How Much Technological Progress is Needed to Make Solar Hydrogen Cost‐Competitive?
Cost‐effective production of green hydrogen is a major challenge for global adoption of a hydrogen economy. Technologies such as photoelectrochemical (PEC) or photocatalytic (PC) water splitting and photovoltaic + electrolysis (PV+E) allow for sustainable hydrogen production from sunlight and water,...
Uložené v:
| Vydané v: | Advanced energy materials Ročník 12; číslo 18 |
|---|---|
| Hlavný autor: | |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
01.05.2022
|
| Predmet: | |
| ISSN: | 1614-6832, 1614-6840 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Cost‐effective production of green hydrogen is a major challenge for global adoption of a hydrogen economy. Technologies such as photoelectrochemical (PEC) or photocatalytic (PC) water splitting and photovoltaic + electrolysis (PV+E) allow for sustainable hydrogen production from sunlight and water, but are not yet competitive with fossil fuel‐derived hydrogen. Herein, open‐source software for techno‐economic analysis (pyH2A) along with a Monte Carlo‐based methodology for modelling of technological progress are developed. Together, these tools allow for the study of required technological improvement to reach a competitive target cost. They are applied to PEC, PC, and PV+E to identify required progress for each and derive actionable research targets. For PEC, it is found that cell lifetime improvements (>2 years) and operation under high solar concentration (>50‐fold) are crucial, necessitating systems with high space‐time yields. In the case of PC, solar‐to‐hydrogen efficiency has to reach at least 6%, and lowering catalyst concentration (<0.2 g L−1) by improving absorption properties is identified as a promising path to low‐cost hydrogen. PV+E requires ≈two or threefold capital cost reductions for photovoltaic and electrolyzer components. It is hoped that these insights can inform materials research efforts to improve these technologies in the most impactful ways.
An open‐source software and Monte Carlo‐based methodology for the analysis of green hydrogen production are developed. These tools are used to analyze the required technological progress for cost‐competitive hydrogen production via photoelectrochemical and photocatalytic water splitting as well photovoltaic + electrolysis. Based on the results, actionable targets for materials research are derived. |
|---|---|
| AbstractList | Cost‐effective production of green hydrogen is a major challenge for global adoption of a hydrogen economy. Technologies such as photoelectrochemical (PEC) or photocatalytic (PC) water splitting and photovoltaic + electrolysis (PV+E) allow for sustainable hydrogen production from sunlight and water, but are not yet competitive with fossil fuel‐derived hydrogen. Herein, open‐source software for techno‐economic analysis (pyH2A) along with a Monte Carlo‐based methodology for modelling of technological progress are developed. Together, these tools allow for the study of required technological improvement to reach a competitive target cost. They are applied to PEC, PC, and PV+E to identify required progress for each and derive actionable research targets. For PEC, it is found that cell lifetime improvements (>2 years) and operation under high solar concentration (>50‐fold) are crucial, necessitating systems with high space‐time yields. In the case of PC, solar‐to‐hydrogen efficiency has to reach at least 6%, and lowering catalyst concentration (<0.2 g L−1) by improving absorption properties is identified as a promising path to low‐cost hydrogen. PV+E requires ≈two or threefold capital cost reductions for photovoltaic and electrolyzer components. It is hoped that these insights can inform materials research efforts to improve these technologies in the most impactful ways.
An open‐source software and Monte Carlo‐based methodology for the analysis of green hydrogen production are developed. These tools are used to analyze the required technological progress for cost‐competitive hydrogen production via photoelectrochemical and photocatalytic water splitting as well photovoltaic + electrolysis. Based on the results, actionable targets for materials research are derived. |
| Author | Schneidewind, Jacob |
| Author_xml | – sequence: 1 givenname: Jacob orcidid: 0000-0002-5328-6626 surname: Schneidewind fullname: Schneidewind, Jacob email: Jacob.Schneidewind@itmc.rwth-aachen.de organization: Leibniz‐Institut für Katalyse e.V |
| BookMark | eNo9kMFOwkAYhDcGExG5et4XKP77b9nSkyENWhNAE_HcLLv_QrV0SbdKuPkIPKNPIkTDXGYmmczhu2ad2tfE2K2AgQDAO031ZoCACCBjvGBdoUQcqVEMnXOWeMX6IbzDUXEqQMouW-R-x2efZs0XZNa1r_yqNLriL41fNRQCLwOfE1myvPV8pj-Iv_pKNzzf2-OEap750P58HzK_2VJbtuUX3d-wS6erQP1_77G3h8kiy6Pp8-NTNp5GJkaJkXS4tNI6Mk5pcChS41BJ44ZDdENjzRJHVikJCRitFAlyaQIWEqWSNEaSPZb-_e7KivbFtik3utkXAooTk-LEpDgzKcaT-ezc5C_EWlrH |
| CitedBy_id | crossref_primary_10_1016_j_jmst_2024_08_014 crossref_primary_10_1039_D5TA01066G crossref_primary_10_1016_j_esci_2024_100369 crossref_primary_10_1016_j_matlet_2024_136983 crossref_primary_10_1002_cssc_202400937 crossref_primary_10_1021_jacs_3c10369 crossref_primary_10_1016_j_biombioe_2025_107943 crossref_primary_10_1002_adfm_202505281 crossref_primary_10_1002_ente_202201081 crossref_primary_10_1016_j_scitotenv_2023_163914 crossref_primary_10_3389_fsci_2024_1411644 crossref_primary_10_1016_j_ijhydene_2024_01_221 crossref_primary_10_1002_nadc_20224125415 crossref_primary_10_1016_j_ijhydene_2024_04_132 crossref_primary_10_1021_acs_energyfuels_4c00936 crossref_primary_10_1002_cssc_202202017 crossref_primary_10_1016_j_apsusc_2023_157198 crossref_primary_10_1039_D4MH00020J crossref_primary_10_1016_j_jcat_2025_116160 crossref_primary_10_1038_s41560_025_01736_6 crossref_primary_10_1016_j_ijhydene_2024_11_031 crossref_primary_10_1002_gch2_202500293 crossref_primary_10_1039_D3QI02239K crossref_primary_10_1002_aesr_202400050 crossref_primary_10_1038_s41570_022_00448_9 crossref_primary_10_1002_ciuz_202300016 crossref_primary_10_1016_j_ijhydene_2025_01_274 crossref_primary_10_1002_gch2_202200146 crossref_primary_10_1002_cssc_202401420 crossref_primary_10_1016_j_cej_2023_145430 crossref_primary_10_1039_D2SC06981D crossref_primary_10_1039_D5SC03146J crossref_primary_10_1039_D3QM01179H |
| ContentType | Journal Article |
| Copyright | 2022 The Authors. Advanced Energy Materials published by Wiley‐VCH GmbH |
| Copyright_xml | – notice: 2022 The Authors. Advanced Energy Materials published by Wiley‐VCH GmbH |
| DBID | 24P |
| DOI | 10.1002/aenm.202200342 |
| DatabaseName | Wiley Online Library Open Access |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1614-6840 |
| EndPage | n/a |
| ExternalDocumentID | AENM202200342 |
| Genre | article |
| GrantInformation_xml | – fundername: Leibniz‐Institute for Catalysis – fundername: Financial support by Fonds der Chemischen Industrie – fundername: Aachen University – fundername: Landesförderinstitut Mecklenburg‐Vorpommern funderid: 20‐0001 |
| GroupedDBID | 05W 0R~ 1OC 24P 33P 4.4 50Y 5VS 8-0 8-1 A00 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AAXRX AAYCA AAZKR ABCUV ABJNI ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFWVQ AFZJQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI D-A DCZOG EBS G-S HGLYW HZ~ KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY. MY~ O9- P2W P4E RNS ROL RX1 SUPJJ WBKPD WOHZO WXSBR WYJ ZZTAW ~S- |
| ID | FETCH-LOGICAL-c4232-3f2bd3dfecf6a0f219cf263cf552f5cdcb28d663070ca66e1ef970d07667942e3 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 43 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000771990300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1614-6832 |
| IngestDate | Wed Jan 22 16:24:12 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 18 |
| Language | English |
| License | Attribution |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4232-3f2bd3dfecf6a0f219cf263cf552f5cdcb28d663070ca66e1ef970d07667942e3 |
| Notes | Dedicated to Professor Matthias Beller on the occasion of his 60th birthday |
| ORCID | 0000-0002-5328-6626 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202200342 |
| PageCount | 9 |
| ParticipantIDs | wiley_primary_10_1002_aenm_202200342_AENM202200342 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-05-01 |
| PublicationDateYYYYMMDD | 2022-05-01 |
| PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Advanced energy materials |
| PublicationYear | 2022 |
| References | 2021; 24 2021; 48 2019; 4 2015; 347 2019; 12 2006; 196 2020; 59 2020; 167 2015; 8 2013; 6 2016; 163 2021; 14 2022; 144 2016; 5 2017; 50 2016; 7 2020; 4 2020; 1 2021 2006; 87 2021; 598 2009; 102 2021; 177 2018; 11 2016; 9 |
| References_xml | – volume: 4 start-page: 216 year: 2019 publication-title: Nat. Energy – volume: 1 year: 2020 publication-title: Cell Rep. Phys. Sci. – volume: 11 start-page: 1653 year: 2018 publication-title: Energy Environ. Sci. – volume: 7 year: 2016 publication-title: Nat. Commun. – volume: 48 year: 2021 publication-title: Sustain. Energy Technol. Assess. – volume: 4 start-page: 5818 year: 2020 publication-title: Sustain. Energy Fuels – volume: 102 start-page: 523 year: 2009 publication-title: Photosynth. Res. – volume: 177 start-page: 915 year: 2021 publication-title: Renew. Energy – volume: 59 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 598 start-page: 304 year: 2021 publication-title: Nature – volume: 167 year: 2020 publication-title: J. Electrochem. Soc. – volume: 8 start-page: 2825 year: 2015 publication-title: Energy Environ. Sci. – volume: 163 start-page: H988 year: 2016 publication-title: J. Electrochem. Soc. – volume: 14 start-page: 5113 year: 2021 publication-title: Energy Environ. Sci. – volume: 196 start-page: 55 year: 2006 publication-title: Desalination – volume: 6 start-page: 2380 year: 2013 publication-title: Energy Environ. Sci. – volume: 87 start-page: 461 year: 2006 publication-title: Fuel Process. Technol. – volume: 144 start-page: 695 year: 2022 publication-title: J. Am. Chem. Soc. – volume: 24 year: 2021 publication-title: iScience – volume: 50 year: 2017 publication-title: J. Phys. Appl. Phys. – volume: 347 start-page: 970 year: 2015 publication-title: Science – year: 2021 publication-title: Sol. RRL – volume: 5 start-page: 261 year: 2016 publication-title: WIREs Energy Environ. – volume: 9 start-page: 2354 year: 2016 publication-title: Energy Environ. Sci. – volume: 14 start-page: 4427 year: 2021 publication-title: Energy Environ. Sci. – volume: 12 start-page: 1385 year: 2019 publication-title: Energy Environ. Sci. – volume: 6 start-page: 1983 year: 2013 publication-title: Energy Environ. Sci. |
| SSID | ssj0000491033 |
| Score | 2.5513616 |
| Snippet | Cost‐effective production of green hydrogen is a major challenge for global adoption of a hydrogen economy. Technologies such as photoelectrochemical (PEC) or... |
| SourceID | wiley |
| SourceType | Publisher |
| SubjectTerms | electrolysis green hydrogen photocatalysis photovoltaics techno‐economic analysis water splitting |
| Title | How Much Technological Progress is Needed to Make Solar Hydrogen Cost‐Competitive? |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202200342 |
| Volume | 12 |
| WOSCitedRecordID | wos000771990300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF60etCDb_HNHryGJrvJJjlJKS29NBSs0FtIdmexCIk0qeLNn-Bv9Jc4u6mxXvWWhSSEeX6Znf2GkNuMsUiFUex44IHjKy6dOMClcGMXfBBBCNoOmwiTJJrN4snaKf6GH6ItuBnPsPHaOHiWV90f0tAMCnOSnDHLYrdJtjyPR2Z4A_MnbZUF8a_n2nnyiGx8R6D9fjM3uqz7-xW_4anNL8P9_3_ZAdlbYUvaa4zhkGxAcUR21xgHj8l0VL7S8VI-0rambrREJ6ZNC4MenVc0wYQGitYlHWdPQO_Nzy8dvSm8BQraL6v68_2jb_G2bTy6OyEPw8G0P3JWgxUcafZlHa5ZrrjSILXIXI1BS2omuNRBwHQglcxRgQhFMBzITAjUoo5DV7mhEOi-DPgp6RRlAWeEcpBKSEQ1gc7Q_f0ojxU3UwKZH2Aa8M4Js6JKnxvyjLShSWapEVLaCintDZJxu7r4y0OXZMdcN82IV6RTL5ZwTbblSz2vFjfWLL4AHEC4Vg |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF60CurBt_h2D15Dk02ySU5SSkvFJhSs0FtId2exCIm0qeLNn-Bv9Jc4u6nRXsXjhiSEeX6Znf2GkOuMsVAGYWQ54IDlSVdYkY9Lbkc2eMD9AJQZNhEkSTgaRYNFN6E-C1PxQ9QFN-0ZJl5rB9cF6eYPa2gGuT5KzpihsVslax6mGm3qzBvUZRYEwI5tBsojtPEsjgb8Td1os-byK5bxqUkw3Z1_-LRdsr1Al7RVmcMeWYF8n2z94hw8IMNe8UrjuXikdVVd64kOdKMWhj06mdEEUxpIWhY0zp6A3uvfX9p7k3gL5LRdzMrP94-2Qdym9ejmkDx0O8N2z1qMVrCE3pm1XMXG0pUKhOKZrTBsCcW4K5TvM-ULKcaoQgQjGBBExjnqUUWBLe2Ac3RgBu4RaeRFDseEuiAkF4hrfJVhAPDCcSRdPSeQeT4mAueEMCOr9Lmiz0gromSWaiGltZDSVieJ69XpXx66Ihu9YdxP-7fJ3RnZ1Ner1sRz0iinc7gg6-KlnMyml8ZGvgA5dLxB |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF60iujBt_h2D16DySbZJCcptaWiDQEr9BbS3VksQlLaVPHmT_A3-kuc3dRor-JxQxLCPL_Mzn5DyGXGWCiDMLIccMDypCusyMcltyMbPOB-AMoMmwjiOBwMomTeTajPwlT8EHXBTXuGidfawWEs1dUPa2gGuT5KzpihsVsmK54fONqwmZfUZRYEwI5tBsojtPEsjgb8Td1os6vFVyziU5NgOlv_8GnbZHOOLmmzMocdsgT5Ltn4xTm4R_rd4pX2ZuKJ1lV1rSea6EYtDHt0NKUxpjSQtCxoL3sG-qB_f2n3TeItkNNWMS0_3z9aBnGb1qPrffLYafdbXWs-WsESemfWchUbSlcqEIpntsKwJRTjrlC-z5QvpBiiChGMYEAQGeeoRxUFtrQDztGBGbgHpJEXORwS6oKQXCCu8VWGAcALh5F09ZxA5vmYCJwjwoys0nFFn5FWRMks1UJKayGlzXbcq1fHf3nogqwlN530_ja-OyHr-nLVmXhKGuVkBmdkVbyUo-nk3JjIFzlOu8U |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=How+Much+Technological+Progress+is+Needed+to+Make+Solar+Hydrogen+Cost%E2%80%90Competitive%3F&rft.jtitle=Advanced+energy+materials&rft.au=Schneidewind%2C+Jacob&rft.date=2022-05-01&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=12&rft.issue=18&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faenm.202200342&rft.externalDBID=10.1002%252Faenm.202200342&rft.externalDocID=AENM202200342 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon |