun.
– volume: 48
  year: 2021
  publication-title: Sustain. Energy Technol. Assess.
– volume: 4
  start-page: 5818
  year: 2020
  publication-title: Sustain. Energy Fuels
– volume: 102
  start-page: 523
  year: 2009
  publication-title: Photosynth. Res.
– volume: 177
  start-page: 915
  year: 2021
  publication-title: Renew. Energy
– volume: 59
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 598
  start-page: 304
  year: 2021
  publication-title: Nature
– volume: 167
  year: 2020
  publication-title: J. Electrochem. Soc.
– volume: 8
  start-page: 2825
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 163
  start-page: H988
  year: 2016
  publication-title: J. Electrochem. Soc.
– volume: 14
  start-page: 5113
  year: 2021
  publication-title: Energy Environ. Sci.
– volume: 196
  start-page: 55
  year: 2006
  publication-title: Desalination
– volume: 6
  start-page: 2380
  year: 2013
  publication-title: Energy Environ. Sci.
– volume: 87
  start-page: 461
  year: 2006
  publication-title: Fuel Process. Technol.
– volume: 144
  start-page: 695
  year: 2022
  publication-title: J. Am. Chem. Soc.
– volume: 24
  year: 2021
  publication-title: iScience
– volume: 50
  year: 2017
  publication-title: J. Phys. Appl. Phys.
– volume: 347
  start-page: 970
  year: 2015
  publication-title: Science
– year: 2021
  publication-title: Sol. RRL
– volume: 5
  start-page: 261
  year: 2016
  publication-title: WIREs Energy Environ.
– volume: 9
  start-page: 2354
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 14
  start-page: 4427
  year: 2021
  publication-title: Energy Environ. Sci.
– volume: 12
  start-page: 1385
  year: 2019
  publication-title: Energy Environ. Sci.
– volume: 6
  start-page: 1983
  year: 2013
  publication-title: Energy Environ. Sci.
SSID ssj0000491033
Score 2.5513616
Snippet Cost‐effective production of green hydrogen is a major challenge for global adoption of a hydrogen economy. Technologies such as photoelectrochemical (PEC) or...
SourceID wiley
SourceType Publisher
SubjectTerms electrolysis
green hydrogen
photocatalysis
photovoltaics
techno‐economic analysis
water splitting
Title How Much Technological Progress is Needed to Make Solar Hydrogen Cost‐Competitive?
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202200342
Volume 12
WOSCitedRecordID wos000771990300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF60etCDb_HNHryGJrvJJjlJKS29NBSs0FtIdmexCIk0qeLNn-Bv9Jc4u6mxXvWWhSSEeX6Znf2GkNuMsUiFUex44IHjKy6dOMClcGMXfBBBCNoOmwiTJJrN4snaKf6GH6ItuBnPsPHaOHiWV90f0tAMCnOSnDHLYrdJtjyPR2Z4A_MnbZUF8a_n2nnyiGx8R6D9fjM3uqz7-xW_4anNL8P9_3_ZAdlbYUvaa4zhkGxAcUR21xgHj8l0VL7S8VI-0rambrREJ6ZNC4MenVc0wYQGitYlHWdPQO_Nzy8dvSm8BQraL6v68_2jb_G2bTy6OyEPw8G0P3JWgxUcafZlHa5ZrrjSILXIXI1BS2omuNRBwHQglcxRgQhFMBzITAjUoo5DV7mhEOi-DPgp6RRlAWeEcpBKSEQ1gc7Q_f0ojxU3UwKZH2Aa8M4Js6JKnxvyjLShSWapEVLaCintDZJxu7r4y0OXZMdcN82IV6RTL5ZwTbblSz2vFjfWLL4AHEC4Vg
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF60CurBt_h2D15Dk02ySU5SSkvFJhSs0FtId2exCIm0qeLNn-Bv9Jc4u6nRXsXjhiSEeX6Znf2GkOuMsVAGYWQ54IDlSVdYkY9Lbkc2eMD9AJQZNhEkSTgaRYNFN6E-C1PxQ9QFN-0ZJl5rB9cF6eYPa2gGuT5KzpihsVslax6mGm3qzBvUZRYEwI5tBsojtPEsjgb8Td1os-byK5bxqUkw3Z1_-LRdsr1Al7RVmcMeWYF8n2z94hw8IMNe8UrjuXikdVVd64kOdKMWhj06mdEEUxpIWhY0zp6A3uvfX9p7k3gL5LRdzMrP94-2Qdym9ejmkDx0O8N2z1qMVrCE3pm1XMXG0pUKhOKZrTBsCcW4K5TvM-ULKcaoQgQjGBBExjnqUUWBLe2Ac3RgBu4RaeRFDseEuiAkF4hrfJVhAPDCcSRdPSeQeT4mAueEMCOr9Lmiz0gromSWaiGltZDSVieJ69XpXx66Ihu9YdxP-7fJ3RnZ1Ner1sRz0iinc7gg6-KlnMyml8ZGvgA5dLxB
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF60iujBt_h2D16DySbZJCcptaWiDQEr9BbS3VksQlLaVPHmT_A3-kuc3dRor-JxQxLCPL_Mzn5DyGXGWCiDMLIccMDypCusyMcltyMbPOB-AMoMmwjiOBwMomTeTajPwlT8EHXBTXuGidfawWEs1dUPa2gGuT5KzpihsVsmK54fONqwmZfUZRYEwI5tBsojtPEsjgb8Td1os6vFVyziU5NgOlv_8GnbZHOOLmmzMocdsgT5Ltn4xTm4R_rd4pX2ZuKJ1lV1rSea6EYtDHt0NKUxpjSQtCxoL3sG-qB_f2n3TeItkNNWMS0_3z9aBnGb1qPrffLYafdbXWs-WsESemfWchUbSlcqEIpntsKwJRTjrlC-z5QvpBiiChGMYEAQGeeoRxUFtrQDztGBGbgHpJEXORwS6oKQXCCu8VWGAcALh5F09ZxA5vmYCJwjwoys0nFFn5FWRMks1UJKayGlzXbcq1fHf3nogqwlN530_ja-OyHr-nLVmXhKGuVkBmdkVbyUo-nk3JjIFzlOu8U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=How+Much+Technological+Progress+is+Needed+to+Make+Solar+Hydrogen+Cost%E2%80%90Competitive%3F&rft.jtitle=Advanced+energy+materials&rft.au=Schneidewind%2C+Jacob&rft.date=2022-05-01&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=12&rft.issue=18&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faenm.202200342&rft.externalDBID=10.1002%252Faenm.202200342&rft.externalDocID=AENM202200342
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon