Titanosilicate Epoxidation Catalysts: A Review of Challenges and Opportunities
Epoxidation reactions are tremendously important for modern chemistry, as they lead to series of highly useful bulk and fine chemicals, monomers, and intermediates for organic synthesis. Progress in epoxidation processes goes hand in hand with the advancement made in catalysis science. In this conte...
Gespeichert in:
| Veröffentlicht in: | ChemCatChem Jg. 14; H. 1 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Weinheim
Wiley Subscription Services, Inc
10.01.2022
|
| Schlagworte: | |
| ISSN: | 1867-3880, 1867-3899 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Epoxidation reactions are tremendously important for modern chemistry, as they lead to series of highly useful bulk and fine chemicals, monomers, and intermediates for organic synthesis. Progress in epoxidation processes goes hand in hand with the advancement made in catalysis science. In this context, heterogeneous catalysts, and particularly Ti‐based formulations, are playing a central role and have seen tremendous developments over the past two decades, leveraging on advanced materials science. The aim of this review is to illustrate the various strategies of titanosilicate catalysts preparation that can lead to more versatile, more performant, and greener epoxidation processes. We successively cover (i) supported catalysts, obtained by the grafting of Ti species onto preformed silica supports, (ii) microporous crystalline titanosilicates (zeolites), and (iii) amorphous titanosilicates obtained by sol‐gel chemistry. For each category, with an emphasis on catalyst preparation, the challenges that have to be tackled to boost catalyst performance are highlighted. From that point, we present a critical review of the different approaches that have been proposed in the primary literature to tailor the properties that govern catalysts performance (activity, selectivity, stability, ease of handling). This is done by better controlling the nature of the active surface species, adapting particles size and shape, optimizing texture, modifying surface chemistry, etc. These lines of attack encompass molecular approaches for the grafting of well‐defined species, top‐down and bottom‐up synthesis of hierarchically porous zeolites, advanced sol‐gel routes potentially performed in non‐conventional media or coupled with original processing, preparation of self‐standing monoliths, etc. Future research directions are discussed with emphasis on the application scope of new catalytic materials and possible approaches to increase catalyst performance.
Mesoporous catalysts: This review presents an overview of the recent advances in the development of titanosilicate catalysts used in epoxidation and critically addresses the key relation between the preparation method and the physico‐chemical properties that govern catalytic performance. |
|---|---|
| AbstractList | Epoxidation reactions are tremendously important for modern chemistry, as they lead to series of highly useful bulk and fine chemicals, monomers, and intermediates for organic synthesis. Progress in epoxidation processes goes hand in hand with the advancement made in catalysis science. In this context, heterogeneous catalysts, and particularly Ti‐based formulations, are playing a central role and have seen tremendous developments over the past two decades, leveraging on advanced materials science. The aim of this review is to illustrate the various strategies of titanosilicate catalysts preparation that can lead to more versatile, more performant, and greener epoxidation processes. We successively cover (i) supported catalysts, obtained by the grafting of Ti species onto preformed silica supports, (ii) microporous crystalline titanosilicates (zeolites), and (iii) amorphous titanosilicates obtained by sol‐gel chemistry. For each category, with an emphasis on catalyst preparation, the challenges that have to be tackled to boost catalyst performance are highlighted. From that point, we present a critical review of the different approaches that have been proposed in the primary literature to tailor the properties that govern catalysts performance (activity, selectivity, stability, ease of handling). This is done by better controlling the nature of the active surface species, adapting particles size and shape, optimizing texture, modifying surface chemistry, etc. These lines of attack encompass molecular approaches for the grafting of well‐defined species, top‐down and bottom‐up synthesis of hierarchically porous zeolites, advanced sol‐gel routes potentially performed in non‐conventional media or coupled with original processing, preparation of self‐standing monoliths, etc. Future research directions are discussed with emphasis on the application scope of new catalytic materials and possible approaches to increase catalyst performance. Epoxidation reactions are tremendously important for modern chemistry, as they lead to series of highly useful bulk and fine chemicals, monomers, and intermediates for organic synthesis. Progress in epoxidation processes goes hand in hand with the advancement made in catalysis science. In this context, heterogeneous catalysts, and particularly Ti‐based formulations, are playing a central role and have seen tremendous developments over the past two decades, leveraging on advanced materials science. The aim of this review is to illustrate the various strategies of titanosilicate catalysts preparation that can lead to more versatile, more performant, and greener epoxidation processes. We successively cover (i) supported catalysts, obtained by the grafting of Ti species onto preformed silica supports, (ii) microporous crystalline titanosilicates (zeolites), and (iii) amorphous titanosilicates obtained by sol‐gel chemistry. For each category, with an emphasis on catalyst preparation, the challenges that have to be tackled to boost catalyst performance are highlighted. From that point, we present a critical review of the different approaches that have been proposed in the primary literature to tailor the properties that govern catalysts performance (activity, selectivity, stability, ease of handling). This is done by better controlling the nature of the active surface species, adapting particles size and shape, optimizing texture, modifying surface chemistry, etc. These lines of attack encompass molecular approaches for the grafting of well‐defined species, top‐down and bottom‐up synthesis of hierarchically porous zeolites, advanced sol‐gel routes potentially performed in non‐conventional media or coupled with original processing, preparation of self‐standing monoliths, etc. Future research directions are discussed with emphasis on the application scope of new catalytic materials and possible approaches to increase catalyst performance. Mesoporous catalysts: This review presents an overview of the recent advances in the development of titanosilicate catalysts used in epoxidation and critically addresses the key relation between the preparation method and the physico‐chemical properties that govern catalytic performance. |
| Author | Smeets, Valentin Gaigneaux, Eric M. Debecker, Damien P. |
| Author_xml | – sequence: 1 givenname: Valentin orcidid: 0000-0002-4661-0424 surname: Smeets fullname: Smeets, Valentin organization: Université catholique de Louvain (UCLouvain) – sequence: 2 givenname: Eric M. orcidid: 0000-0003-2239-4306 surname: Gaigneaux fullname: Gaigneaux, Eric M. organization: Université catholique de Louvain (UCLouvain) – sequence: 3 givenname: Damien P. orcidid: 0000-0001-6500-2996 surname: Debecker fullname: Debecker, Damien P. email: damien.debecker@uclouvain.be organization: Université catholique de Louvain (UCLouvain) |
| BookMark | eNqFkEtLAzEURoNUsK1uXQdcT817EndlqA8oFmT2Q8xkNGVMxklq7b93SqWCIK7uXXznXr4zASMfvAXgEqMZRohcG5PMjCCCEcaUnIAxliLPqFRqdNwlOgOTGNcICUVzPgaPpUvah-haZ3SycNGFT1fr5IKHhU663cUUb-AcPtkPZ7cwNLB41W1r_YuNUPsarrou9GnjXXI2noPTRrfRXnzPKShvF2Vxny1Xdw_FfJkZRijJCDNYM53ThnNN8XOta4QUNbxRMreCa2mYFMLWqGGCG4mJEUjqhgvEOGN0Cq4OZ7s-vG9sTNU6bHo_fKyIwApxrlg-pNghZfoQY2-bygxl99VSr11bYVTtxVV7cdVR3IDNfmFd7950v_sbUAdg61q7-yddFUVZ_LBff8WCaA |
| CitedBy_id | crossref_primary_10_1016_j_crcon_2024_100299 crossref_primary_10_1002_adsc_202300181 crossref_primary_10_1007_s10934_024_01740_3 crossref_primary_10_1002_cplu_202500122 crossref_primary_10_1021_jacsau_5c00061 crossref_primary_10_1016_j_ccr_2022_214931 crossref_primary_10_1016_j_cej_2023_145648 crossref_primary_10_1016_j_jcat_2023_115256 crossref_primary_10_1007_s10971_024_06543_1 crossref_primary_10_1039_D3CY01299A crossref_primary_10_1093_chemle_upae130 crossref_primary_10_1039_D5GC00148J crossref_primary_10_1007_s11705_024_2441_1 crossref_primary_10_1021_jacs_5c07686 crossref_primary_10_1016_j_cej_2025_160229 crossref_primary_10_1016_j_jcat_2024_115576 crossref_primary_10_1134_S0965544125600559 crossref_primary_10_1016_j_micromeso_2023_112458 crossref_primary_10_1016_j_cej_2023_146053 crossref_primary_10_1002_cctc_202301653 crossref_primary_10_1021_jacs_4c10604 crossref_primary_10_1016_j_mcat_2023_113074 crossref_primary_10_1021_jacs_2c09867 crossref_primary_10_3390_gels11080605 crossref_primary_10_1002_cssc_202500179 crossref_primary_10_1002_adsu_202400719 crossref_primary_10_1002_cctc_202402089 crossref_primary_10_1016_j_jcat_2022_07_004 crossref_primary_10_1002_chem_202501688 crossref_primary_10_1016_j_apcata_2025_120409 crossref_primary_10_1039_D2CY01123A crossref_primary_10_1021_acscatal_5c00856 crossref_primary_10_1039_D4CY01313A crossref_primary_10_1016_j_jcat_2023_115142 crossref_primary_10_1002_aic_18726 crossref_primary_10_1002_aic_17955 crossref_primary_10_1007_s10904_024_03533_2 crossref_primary_10_1016_j_jcat_2025_115982 crossref_primary_10_1016_j_cej_2024_153840 crossref_primary_10_1007_s10562_023_04459_z crossref_primary_10_1016_j_scenv_2025_100249 crossref_primary_10_1016_j_micromeso_2022_112323 crossref_primary_10_1111_jace_20602 crossref_primary_10_1016_j_cattod_2024_114513 crossref_primary_10_1016_j_jcat_2024_115748 crossref_primary_10_13005_ojc_400410 crossref_primary_10_3390_catal12101241 |
| Cites_doi | 10.1016/j.molcata.2014.09.004 10.1016/0166-9834(91)85054-Y 10.1038/nchem.2374 10.1039/C5CS00935A 10.1039/C5CC10232D 10.1002/cctc.201500440 10.1006/jcat.1995.1119 10.1002/ange.19971090506 10.1002/cctc.201402611 10.1038/s41586-020-2826-3 10.1023/A:1016614218678 10.1021/cr960406n 10.1006/jcat.1995.1118 10.1039/b911107g 10.1039/C8GC00482J 10.1016/j.cattod.2015.09.036 10.1021/ja9829160 10.1021/acs.iecr.7b03719 10.1016/j.micromeso.2016.06.031 10.1002/adma.201404493 10.1016/j.apcata.2012.11.002 10.1039/C9NJ01937E 10.1016/j.catcom.2008.07.003 10.1021/cs501671a 10.1016/j.micromeso.2017.01.035 10.1016/j.cherd.2020.04.025 10.1006/jcat.1996.0349 10.1002/cctc.201800413 10.1016/j.cej.2016.04.098 10.1016/j.apcatb.2010.04.027 10.1021/acscatal.7b03986 10.1016/0304-5102(92)85027-D 10.1006/jcat.1998.1982 10.1016/S1387-1811(98)00210-8 10.1016/j.micromeso.2013.09.029 10.1016/j.cattod.2011.04.012 10.1016/S0360-0564(04)48001-8 10.1021/ie010983o 10.1016/j.catcom.2013.11.005 10.1002/cctc.201900028 10.1007/BF00824045 10.1023/A:1024074108874 10.1016/j.micromeso.2004.06.030 10.1021/jp036166e 10.1016/j.cattod.2009.11.019 10.1002/anie.201105678 10.3390/catal9110920 10.1039/C7RE00076F 10.1016/j.micromeso.2017.10.049 10.1006/jcat.1998.2127 10.1021/cm9905141 10.1006/jcat.2001.3407 10.1007/s11244-010-9590-9 10.1021/acs.chemmater.8b04843 10.1021/acscatal.7b03369 10.1021/acscatal.0c02183 10.1021/ic00291a024 10.1039/C8DT03044H 10.1194/jlr.R800038-JLR200 10.1016/j.tet.2003.10.099 10.1021/ja903730q 10.1002/ange.201105678 10.1016/j.micromeso.2016.04.012 10.1021/jp981423e 10.1039/C6RA16556G 10.1038/368321a0 10.1039/C39950000163 10.1021/acs.accounts.9b00399 10.1021/ja00163a052 10.1016/j.cej.2005.01.011 10.1039/D0GC02562C 10.1016/j.apcatb.2020.118926 10.1021/cr0101306 10.1021/acscatal.5b01388 10.1039/b103057b 10.1016/j.enzmictec.2013.02.013 10.1039/C9SC04615A 10.1021/om050675g 10.1016/S0926-860X(00)00834-6 10.1080/01614949508006450 10.1021/ja0202208 10.1021/cm061478q 10.1021/acscatal.8b02216 10.1039/C7CS00697G 10.1039/a808225a 10.1007/s10971-012-2895-3 10.1016/0021-9517(91)90019-Z 10.1021/ja00538a077 10.3390/catal7060168 10.1021/acscatal.9b01454 10.1039/b206013b 10.1007/s11244-015-0389-6 10.1021/ie020048g 10.1016/j.jcat.2019.09.045 10.1016/j.cattod.2012.02.037 10.1016/j.jcat.2015.09.017 10.1021/jp065544n 10.1002/ejic.201000582 10.1016/0022-3093(88)90007-5 10.1039/c2cs15330k 10.1021/cm960413s 10.1039/C5CS00045A 10.1002/chem.201903287 10.1073/pnas.95.7.3555 10.1006/jcat.1999.2809 10.1016/j.apsusc.2018.06.015 10.1039/CC9960002367 10.1016/0079-6786(88)90005-2 10.1021/jacs.8b12861 10.1006/jcat.1995.1313 10.1021/la0015213 10.1002/(SICI)1099-0682(199912)1999:12<2135::AID-EJIC2135>3.0.CO;2-X 10.1006/jcat.1995.1232 10.1039/C7RE00138J 10.1016/j.jcat.2010.05.003 10.1007/s10973-011-1895-9 10.1039/C6CY01232A 10.1016/S0167-2991(09)60618-2 10.1039/C5PY01147G 10.1002/slct.201803864 10.1039/c3ra44214d 10.1081/CR-100100262 10.1021/jp050056l 10.1039/C7TA01792H 10.1002/aoc.3115 10.1016/j.jcat.2010.08.010 10.1007/s10562-004-6444-8 10.1002/cctc.202001779 10.1039/b304834a 10.1007/s42247-020-00088-z 10.1021/acs.chemrev.7b00738 10.1039/a805867i 10.1039/C5TA02975A 10.1039/C8CS00774H 10.1021/cm0490569 10.1016/j.micromeso.2012.08.027 10.3390/catal8050212 10.1039/C7CY02571H 10.1016/0022-3093(85)90407-7 10.1039/C5GC00406C 10.1016/S0022-3093(05)80422-3 10.1021/jp912112h 10.1021/acssuschemeng.8b02623 10.1021/cr800363y 10.1021/ja108698s 10.1016/j.jcat.2005.02.013 10.1016/0022-3093(82)90285-X 10.1002/cjoc.200590471 10.1021/jacs.9b02160 10.1039/9781847555328 10.1021/acs.chemrev.9b00846 10.1002/tcr.201700068 10.1016/j.micromeso.2020.110066 10.1016/j.jcis.2009.03.090 10.1021/cm970322a 10.1006/jcat.1993.1069 10.1016/j.micromeso.2018.04.015 10.1006/jcat.2001.3355 10.1016/j.jcat.2008.03.001 10.1080/03602458108068074 10.1016/B978-0-444-53188-9.00013-4 10.1016/j.mcat.2018.04.011 10.1016/j.cattod.2019.09.024 10.1039/D0GC01927E 10.1016/j.micromeso.2019.01.010 10.1039/C4TA06473A 10.1007/s10971-021-05486-1 10.1016/S0022-3093(05)80557-5 10.1039/c2cy20446k 10.1021/acscatal.5b01105 10.1080/01614940.2017.1389111 10.1016/j.jcat.2017.10.001 10.1016/j.cattod.2014.07.002 10.1016/j.jallcom.2016.12.382 10.1021/acscatal.9b05147 10.1016/j.jcat.2011.12.023 10.3390/catal10111337 10.1021/acs.inorgchem.6b00621 10.1016/S0920-5861(02)00374-7 10.1016/0144-2449(93)90151-R 10.1016/j.micromeso.2012.05.014 10.1016/j.micromeso.2013.08.003 10.1038/nature11117 10.1021/acs.iecr.7b04556 10.1134/S0023158415040059 10.1002/aic.13789 10.1039/C8CS00356D 10.1039/C6RA10145C 10.1021/la051182j 10.1021/cm010910v 10.1021/la504207k 10.1098/rsif.2016.0087 10.1039/D0TA07016E 10.1002/9783527629114 10.1002/anie.199704771 10.1016/0021-9517(92)90176-I 10.1002/tcr.201700075 10.1016/j.micromeso.2006.12.019 10.1016/j.apcata.2015.12.002 10.1021/cr068020s 10.1039/a809396b 10.1039/C39920000589 10.1016/0920-5861(94)80186-X 10.1016/j.catcom.2006.09.022 10.1002/adma.201001410 10.1007/978-3-642-39115-6_3 10.1007/s11244-008-9040-0 10.1039/c39940000147 10.1016/j.ces.2020.116080 10.1039/c2cc35127g 10.1016/j.mcat.2019.110509 10.1039/C5CP05268H 10.1021/acs.chemmater.6b02172 10.1021/jp9821679 10.1016/j.cattod.2010.12.045 10.1002/chem.201402873 10.3390/catal11020196 10.1016/j.cej.2011.02.036 10.1007/s10934-015-0094-7 10.1021/acscatal.0c02937 10.3390/ma5122874 10.1016/j.micromeso.2018.08.018 10.1016/j.cattod.2019.05.020 10.1039/C4NJ00811A 10.1021/acscatal.8b00660 10.1021/acs.langmuir.8b01932 10.1007/s10971-015-3666-8 10.1016/S0926-860X(01)00645-7 10.1039/b006460m 10.1021/jacs.7b01422 10.1016/j.micromeso.2014.01.025 10.1021/jacs.7b11467 10.1016/j.apcata.2015.09.029 10.1016/j.jcat.2005.02.011 10.1007/s10971-012-2808-5 10.1016/j.micromeso.2019.109801 10.1006/jcat.1999.2701 10.1021/cs2003774 10.1007/BF02113865 10.1021/cs2002143 10.1002/9781118356760.ch10 10.1039/B300244F 10.1039/C9CY00071B 10.1016/S0003-9861(02)00415-0 10.1021/acsomega.0c00184 10.1039/C8CC00318A 10.1021/acscatal.8b03331 10.1016/j.apcata.2014.09.030 10.1021/jp002816s 10.1016/j.cogsc.2020.100437 10.1021/cm802348c 10.1039/C5RA02493E 10.1021/jp062368 10.1002/admi.202001095 10.1016/S0926-860X(01)00793-1 10.1021/ja8027313 10.1039/b208925b 10.1039/C7CY00615B 10.1039/C5CC05328E 10.1016/0144-2449(92)90159-M 10.1021/acscatal.0c03340 10.1124/pr.113.007781 10.1038/nchembio.203 10.1039/c3nr01629c 10.1016/B978-0-12-809270-5.00017-0 10.1016/j.jcat.2009.01.013 10.1023/A:1027202604286 10.1016/S1381-1169(01)00487-3 |
| ContentType | Journal Article |
| Copyright | 2021 Wiley‐VCH GmbH 2022 Wiley‐VCH GmbH |
| Copyright_xml | – notice: 2021 Wiley‐VCH GmbH – notice: 2022 Wiley‐VCH GmbH |
| DBID | AAYXX CITATION |
| DOI | 10.1002/cctc.202101132 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1867-3899 |
| EndPage | n/a |
| ExternalDocumentID | 10_1002_cctc_202101132 CCTC202101132 |
| Genre | reviewArticle |
| GrantInformation_xml | – fundername: Francqui Foundation funderid: 15/20-069 |
| GroupedDBID | 05W 0R~ 1OC 33P 4.4 5DZ 77Q 8-1 A00 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AAXRX AAYCA AAZKR ABCUV ABDBF ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACUHS ACXBN ACXQS ADBBV ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFGKR AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI DCZOG DRFUL DRSTM DU5 EBS ESX G-S HGLYW HZ~ I-F LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MXFUL MXSTM MY~ NNB O9- P2W P4E ROL SUPJJ TUS WBKPD WOHZO WXSBR WYJ XV2 ZZTAW AAMMB AAYXX AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY CITATION |
| ID | FETCH-LOGICAL-c4232-24c1a4a73f55a31bdad0093c5f987e65a8c4866ed0f465c812c608af56045443 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 68 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000706319900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1867-3880 |
| IngestDate | Fri Jul 25 12:04:08 EDT 2025 Tue Nov 18 22:31:56 EST 2025 Sat Nov 29 07:18:06 EST 2025 Wed Jan 22 16:26:35 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4232-24c1a4a73f55a31bdad0093c5f987e65a8c4866ed0f465c812c608af56045443 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-4661-0424 0000-0003-2239-4306 0000-0001-6500-2996 |
| OpenAccessLink | http://hdl.handle.net/2078.1/257495 |
| PQID | 2619055947 |
| PQPubID | 986343 |
| PageCount | 25 |
| ParticipantIDs | proquest_journals_2619055947 crossref_citationtrail_10_1002_cctc_202101132 crossref_primary_10_1002_cctc_202101132 wiley_primary_10_1002_cctc_202101132_CCTC202101132 |
| PublicationCentury | 2000 |
| PublicationDate | January 10, 2022 |
| PublicationDateYYYYMMDD | 2022-01-10 |
| PublicationDate_xml | – month: 01 year: 2022 text: January 10, 2022 day: 10 |
| PublicationDecade | 2020 |
| PublicationPlace | Weinheim |
| PublicationPlace_xml | – name: Weinheim |
| PublicationTitle | ChemCatChem |
| PublicationYear | 2022 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2010; 97 2019; 11 1995; 37 2016; 300 2020; 11 2020; 10 1997; 9 2018; 452 2013; 59 2000; 11 2020; 293 2013; 52 2018; 455 2019; 25 2019; 278 2008; 22 2020; 298 1992; 0 2005; 77 2016; 45 2019; 275 2010; 2010 2011; 1 2019; 31 1992; 143 1992; 145 2015; 243 2020; 381 2006; 110 1999; 103 2016; 13 2011; 133 2017; 139 2000; 191 2016; 6 1994; 19 2018; 118 2019; 43 2019; 48 2020; 271 1992; 137 2016; 333 2020; 159 2008; 48 1985; 74 2020; 22 2013; 451 2008; 42 2000; 189 2008; 256 2012; 48 1990; 112 2016; 28 2008; 130 2016; 8 2016; 23 2012; 41 2001; 221 2010; 53 2004; 60 2019; 52 2016; 229 2020; 120 2013; 203 2008; 9 1999; 121 2015; 507 2021; 363 2017; 356 2014; 66 2001; 105 2003; 409 2020; 8 2001; 211 2020; 5 2020; 3 2002; 41 1997; 97 2002; 102 2010; 275 2016; 233 1999; 11 2010; 273 2003; 5 2001; 15 2001; 17 2017; 243 1996; 3 2001; 219 2014; 6 1980; 102 2002; 182–183 2003; 88 2021; 8 2015; 6 2015; 5 2015; 3 2021; 229 2014; 190 2008 2006; 18 1993; 140 2020; 345 2018; 60 2020; 586 1998; 177 2015; 7 1992; 71 2017; 699 2003; 77 1998; 175 2004; 98 2021; 97 1994; 368 2007; 111 2018 2014; 183 2014 2009; 5 2013 2018; 54 2014; 189 1967 2018; 57 2002; 14 2007; 102 2013; 3 2007; 107 2012; 485 1982; 52 2015; 74 1988; 100 2014; 28 2013; 5 2018; 47 2014; 20 2018; 6 2018; 8 2010; 114 2006; 25 2007; 8 2005; 108 2016; 277 2005; 109 2018; 34 1998; 95 2009; 19 2014; 488 1989 2015; 56 2019; 9 2015; 58 2019; 4 2003; 217 1988; 18 2005; 232 2015; 51 1991; 72 1997 1996 1995; 157 1995; 0 1995; 156 1995; 153 2018; 20 2014; 395 2014; 45 2012; 108 2009; 335 1981; 23 2001; 204 2018; 18 2002; 124 1999; 1999 1988; 27 2014; 38 2003; 27 2011 2011; 50 123 2014; 30 2018; 10 2009; 109 2017; 5 2017; 7 2017; 2 2012; 288 2021; 23 1988; 37 2021; 28 2000; 42 2012; 160 2013; 167 2005; 21 1994; 26 2000; 0 1992; 12 2005; 23 2011; 168 2009; 50 2015; 44 2019; 477 1997 1997; 36 109 2011; 23 2016; 511 2011; 163 2012; 64 2012; 63 2015; 17 2018; 261 2018; 140 2009; 21 2015; 18 2018; 268 1999; 0 2016; 52 2009; 131 1996; 163 1999; 1 2019; 141 2004; 108 2011; 171 1998; 25 2016; 55 2011; 175 1999; 9 2021; 13 1993; 13 2012; 2 2015; 27 2021; 11 2004; 16 2001; 0 2009; 263 1991; 129 1994; 0 1998; 102 2012; 5 e_1_2_7_3_1 e_1_2_7_104_1 e_1_2_7_127_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_83_1 e_1_2_7_191_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_142_1 e_1_2_7_165_1 e_1_2_7_188_1 e_1_2_7_202_1 e_1_2_7_248_1 e_1_2_7_225_1 e_1_2_7_263_1 Voge H. H. (e_1_2_7_27_1) 1967 e_1_2_7_240_1 e_1_2_7_116_1 e_1_2_7_285_1 e_1_2_7_94_1 e_1_2_7_71_1 e_1_2_7_180_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_79_1 e_1_2_7_131_1 e_1_2_7_154_1 e_1_2_7_237_1 Berlier G. (e_1_2_7_62_1) 2018 e_1_2_7_177_1 e_1_2_7_214_1 e_1_2_7_275_1 e_1_2_7_252_1 e_1_2_7_139_1 e_1_2_7_4_1 e_1_2_7_128_1 e_1_2_7_105_1 e_1_2_7_82_1 e_1_2_7_120_1 e_1_2_7_192_1 e_1_2_7_12_1 e_1_2_7_67_1 e_1_2_7_249_1 e_1_2_7_143_1 e_1_2_7_189_1 e_1_2_7_29_1 e_1_2_7_203_1 e_1_2_7_226_1 e_1_2_7_166_1 e_1_2_7_241_1 e_1_2_7_264_1 Boccuti M. R. (e_1_2_7_65_1) 1989 e_1_2_7_117_1 e_1_2_7_284_1 e_1_2_7_93_1 e_1_2_7_181_1 Bellussi G. (e_1_2_7_17_1) 2018 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_78_1 e_1_2_7_193_1 e_1_2_7_238_1 e_1_2_7_78_2 e_1_2_7_132_1 e_1_2_7_155_1 e_1_2_7_178_1 e_1_2_7_215_1 e_1_2_7_230_1 e_1_2_7_253_1 e_1_2_7_106_1 e_1_2_7_129_1 e_1_2_7_9_1 Li J. J. (e_1_2_7_34_1) 2014 e_1_2_7_81_1 e_1_2_7_121_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_170_1 e_1_2_7_227_1 e_1_2_7_89_1 e_1_2_7_182_1 e_1_2_7_182_2 e_1_2_7_28_1 e_1_2_7_144_1 e_1_2_7_167_1 e_1_2_7_204_1 e_1_2_7_265_1 e_1_2_7_242_1 e_1_2_7_118_1 e_1_2_7_283_1 Landau M. V. (e_1_2_7_208_1) 2008 e_1_2_7_110_1 e_1_2_7_92_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_77_1 e_1_2_7_54_1 e_1_2_7_171_1 e_1_2_7_216_1 e_1_2_7_194_1 e_1_2_7_239_1 e_1_2_7_39_1 e_1_2_7_133_1 e_1_2_7_156_1 e_1_2_7_179_1 e_1_2_7_254_1 e_1_2_7_231_1 e_1_2_7_107_1 e_1_2_7_80_1 e_1_2_7_122_1 e_1_2_7_279_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_88_1 e_1_2_7_205_1 e_1_2_7_228_1 e_1_2_7_160_1 e_1_2_7_183_1 e_1_2_7_145_1 e_1_2_7_220_1 e_1_2_7_243_1 e_1_2_7_266_1 e_1_2_7_168_1 e_1_2_7_119_1 e_1_2_7_282_1 e_1_2_7_91_1 e_1_2_7_111_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_99_1 e_1_2_7_172_1 e_1_2_7_195_1 e_1_2_7_217_1 Srinivas D. (e_1_2_7_59_1) 2003; 217 e_1_2_7_38_1 e_1_2_7_134_1 e_1_2_7_232_1 e_1_2_7_255_1 e_1_2_7_157_1 e_1_2_7_270_1 e_1_2_7_108_1 e_1_2_7_7_1 e_1_2_7_100_1 e_1_2_7_123_1 e_1_2_7_278_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_87_1 e_1_2_7_161_1 e_1_2_7_184_1 e_1_2_7_206_1 e_1_2_7_26_1 Waal J. C. (e_1_2_7_149_1) 1997 e_1_2_7_229_1 e_1_2_7_49_1 e_1_2_7_267_1 e_1_2_7_146_1 e_1_2_7_169_1 e_1_2_7_244_1 e_1_2_7_221_1 e_1_2_7_281_1 e_1_2_7_90_1 e_1_2_7_112_1 e_1_2_7_52_1 e_1_2_7_98_1 e_1_2_7_75_1 e_1_2_7_150_1 e_1_2_7_196_1 e_1_2_7_37_1 e_1_2_7_173_1 e_1_2_7_218_1 e_1_2_7_256_1 e_1_2_7_135_1 e_1_2_7_158_1 e_1_2_7_233_1 e_1_2_7_210_1 e_1_2_7_271_1 e_1_2_7_109_1 e_1_2_7_8_1 e_1_2_7_124_1 e_1_2_7_277_1 e_1_2_7_101_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_63_1 e_1_2_7_86_1 e_1_2_7_185_1 e_1_2_7_207_1 e_1_2_7_48_1 e_1_2_7_162_1 e_1_2_7_245_1 e_1_2_7_268_1 e_1_2_7_147_1 e_1_2_7_222_1 e_1_2_7_260_1 e_1_2_7_280_1 e_1_2_7_113_1 e_1_2_7_288_1 e_1_2_7_51_1 Wu P. (e_1_2_7_136_1) 2013 e_1_2_7_74_1 e_1_2_7_97_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_151_1 e_1_2_7_174_1 e_1_2_7_219_1 e_1_2_7_197_1 e_1_2_7_234_1 e_1_2_7_257_1 e_1_2_7_211_1 e_1_2_7_159_1 e_1_2_7_272_1 e_1_2_7_5_1 Huali X. (e_1_2_7_44_1) 2008; 22 e_1_2_7_102_1 e_1_2_7_125_1 e_1_2_7_276_1 e_1_2_7_85_1 e_1_2_7_47_1 e_1_2_7_140_1 e_1_2_7_163_1 e_1_2_7_223_1 e_1_2_7_269_1 e_1_2_7_186_1 e_1_2_7_246_1 e_1_2_7_148_1 e_1_2_7_200_1 e_1_2_7_261_1 e_1_2_7_114_1 e_1_2_7_287_1 e_1_2_7_73_1 e_1_2_7_50_1 e_1_2_7_96_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_58_1 e_1_2_7_152_1 e_1_2_7_175_1 e_1_2_7_212_1 e_1_2_7_258_1 e_1_2_7_198_1 e_1_2_7_235_1 Thamaphat K. (e_1_2_7_70_1) 2008; 42 e_1_2_7_137_1 e_1_2_7_273_1 e_1_2_7_250_1 e_1_2_7_126_1 e_1_2_7_103_1 e_1_2_7_18_1 e_1_2_7_84_1 e_1_2_7_61_1 e_1_2_7_209_1 e_1_2_7_190_1 e_1_2_7_10_1 e_1_2_7_46_1 Buijink J. K. F. (e_1_2_7_56_1) 2008 e_1_2_7_69_1 e_1_2_7_141_1 e_1_2_7_201_1 e_1_2_7_224_1 e_1_2_7_247_1 e_1_2_7_164_1 e_1_2_7_187_1 Pálinkó I. (e_1_2_7_6_1) 2018 e_1_2_7_262_1 e_1_2_7_115_1 e_1_2_7_286_1 e_1_2_7_72_1 e_1_2_7_95_1 e_1_2_7_22_1 e_1_2_7_57_1 e_1_2_7_130_1 e_1_2_7_153_1 e_1_2_7_176_1 e_1_2_7_199_1 e_1_2_7_213_1 e_1_2_7_236_1 e_1_2_7_259_1 e_1_2_7_138_1 e_1_2_7_274_1 e_1_2_7_251_1 |
| References_xml | – volume: 300 start-page: 98 year: 2016 end-page: 118 publication-title: Chem. Eng. J. – volume: 9 start-page: 6234 year: 2019 end-page: 6242 publication-title: ACS Catal. – start-page: 355 year: 2008 end-page: 371 – volume: 34 start-page: 12713 year: 2018 end-page: 12722 publication-title: Langmuir – volume: 5 start-page: 5077 year: 2015 end-page: 5088 publication-title: ACS Catal. – volume: 232 start-page: 85 year: 2005 end-page: 95 publication-title: J. Catal. – volume: 8 start-page: 3844 year: 2018 end-page: 3852 publication-title: ACS Catal. – volume: 19 start-page: 8610 year: 2009 end-page: 8618 publication-title: J. Mater. Chem. – volume: 3 start-page: 15280 year: 2015 end-page: 15291 publication-title: J. Mater. Chem. A – volume: 4 start-page: 1618 year: 2019 end-page: 1626 publication-title: ChemistrySelect – volume: 95 start-page: 3555 year: 1998 end-page: 3560 publication-title: Proc. Nat. Acad. Sci. – volume: 10 start-page: 13008 year: 2020 end-page: 13018 publication-title: ACS Catal. – start-page: 119 year: 2008 end-page: 160 – volume: 189 start-page: 40 year: 2000 end-page: 51 publication-title: J. Catal. – volume: 120 start-page: 7219 year: 2020 end-page: 7347 publication-title: Chem. Rev. – start-page: 151 year: 1967 end-page: 221 – volume: 28 start-page: 239 year: 2014 end-page: 243 publication-title: Appl. Organomet. Chem. – volume: 102 start-page: 80 year: 2007 end-page: 85 publication-title: Microporous Mesoporous Mater. – volume: 0 start-page: 2157 year: 2000 end-page: 2158 publication-title: Chem. Commun. – volume: 42 start-page: 357 year: 2008 end-page: 361 publication-title: Kasetsart J. – volume: 131 start-page: 14667 year: 2009 end-page: 14669 publication-title: J. Am. Chem. Soc. – volume: 368 start-page: 321 year: 1994 publication-title: Nature – volume: 1 start-page: 1665 year: 2011 end-page: 1678 publication-title: ACS Catal. – volume: 175 start-page: 393 year: 2011 end-page: 397 publication-title: Catal. Today – volume: 25 start-page: 14430 year: 2019 end-page: 14440 publication-title: Chem. Eur. J. – start-page: 91 year: 2018 end-page: 154 – volume: 10 start-page: 4737 year: 2020 end-page: 4750 publication-title: ACS Catal. – volume: 1999 start-page: 2135 year: 1999 end-page: 2145 publication-title: Eur. J. Inorg. Chem. – volume: 143 start-page: 93 year: 1992 end-page: 111 publication-title: J. Non-Cryst. Solids – volume: 191 start-page: 332 year: 2000 end-page: 347 publication-title: J. Catal. – volume: 6 start-page: 7308 year: 2015 end-page: 7319 publication-title: Polym. Chem. – volume: 273 start-page: 66 year: 2010 end-page: 72 publication-title: J. Catal. – volume: 9 start-page: 55 year: 1999 end-page: 65 publication-title: J. Mater. Chem. – volume: 18 start-page: 662 year: 2018 end-page: 675 publication-title: Chem. Rec. – volume: 41 start-page: 3151 year: 2002 end-page: 3162 publication-title: Ind. Eng. Chem. Res. – volume: 22 start-page: 25 year: 2008 end-page: 39 publication-title: Chem. Biochem. Eng. Q. – volume: 1 start-page: 585 year: 1999 end-page: 592 publication-title: Phys. Chem. Chem. Phys. – volume: 275 start-page: 61 year: 2019 end-page: 68 publication-title: Microporous Mesoporous Mater. – volume: 57 start-page: 3567 year: 2018 end-page: 3574 publication-title: Ind. Eng. Chem. Res. – volume: 8 start-page: 11794 year: 2018 end-page: 11800 publication-title: ACS Catal. – volume: 160 start-page: 159 year: 2012 end-page: 166 publication-title: Microporous Mesoporous Mater. – volume: 130 start-page: 11088 year: 2008 end-page: 11096 publication-title: J. Am. Chem. Soc. – volume: 108 start-page: 1001 year: 2012 end-page: 1008 publication-title: J. Therm. Anal. Calorim. – volume: 8 start-page: 23526 year: 2020 end-page: 23542 publication-title: J. Mater. Chem. A – volume: 261 start-page: 158 year: 2018 end-page: 163 publication-title: Microporous Mesoporous Mater. – volume: 153 start-page: 165 year: 1995 end-page: 176 publication-title: J. Catal. – volume: 183 start-page: 177 year: 2014 end-page: 184 publication-title: Microporous Mesoporous Mater. – volume: 108 start-page: 3573 year: 2004 end-page: 3583 publication-title: J. Phys. Chem. B – volume: 168 start-page: 112 year: 2011 end-page: 117 publication-title: Catal. Today – start-page: 133 year: 1989 end-page: 144 – volume: 114 start-page: 6553 year: 2010 end-page: 6559 publication-title: J. Phys. Chem. C – volume: 59 start-page: 180 year: 2013 end-page: 187 publication-title: AIChE J. – volume: 8 start-page: 212 year: 2018 publication-title: Catalysts – volume: 0 start-page: 1510 year: 2001 end-page: 1511 publication-title: Chem. Commun. – volume: 288 start-page: 16 year: 2012 end-page: 23 publication-title: J. Catal. – volume: 27 start-page: 3166 year: 1988 end-page: 3172 publication-title: Inorg. Chem. – volume: 3 start-page: 421 year: 1996 end-page: 436 publication-title: Top. Catal. – volume: 293 year: 2020 publication-title: Microporous Mesoporous Mater. – volume: 5 start-page: 31195 year: 2015 end-page: 31204 publication-title: RSC Adv. – volume: 232 start-page: 19 year: 2005 end-page: 26 publication-title: J. Catal. – volume: 13 year: 2016 publication-title: J. R. Soc. Interface – volume: 11 start-page: 954 year: 2020 end-page: 961 publication-title: Chem. Sci. – volume: 77 start-page: 287 year: 2003 end-page: 297 publication-title: Catal. Today – volume: 109 start-page: 24304 year: 2005 end-page: 24310 publication-title: J. Phys. Chem. B – volume: 8 start-page: 950 year: 2007 end-page: 956 publication-title: Catal. Commun. – volume: 586 start-page: 708 year: 2020 end-page: 713 publication-title: Nature – volume: 47 start-page: 15082 year: 2018 end-page: 15090 publication-title: Dalton Trans. – volume: 511 start-page: 78 year: 2016 end-page: 86 publication-title: Appl. Catal. Gen. – volume: 243 start-page: 134 year: 2015 end-page: 140 publication-title: Catal. Today – volume: 333 start-page: 139 year: 2016 end-page: 148 publication-title: J. Catal. – volume: 72 start-page: 217 year: 1991 end-page: 266 publication-title: Appl. Catal. – volume: 26 start-page: 195 year: 1994 end-page: 208 publication-title: Catal. Lett. – volume: 105 start-page: 2897 year: 2001 end-page: 2905 publication-title: J. Phys. Chem. B – volume: 8 start-page: 2995 year: 2018 end-page: 3010 publication-title: ACS Catal. – volume: 97 start-page: 407 year: 2010 end-page: 413 publication-title: Appl. Catal. B – volume: 52 start-page: 2971 year: 2019 end-page: 2980 publication-title: Acc. Chem. Res. – volume: 9 start-page: 920 year: 2019 publication-title: Catalysts – volume: 50 123 start-page: 11156 11352 year: 2011 2011 end-page: 11161 11357 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 7 start-page: 3421 year: 2017 end-page: 3439 publication-title: Catal. Sci. Technol. – volume: 381 start-page: 96 year: 2020 end-page: 107 publication-title: J. Catal. – volume: 229 year: 2021 publication-title: Chem. Eng. Sci. – volume: 102 start-page: 5974 year: 1980 end-page: 5976 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 372 year: 2018 end-page: 391 publication-title: ACS Catal. – volume: 60 start-page: 525 year: 2004 end-page: 528 publication-title: Tetrahedron – volume: 156 start-page: 65 year: 1995 end-page: 74 publication-title: J. Catal. – volume: 14 start-page: 1657 year: 2002 end-page: 1664 publication-title: Chem. Mater. – volume: 97 start-page: 2373 year: 1997 end-page: 2419 publication-title: Chem. Rev. – volume: 18 start-page: 259 year: 1988 end-page: 341 publication-title: Prog. Solid State Chem. – volume: 28 year: 2021 publication-title: Curr. Opin. Green Sustain. Chem. – volume: 15 start-page: 257 year: 2001 end-page: 263 publication-title: Top. Catal. – volume: 64 start-page: 637 year: 2012 end-page: 642 publication-title: J. Sol-Gel Sci. Technol. – volume: 3 start-page: 5889 year: 2015 end-page: 5900 publication-title: J. Mater. Chem. A – volume: 167 start-page: 146 year: 2013 end-page: 154 publication-title: Microporous Mesoporous Mater. – volume: 17 start-page: 2664 year: 2001 end-page: 2669 publication-title: Langmuir – volume: 50 start-page: S52 year: 2009 end-page: S56 publication-title: J. Lipid Res. – volume: 23 start-page: 354 year: 2021 end-page: 366 publication-title: Green Chem. – volume: 27 start-page: 319 year: 2003 end-page: 323 publication-title: New J. Chem. – volume: 21 start-page: 9576 year: 2005 end-page: 9583 publication-title: Langmuir – volume: 221 start-page: 3 year: 2001 end-page: 13 publication-title: Appl. Catal. Gen. – volume: 53 start-page: 1319 year: 2010 end-page: 1329 publication-title: Top. Catal. – volume: 52 start-page: 3580 year: 2016 end-page: 3583 publication-title: Chem. Commun. – volume: 22 start-page: 5902 year: 2020 end-page: 5936 publication-title: Green Chem. – volume: 9 start-page: 588 year: 1997 end-page: 595 publication-title: Chem. Mater. – volume: 5 start-page: 567 year: 2009 end-page: 573 publication-title: Nat. Chem. Biol. – volume: 48 start-page: 885 year: 2019 end-page: 907 publication-title: Chem. Soc. Rev. – volume: 51 start-page: 14018 year: 2015 end-page: 14021 publication-title: Chem. Commun. – volume: 7 start-page: 168 year: 2017 publication-title: Catalysts – volume: 23 start-page: 599 year: 2011 end-page: 623 publication-title: Adv. Mater. – volume: 48 start-page: 10648 year: 2012 end-page: 10650 publication-title: Chem. Commun. – volume: 0 start-page: 147 year: 1994 end-page: 148 publication-title: J. Chem. Soc. Chem. Commun. – start-page: 451 year: 2013 end-page: 506 – volume: 157 start-page: 482 year: 1995 end-page: 500 publication-title: J. Catal. – volume: 9 start-page: 1857 year: 2019 end-page: 1866 publication-title: Catal. Sci. Technol. – volume: 5 start-page: 3534 year: 2003 end-page: 3538 publication-title: Phys. Chem. Chem. Phys. – volume: 63 start-page: 463 year: 2012 end-page: 472 publication-title: J. Sol-Gel Sci. Technol. – start-page: 8130 year: 2018 end-page: 8139 publication-title: ACS Catal. – volume: 21 start-page: 582 year: 2009 end-page: 596 publication-title: Chem. Mater. – volume: 31 start-page: 1610 year: 2019 end-page: 1619 publication-title: Chem. Mater. – volume: 45 start-page: 3313 year: 2016 end-page: 3330 publication-title: Chem. Soc. Rev. – volume: 268 start-page: 93 year: 2018 end-page: 99 publication-title: Microporous Mesoporous Mater. – volume: 66 start-page: 1106 year: 2014 end-page: 1140 publication-title: Pharmacol. Rev. – volume: 28 start-page: 5205 year: 2016 end-page: 5223 publication-title: Chem. Mater. – volume: 153 start-page: 177 year: 1995 end-page: 189 publication-title: J. Catal. – volume: 11 start-page: 369 year: 2000 end-page: 378 publication-title: Top. Catal. – volume: 263 start-page: 75 year: 2009 end-page: 82 publication-title: J. Catal. – volume: 1 start-page: 901 year: 2011 end-page: 907 publication-title: ACS Catal. – volume: 7 start-page: 2660 year: 2015 end-page: 2668 publication-title: ChemCatChem – volume: 5 start-page: 6693 year: 2013 end-page: 6703 publication-title: Nanoscale – volume: 42 start-page: 213 year: 2000 end-page: 278 publication-title: Catal. Rev. – volume: 3 start-page: 225 year: 2020 end-page: 245 publication-title: Emergent Mater. – volume: 141 start-page: 7302 year: 2019 end-page: 7319 publication-title: J. Am. Chem. Soc. – volume: 507 start-page: 14 year: 2015 end-page: 25 publication-title: Appl. Catal. Gen. – volume: 74 start-page: 129 year: 1985 end-page: 146 publication-title: J. Non-Cryst. Solids – volume: 275 start-page: 280 year: 2010 end-page: 287 publication-title: J. Catal. – volume: 133 start-page: 5284 year: 2011 end-page: 5295 publication-title: J. Am. Chem. Soc. – volume: 363 start-page: 128 year: 2021 end-page: 136 publication-title: Catal. Today – volume: 44 start-page: 7177 year: 2015 end-page: 7206 publication-title: Chem. Soc. Rev. – volume: 335 start-page: 203 year: 2009 end-page: 209 publication-title: J. Colloid Interface Sci. – volume: 18 start-page: 190 year: 2015 end-page: 196 publication-title: Phys. Chem. Chem. Phys. – volume: 38 start-page: 5808 year: 2014 end-page: 5816 publication-title: New J. Chem. – volume: 356 start-page: 65 year: 2017 end-page: 74 publication-title: J. Catal. – volume: 3 start-page: 20655 year: 2013 end-page: 20661 publication-title: RSC Adv. – volume: 36 109 start-page: 477 491 year: 1997 1997 end-page: 479 494 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 0 start-page: 589 year: 1992 end-page: 590 publication-title: J. Chem. Soc. Chem. Commun. – start-page: 35 year: 2013 end-page: 61 – volume: 121 start-page: 7201 year: 1999 end-page: 7210 publication-title: J. Am. Chem. Soc. – start-page: 552 year: 2014 end-page: 554 – volume: 77 start-page: 1 year: 2005 end-page: 45 publication-title: Microporous Mesoporous Mater. – volume: 140 start-page: 71 year: 1993 end-page: 83 publication-title: J. Catal. – volume: 47 start-page: 8403 year: 2018 end-page: 8437 publication-title: Chem. Soc. Rev. – volume: 71 start-page: 373 year: 1992 end-page: 381 publication-title: J. Mol. Catal. – volume: 13 start-page: 365 year: 1993 end-page: 373 publication-title: Zeolites – volume: 19 start-page: 215 year: 1994 end-page: 245 publication-title: Catal. Today – volume: 451 start-page: 192 year: 2013 end-page: 206 publication-title: Appl. Catal. Gen. – volume: 18 start-page: 776 year: 2018 end-page: 787 publication-title: Chem. Rec. – volume: 58 start-page: 480 year: 2015 end-page: 493 publication-title: Top. Catal. – volume: 45 start-page: 104 year: 2014 end-page: 108 publication-title: Catal. Commun. – volume: 23 start-page: 471 year: 2005 end-page: 473 publication-title: Chin. J. Chem. – volume: 54 start-page: 3936 year: 2018 end-page: 3939 publication-title: Chem. Commun. – volume: 141 start-page: 7090 year: 2019 end-page: 7106 publication-title: J. Am. Chem. Soc. – volume: 16 start-page: 5380 year: 2004 end-page: 5386 publication-title: Chem. Mater. – volume: 277 start-page: 2 year: 2016 end-page: 8 publication-title: Catal. Today – volume: 455 start-page: 561 year: 2018 end-page: 569 publication-title: Appl. Surf. Sci. – volume: 190 start-page: 74 year: 2014 end-page: 83 publication-title: Microporous Mesoporous Mater. – volume: 203 start-page: 66 year: 2013 end-page: 75 publication-title: Catal. Today – volume: 8 start-page: 2211 year: 2018 end-page: 2217 publication-title: Catal. Sci. Technol. – volume: 298 year: 2020 publication-title: Microporous Mesoporous Mater. – volume: 52 start-page: 115 year: 1982 end-page: 128 publication-title: J. Non-Cryst. Solids – volume: 41 start-page: 4028 year: 2002 end-page: 4034 publication-title: Ind. Eng. Chem. Res. – volume: 163 start-page: 3 year: 2011 end-page: 9 publication-title: Catal. Today – volume: 5 start-page: 3552 year: 2015 end-page: 3561 publication-title: ACS Catal. – volume: 219 start-page: 33 year: 2001 end-page: 43 publication-title: Appl. Catal. Gen. – volume: 9 start-page: 2292 year: 1997 end-page: 2299 publication-title: Chem. Mater. – volume: 11 start-page: 196 year: 2021 publication-title: Catalysts – volume: 41 start-page: 3624 year: 2012 end-page: 3650 publication-title: Chem. Soc. Rev. – volume: 2 start-page: 842 year: 2017 end-page: 851 publication-title: React. Chem. Eng. – volume: 5 start-page: 15676 year: 2017 end-page: 15687 publication-title: J. Mater. Chem. A – volume: 103 start-page: 1084 year: 1999 end-page: 1095 publication-title: J. Phys. Chem. B – volume: 13 start-page: 1220 year: 2021 end-page: 1229 publication-title: ChemCatChem – volume: 48 start-page: 99 year: 2008 end-page: 106 publication-title: Top. Catal. – volume: 177 start-page: 231 year: 1998 end-page: 239 publication-title: J. Catal. – volume: 345 start-page: 190 year: 2020 end-page: 200 publication-title: Catal. Today – volume: 233 start-page: 16 year: 2016 end-page: 25 publication-title: Microporous Mesoporous Mater. – volume: 30 start-page: 15574 year: 2014 end-page: 15580 publication-title: Langmuir ACS J. Surf. Colloids – volume: 5 start-page: 4859 year: 2015 end-page: 4866 publication-title: ACS Catal. – volume: 477 year: 2019 publication-title: J. Mol. Catal. – volume: 124 start-page: 8380 year: 2002 end-page: 8388 publication-title: J. Am. Chem. Soc. – volume: 395 start-page: 470 year: 2014 end-page: 480 publication-title: J. Mol. Catal. Chem. – volume: 23 start-page: 407 year: 2016 end-page: 413 publication-title: J. Porous Mater. – start-page: 1 year: 2018 end-page: 52 – volume: 163 start-page: 476 year: 1996 end-page: 488 publication-title: J. Catal. – volume: 175 start-page: 93 year: 1998 end-page: 107 publication-title: J. Catal. – volume: 0 start-page: 163 year: 1995 end-page: 164 publication-title: J. Chem. Soc. Chem. Commun. – volume: 699 start-page: 386 year: 2017 end-page: 391 publication-title: J. Alloys Compd. – volume: 5 start-page: 2874 year: 2012 end-page: 2902 publication-title: Materials – volume: 6 start-page: 77481 year: 2016 end-page: 77488 publication-title: RSC Adv. – volume: 107 start-page: 2821 year: 2007 end-page: 2860 publication-title: Chem. Rev. – volume: 56 start-page: 450 year: 2015 end-page: 455 publication-title: Kinet. Catal. – volume: 10 start-page: 13415 year: 2020 end-page: 13436 publication-title: ACS Catal. – volume: 37 start-page: 413 year: 1988 end-page: 425 publication-title: Stud. Surf. Sci. Catal. – volume: 60 start-page: 71 year: 2018 end-page: 131 publication-title: Catal. Rev. – volume: 278 start-page: 414 year: 2019 end-page: 422 publication-title: Microporous Mesoporous Mater. – volume: 211 start-page: 19 year: 2001 end-page: 30 publication-title: Appl. Catal. Gen. – volume: 74 start-page: 810 year: 2015 end-page: 822 publication-title: J. Sol-Gel Sci. Technol. – volume: 485 start-page: 185 year: 2012 end-page: 194 publication-title: Nature – volume: 109 start-page: 360 year: 2009 end-page: 417 publication-title: Chem. Rev. – volume: 43 start-page: 10390 year: 2019 end-page: 10397 publication-title: New J. Chem. – volume: 140 start-page: 4956 year: 2018 end-page: 4960 publication-title: J. Am. Chem. Soc. – volume: 57 start-page: 512 year: 2018 end-page: 520 publication-title: Ind. Eng. Chem. Res. – volume: 6 start-page: 68739 year: 2016 end-page: 68747 publication-title: RSC Adv. – volume: 171 start-page: 1428 year: 2011 end-page: 1438 publication-title: Chem. Eng. J. – volume: 129 start-page: 159 year: 1991 end-page: 167 publication-title: J. Catal. – volume: 17 start-page: 3378 year: 2015 end-page: 3389 publication-title: Green Chem. – volume: 6 start-page: 7280 year: 2016 end-page: 7288 publication-title: Catal. Sci. Technol. – volume: 47 start-page: 4112 year: 2018 end-page: 4155 publication-title: Chem. Soc. Rev. – volume: 243 start-page: 76 year: 2017 end-page: 84 publication-title: Microporous Mesoporous Mater. – volume: 10 start-page: 2536 year: 2018 end-page: 2540 publication-title: ChemCatChem – volume: 11 start-page: 1593 year: 2019 end-page: 1597 publication-title: ChemCatChem – volume: 102 start-page: 5653 year: 1998 end-page: 5666 publication-title: J. Phys. Chem. B – volume: 25 start-page: 3743 year: 2006 end-page: 3760 publication-title: Organometallics – volume: 118 start-page: 5265 year: 2018 end-page: 5329 publication-title: Chem. Rev. – volume: 100 start-page: 65 year: 1988 end-page: 76 publication-title: J. Non-Cryst. Solids – volume: 5 start-page: 318 year: 2003 end-page: 322 publication-title: Green Chem. – volume: 2010 start-page: 4395 year: 2010 end-page: 4410 publication-title: Eur. J. Inorg. Chem. – volume: 6 start-page: 3215 year: 2014 end-page: 3222 publication-title: ChemCatChem – volume: 88 start-page: 203 year: 2003 end-page: 209 publication-title: Catal. Lett. – volume: 409 start-page: 59 year: 2003 end-page: 71 publication-title: Arch. Biochem. Biophys. – volume: 0 start-page: 121 year: 1999 end-page: 122 publication-title: Chem. Commun. – volume: 10 start-page: 10169 year: 2020 end-page: 10184 publication-title: ACS Catal. – volume: 217 start-page: 160 year: 2003 end-page: 171 publication-title: J. Catal. – volume: 18 start-page: 4707 year: 2006 end-page: 4709 publication-title: Chem. Mater. – volume: 204 start-page: 146 year: 2001 end-page: 156 publication-title: J. Catal. – volume: 12 start-page: 943 year: 1992 end-page: 950 publication-title: Zeolites – volume: 145 start-page: 11 year: 1992 end-page: 19 publication-title: J. Non-Cryst. Solids – volume: 25 start-page: 207 year: 1998 end-page: 224 publication-title: Microporous Mesoporous Mater. – volume: 5 start-page: 9912 year: 2020 end-page: 9919 publication-title: ACS Omega – volume: 10 start-page: 1337 year: 2020 publication-title: Catalysts – volume: 9 start-page: 2485 year: 2008 end-page: 2488 publication-title: Catal. Commun. – volume: 2 start-page: 2433 year: 2012 end-page: 2435 publication-title: Catal. Sci. Technol. – start-page: 2367 year: 1996 end-page: 2368 publication-title: Chem. Commun. – volume: 111 start-page: 3433 year: 2007 end-page: 3441 publication-title: J. Phys. Chem. C – start-page: 1093 year: 1997 end-page: 1100 – volume: 8 start-page: 58 year: 2016 end-page: 62 publication-title: Nat. Chem. – volume: 488 start-page: 200 year: 2014 end-page: 207 publication-title: Appl. Catal. Gen. – volume: 20 start-page: 17409 year: 2014 end-page: 17419 publication-title: Chem. Eur. J. – volume: 98 start-page: 29 year: 2004 end-page: 36 publication-title: Catal. Lett. – volume: 20 start-page: 1929 year: 2018 end-page: 1961 publication-title: Green Chem. – volume: 6 start-page: 14095 year: 2018 end-page: 14103 publication-title: ACS Sustainable Chem. Eng. – volume: 55 start-page: 6080 year: 2016 end-page: 6084 publication-title: Inorg. Chem. – volume: 52 start-page: 370 year: 2013 end-page: 376 publication-title: Enzyme Microb. Technol. – volume: 110 start-page: 14627 year: 2006 end-page: 14639 publication-title: J. Phys. Chem. B – volume: 108 start-page: 187 year: 2005 end-page: 192 publication-title: Chem. Eng. J. – volume: 159 start-page: 395 year: 2020 end-page: 409 publication-title: Chem. Eng. Res. Des. – volume: 229 start-page: 155 year: 2016 end-page: 165 publication-title: Microporous Mesoporous Mater. – volume: 452 start-page: 123 year: 2018 end-page: 128 publication-title: J. Mol. Catal. – volume: 137 start-page: 497 year: 1992 end-page: 503 publication-title: J. Catal. – volume: 271 year: 2020 publication-title: Appl. Catal. B – volume: 204 start-page: 428 year: 2001 end-page: 439 publication-title: J. Catal. – volume: 5 start-page: 1 year: 2003 end-page: 7 publication-title: Green Chem. – volume: 8 year: 2021 publication-title: Adv. Mater. Interfaces – volume: 23 start-page: 163 year: 1981 end-page: 185 publication-title: Catal. Rev. – start-page: 415 year: 2018 end-page: 447 – volume: 102 start-page: 4243 year: 2002 end-page: 4266 publication-title: Chem. Rev. – volume: 2 start-page: 852 year: 2017 end-page: 861 publication-title: React. Chem. Eng. – volume: 112 start-page: 2801 year: 1990 end-page: 2803 publication-title: J. Am. Chem. Soc. – volume: 37 start-page: 515 year: 1995 end-page: 556 publication-title: Catal. Rev. – volume: 27 start-page: 1066 year: 2015 end-page: 1070 publication-title: Adv. Mater. – volume: 182–183 start-page: 81 year: 2002 end-page: 88 publication-title: J. Mol. Catal. Chem. – volume: 256 start-page: 62 year: 2008 end-page: 73 publication-title: J. Catal. – volume: 139 start-page: 6888 year: 2017 end-page: 6898 publication-title: J. Am. Chem. Soc. – volume: 97 start-page: 505 year: 2021 end-page: 522 publication-title: J. Sol-Gel Sci. Technol. – volume: 189 start-page: 31 year: 2014 end-page: 40 publication-title: Microporous Mesoporous Mater. – volume: 11 start-page: 3680 year: 1999 end-page: 3686 publication-title: Chem. Mater. – ident: e_1_2_7_285_1 doi: 10.1016/j.molcata.2014.09.004 – ident: e_1_2_7_252_1 doi: 10.1016/0166-9834(91)85054-Y – ident: e_1_2_7_274_1 doi: 10.1038/nchem.2374 – ident: e_1_2_7_128_1 doi: 10.1039/C5CS00935A – ident: e_1_2_7_90_1 – ident: e_1_2_7_175_1 doi: 10.1039/C5CC10232D – ident: e_1_2_7_11_1 – ident: e_1_2_7_25_1 – start-page: 151 volume-title: Adv. Catal. year: 1967 ident: e_1_2_7_27_1 – ident: e_1_2_7_140_1 doi: 10.1002/cctc.201500440 – ident: e_1_2_7_210_1 doi: 10.1006/jcat.1995.1119 – ident: e_1_2_7_78_2 doi: 10.1002/ange.19971090506 – ident: e_1_2_7_215_1 doi: 10.1002/cctc.201402611 – ident: e_1_2_7_75_1 doi: 10.1038/s41586-020-2826-3 – ident: e_1_2_7_74_1 doi: 10.1023/A:1016614218678 – ident: e_1_2_7_147_1 doi: 10.1021/cr960406n – ident: e_1_2_7_239_1 doi: 10.1006/jcat.1995.1118 – ident: e_1_2_7_217_1 doi: 10.1039/b911107g – ident: e_1_2_7_4_1 doi: 10.1039/C8GC00482J – ident: e_1_2_7_150_1 doi: 10.1016/j.cattod.2015.09.036 – start-page: 1 volume-title: Struct. React. Met. Zeolite Mater. year: 2018 ident: e_1_2_7_17_1 – ident: e_1_2_7_13_1 – ident: e_1_2_7_81_1 doi: 10.1021/ja9829160 – ident: e_1_2_7_165_1 doi: 10.1021/acs.iecr.7b03719 – ident: e_1_2_7_162_1 doi: 10.1016/j.micromeso.2016.06.031 – ident: e_1_2_7_181_1 doi: 10.1002/adma.201404493 – ident: e_1_2_7_232_1 doi: 10.1016/j.apcata.2012.11.002 – ident: e_1_2_7_199_1 doi: 10.1039/C9NJ01937E – ident: e_1_2_7_169_1 doi: 10.1016/j.catcom.2008.07.003 – ident: e_1_2_7_106_1 doi: 10.1021/cs501671a – ident: e_1_2_7_214_1 doi: 10.1016/j.micromeso.2017.01.035 – ident: e_1_2_7_279_1 doi: 10.1016/j.cherd.2020.04.025 – volume: 42 start-page: 357 year: 2008 ident: e_1_2_7_70_1 publication-title: Kasetsart J. – ident: e_1_2_7_68_1 doi: 10.1006/jcat.1996.0349 – ident: e_1_2_7_95_1 doi: 10.1002/cctc.201800413 – ident: e_1_2_7_255_1 doi: 10.1016/j.cej.2016.04.098 – ident: e_1_2_7_265_1 doi: 10.1016/j.apcatb.2010.04.027 – ident: e_1_2_7_87_1 doi: 10.1021/acscatal.7b03986 – ident: e_1_2_7_131_1 doi: 10.1016/0304-5102(92)85027-D – ident: e_1_2_7_115_1 doi: 10.1006/jcat.1998.1982 – ident: e_1_2_7_137_1 doi: 10.1016/S1387-1811(98)00210-8 – ident: e_1_2_7_184_1 doi: 10.1016/j.micromeso.2013.09.029 – ident: e_1_2_7_125_1 doi: 10.1016/j.cattod.2011.04.012 – ident: e_1_2_7_71_1 doi: 10.1016/S0360-0564(04)48001-8 – ident: e_1_2_7_93_1 doi: 10.1021/ie010983o – ident: e_1_2_7_176_1 doi: 10.1016/j.catcom.2013.11.005 – ident: e_1_2_7_251_1 doi: 10.1002/cctc.201900028 – ident: e_1_2_7_61_1 doi: 10.1007/BF00824045 – ident: e_1_2_7_267_1 doi: 10.1023/A:1024074108874 – ident: e_1_2_7_241_1 doi: 10.1016/j.micromeso.2004.06.030 – ident: e_1_2_7_79_1 doi: 10.1021/jp036166e – ident: e_1_2_7_1_1 doi: 10.1016/j.cattod.2009.11.019 – ident: e_1_2_7_182_1 doi: 10.1002/anie.201105678 – ident: e_1_2_7_262_1 doi: 10.3390/catal9110920 – ident: e_1_2_7_102_1 doi: 10.1039/C7RE00076F – ident: e_1_2_7_49_1 doi: 10.1016/j.micromeso.2017.10.049 – ident: e_1_2_7_85_1 doi: 10.1006/jcat.1998.2127 – ident: e_1_2_7_108_1 doi: 10.1021/cm9905141 – ident: e_1_2_7_82_1 doi: 10.1006/jcat.2001.3407 – ident: e_1_2_7_152_1 doi: 10.1007/s11244-010-9590-9 – ident: e_1_2_7_228_1 doi: 10.1021/acs.chemmater.8b04843 – ident: e_1_2_7_281_1 doi: 10.1021/acscatal.7b03369 – ident: e_1_2_7_89_1 doi: 10.1021/acscatal.0c02183 – ident: e_1_2_7_9_1 – ident: e_1_2_7_223_1 doi: 10.1021/ic00291a024 – ident: e_1_2_7_99_1 doi: 10.1039/C8DT03044H – ident: e_1_2_7_36_1 doi: 10.1194/jlr.R800038-JLR200 – ident: e_1_2_7_41_1 doi: 10.1016/j.tet.2003.10.099 – ident: e_1_2_7_54_1 doi: 10.1021/ja903730q – ident: e_1_2_7_182_2 doi: 10.1002/ange.201105678 – ident: e_1_2_7_189_1 doi: 10.1016/j.micromeso.2016.04.012 – ident: e_1_2_7_66_1 doi: 10.1021/jp981423e – ident: e_1_2_7_263_1 doi: 10.1039/C6RA16556G – ident: e_1_2_7_204_1 doi: 10.1038/368321a0 – ident: e_1_2_7_256_1 doi: 10.1039/C39950000163 – ident: e_1_2_7_275_1 doi: 10.1021/acs.accounts.9b00399 – ident: e_1_2_7_33_1 doi: 10.1021/ja00163a052 – ident: e_1_2_7_143_1 doi: 10.1016/j.cej.2005.01.011 – ident: e_1_2_7_196_1 doi: 10.1039/D0GC02562C – ident: e_1_2_7_264_1 doi: 10.1016/j.apcatb.2020.118926 – ident: e_1_2_7_253_1 doi: 10.1021/cr0101306 – ident: e_1_2_7_287_1 doi: 10.1021/acscatal.5b01388 – ident: e_1_2_7_101_1 doi: 10.1039/b103057b – ident: e_1_2_7_42_1 doi: 10.1016/j.enzmictec.2013.02.013 – ident: e_1_2_7_191_1 doi: 10.1039/C9SC04615A – ident: e_1_2_7_104_1 doi: 10.1021/om050675g – ident: e_1_2_7_64_1 doi: 10.1016/S0926-860X(00)00834-6 – ident: e_1_2_7_254_1 doi: 10.1080/01614949508006450 – ident: e_1_2_7_110_1 doi: 10.1021/ja0202208 – ident: e_1_2_7_213_1 doi: 10.1021/cm061478q – ident: e_1_2_7_221_1 doi: 10.1021/acscatal.8b02216 – ident: e_1_2_7_187_1 doi: 10.1039/C7CS00697G – ident: e_1_2_7_222_1 doi: 10.1039/a808225a – ident: e_1_2_7_48_1 doi: 10.1007/s10971-012-2895-3 – ident: e_1_2_7_10_1 doi: 10.1016/0021-9517(91)90019-Z – ident: e_1_2_7_32_1 doi: 10.1021/ja00538a077 – ident: e_1_2_7_230_1 doi: 10.3390/catal7060168 – ident: e_1_2_7_43_1 doi: 10.1021/acscatal.9b01454 – ident: e_1_2_7_55_1 doi: 10.1039/b206013b – ident: e_1_2_7_156_1 doi: 10.1007/s11244-015-0389-6 – ident: e_1_2_7_238_1 doi: 10.1021/ie020048g – ident: e_1_2_7_117_1 doi: 10.1016/j.jcat.2019.09.045 – ident: e_1_2_7_46_1 doi: 10.1016/j.cattod.2012.02.037 – ident: e_1_2_7_183_1 doi: 10.1016/j.jcat.2015.09.017 – ident: e_1_2_7_60_1 doi: 10.1021/jp065544n – ident: e_1_2_7_284_1 doi: 10.1002/ejic.201000582 – ident: e_1_2_7_225_1 doi: 10.1016/0022-3093(88)90007-5 – ident: e_1_2_7_229_1 doi: 10.1039/c2cs15330k – ident: e_1_2_7_109_1 doi: 10.1021/cm960413s – ident: e_1_2_7_155_1 doi: 10.1039/C5CS00045A – ident: e_1_2_7_179_1 doi: 10.1002/chem.201903287 – ident: e_1_2_7_38_1 doi: 10.1073/pnas.95.7.3555 – ident: e_1_2_7_52_1 doi: 10.1006/jcat.1999.2809 – ident: e_1_2_7_105_1 doi: 10.1016/j.apsusc.2018.06.015 – ident: e_1_2_7_197_1 doi: 10.1039/CC9960002367 – ident: e_1_2_7_226_1 doi: 10.1016/0079-6786(88)90005-2 – ident: e_1_2_7_200_1 doi: 10.1021/jacs.8b12861 – ident: e_1_2_7_67_1 doi: 10.1006/jcat.1995.1313 – ident: e_1_2_7_63_1 doi: 10.1021/la0015213 – ident: e_1_2_7_112_1 doi: 10.1002/(SICI)1099-0682(199912)1999:12<2135::AID-EJIC2135>3.0.CO;2-X – ident: e_1_2_7_100_1 doi: 10.1006/jcat.1995.1232 – ident: e_1_2_7_103_1 doi: 10.1039/C7RE00138J – ident: e_1_2_7_124_1 doi: 10.1016/j.jcat.2010.05.003 – ident: e_1_2_7_51_1 doi: 10.1007/s10973-011-1895-9 – ident: e_1_2_7_139_1 doi: 10.1039/C6CY01232A – ident: e_1_2_7_127_1 doi: 10.1016/S0167-2991(09)60618-2 – ident: e_1_2_7_280_1 doi: 10.1039/C5PY01147G – ident: e_1_2_7_168_1 doi: 10.1002/slct.201803864 – ident: e_1_2_7_193_1 doi: 10.1039/c3ra44214d – ident: e_1_2_7_209_1 doi: 10.1081/CR-100100262 – ident: e_1_2_7_218_1 doi: 10.1021/jp050056l – ident: e_1_2_7_98_1 doi: 10.1039/C7TA01792H – ident: e_1_2_7_91_1 – ident: e_1_2_7_174_1 doi: 10.1002/aoc.3115 – ident: e_1_2_7_111_1 doi: 10.1016/j.jcat.2010.08.010 – ident: e_1_2_7_247_1 doi: 10.1007/s10562-004-6444-8 – ident: e_1_2_7_268_1 doi: 10.1002/cctc.202001779 – ident: e_1_2_7_144_1 doi: 10.1039/b304834a – start-page: 91 volume-title: Struct. React. Met. Zeolite Mater. year: 2018 ident: e_1_2_7_62_1 – ident: e_1_2_7_153_1 doi: 10.1007/s42247-020-00088-z – ident: e_1_2_7_148_1 doi: 10.1021/acs.chemrev.7b00738 – ident: e_1_2_7_244_1 doi: 10.1039/a805867i – ident: e_1_2_7_96_1 doi: 10.1039/C5TA02975A – ident: e_1_2_7_145_1 doi: 10.1039/C8CS00774H – ident: e_1_2_7_15_1 – ident: e_1_2_7_261_1 doi: 10.1021/cm0490569 – ident: e_1_2_7_47_1 doi: 10.1016/j.micromeso.2012.08.027 – ident: e_1_2_7_257_1 doi: 10.3390/catal8050212 – ident: e_1_2_7_151_1 doi: 10.1039/C7CY02571H – ident: e_1_2_7_220_1 doi: 10.1016/0022-3093(85)90407-7 – ident: e_1_2_7_161_1 doi: 10.1039/C5GC00406C – ident: e_1_2_7_206_1 doi: 10.1016/S0022-3093(05)80422-3 – ident: e_1_2_7_167_1 doi: 10.1021/jp912112h – ident: e_1_2_7_192_1 doi: 10.1021/acssuschemeng.8b02623 – volume: 22 start-page: 25 year: 2008 ident: e_1_2_7_44_1 publication-title: Chem. Biochem. Eng. Q. – start-page: 133 volume-title: Stud. Surf. Sci. Catal. year: 1989 ident: e_1_2_7_65_1 – ident: e_1_2_7_283_1 doi: 10.1021/cr800363y – ident: e_1_2_7_171_1 doi: 10.1021/ja108698s – ident: e_1_2_7_30_1 doi: 10.1016/j.jcat.2005.02.013 – ident: e_1_2_7_8_1 – ident: e_1_2_7_219_1 doi: 10.1016/0022-3093(82)90285-X – ident: e_1_2_7_57_1 doi: 10.1002/cjoc.200590471 – ident: e_1_2_7_77_1 doi: 10.1021/jacs.9b02160 – ident: e_1_2_7_94_1 doi: 10.1039/9781847555328 – ident: e_1_2_7_278_1 doi: 10.1021/acs.chemrev.9b00846 – ident: e_1_2_7_207_1 doi: 10.1002/tcr.201700068 – ident: e_1_2_7_141_1 doi: 10.1016/j.micromeso.2020.110066 – ident: e_1_2_7_242_1 doi: 10.1016/j.jcis.2009.03.090 – ident: e_1_2_7_231_1 doi: 10.1021/cm970322a – ident: e_1_2_7_120_1 doi: 10.1006/jcat.1993.1069 – ident: e_1_2_7_163_1 doi: 10.1016/j.micromeso.2018.04.015 – ident: e_1_2_7_114_1 doi: 10.1006/jcat.2001.3355 – ident: e_1_2_7_157_1 doi: 10.1016/j.jcat.2008.03.001 – ident: e_1_2_7_23_1 doi: 10.1080/03602458108068074 – start-page: 355 volume-title: Mech. Homog. Heterog. Epoxidation Catal. year: 2008 ident: e_1_2_7_56_1 doi: 10.1016/B978-0-444-53188-9.00013-4 – ident: e_1_2_7_266_1 doi: 10.1016/j.mcat.2018.04.011 – ident: e_1_2_7_202_1 doi: 10.1016/j.cattod.2019.09.024 – ident: e_1_2_7_7_1 doi: 10.1039/D0GC01927E – ident: e_1_2_7_159_1 doi: 10.1016/j.micromeso.2019.01.010 – ident: e_1_2_7_130_1 doi: 10.1039/C4TA06473A – ident: e_1_2_7_233_1 doi: 10.1007/s10971-021-05486-1 – ident: e_1_2_7_69_1 doi: 10.1016/S0022-3093(05)80557-5 – ident: e_1_2_7_198_1 doi: 10.1039/c2cy20446k – ident: e_1_2_7_211_1 doi: 10.1021/acscatal.5b01105 – ident: e_1_2_7_14_1 – ident: e_1_2_7_19_1 doi: 10.1080/01614940.2017.1389111 – ident: e_1_2_7_53_1 doi: 10.1016/j.jcat.2017.10.001 – ident: e_1_2_7_158_1 doi: 10.1016/j.cattod.2014.07.002 – ident: e_1_2_7_212_1 doi: 10.1016/j.jallcom.2016.12.382 – ident: e_1_2_7_72_1 doi: 10.1021/acscatal.9b05147 – ident: e_1_2_7_146_1 doi: 10.1016/j.jcat.2011.12.023 – ident: e_1_2_7_282_1 doi: 10.3390/catal10111337 – ident: e_1_2_7_73_1 doi: 10.1021/acs.inorgchem.6b00621 – ident: e_1_2_7_2_1 doi: 10.1016/S0920-5861(02)00374-7 – ident: e_1_2_7_80_1 doi: 10.1016/0144-2449(93)90151-R – ident: e_1_2_7_243_1 doi: 10.1016/j.micromeso.2012.05.014 – ident: e_1_2_7_18_1 doi: 10.1016/j.micromeso.2013.08.003 – ident: e_1_2_7_40_1 doi: 10.1038/nature11117 – start-page: 552 volume-title: Name React. Collect. Detail. Mech. Synth. Appl. Fifth year: 2014 ident: e_1_2_7_34_1 – ident: e_1_2_7_121_1 doi: 10.1021/acs.iecr.7b04556 – ident: e_1_2_7_76_1 doi: 10.1134/S0023158415040059 – ident: e_1_2_7_21_1 doi: 10.1002/aic.13789 – ident: e_1_2_7_276_1 doi: 10.1039/C8CS00356D – ident: e_1_2_7_237_1 doi: 10.1039/C6RA10145C – ident: e_1_2_7_119_1 doi: 10.1021/la051182j – ident: e_1_2_7_107_1 doi: 10.1021/cm010910v – ident: e_1_2_7_245_1 doi: 10.1021/la504207k – ident: e_1_2_7_3_1 doi: 10.1098/rsif.2016.0087 – start-page: 119 volume-title: Handb. Heterog. Catal. year: 2008 ident: e_1_2_7_208_1 – ident: e_1_2_7_194_1 doi: 10.1039/D0TA07016E – ident: e_1_2_7_24_1 doi: 10.1002/9783527629114 – ident: e_1_2_7_78_1 doi: 10.1002/anie.199704771 – ident: e_1_2_7_132_1 doi: 10.1016/0021-9517(92)90176-I – ident: e_1_2_7_249_1 doi: 10.1002/tcr.201700075 – ident: e_1_2_7_177_1 doi: 10.1016/j.micromeso.2006.12.019 – ident: e_1_2_7_286_1 doi: 10.1016/j.apcata.2015.12.002 – ident: e_1_2_7_240_1 doi: 10.1021/cr068020s – ident: e_1_2_7_271_1 doi: 10.1039/a809396b – ident: e_1_2_7_134_1 doi: 10.1039/C39920000589 – ident: e_1_2_7_92_1 doi: 10.1016/0920-5861(94)80186-X – ident: e_1_2_7_205_1 – ident: e_1_2_7_20_1 – ident: e_1_2_7_246_1 doi: 10.1016/j.catcom.2006.09.022 – ident: e_1_2_7_188_1 doi: 10.1002/adma.201001410 – start-page: 35 volume-title: MWW-Type Titanosilicate Synth. Struct. Modif. Catal. Appl. Green Oxid. year: 2013 ident: e_1_2_7_136_1 doi: 10.1007/978-3-642-39115-6_3 – ident: e_1_2_7_122_1 doi: 10.1007/s11244-008-9040-0 – ident: e_1_2_7_203_1 doi: 10.1039/c39940000147 – ident: e_1_2_7_186_1 doi: 10.1016/j.ces.2020.116080 – ident: e_1_2_7_259_1 doi: 10.1039/c2cc35127g – ident: e_1_2_7_113_1 doi: 10.1016/j.mcat.2019.110509 – ident: e_1_2_7_84_1 doi: 10.1039/C5CP05268H – ident: e_1_2_7_178_1 doi: 10.1021/acs.chemmater.6b02172 – ident: e_1_2_7_123_1 doi: 10.1021/jp9821679 – ident: e_1_2_7_185_1 doi: 10.1016/j.cattod.2010.12.045 – ident: e_1_2_7_248_1 doi: 10.1002/chem.201402873 – start-page: 1093 volume-title: Stud. Surf. Sci. Catal. year: 1997 ident: e_1_2_7_149_1 – volume: 217 start-page: 160 year: 2003 ident: e_1_2_7_59_1 publication-title: J. Catal. – ident: e_1_2_7_273_1 doi: 10.3390/catal11020196 – ident: e_1_2_7_170_1 doi: 10.1016/j.cej.2011.02.036 – ident: e_1_2_7_190_1 doi: 10.1007/s10934-015-0094-7 – ident: e_1_2_7_126_1 doi: 10.1021/acscatal.0c02937 – ident: e_1_2_7_224_1 doi: 10.3390/ma5122874 – ident: e_1_2_7_166_1 doi: 10.1016/j.micromeso.2018.08.018 – ident: e_1_2_7_272_1 doi: 10.1016/j.cattod.2019.05.020 – ident: e_1_2_7_172_1 doi: 10.1039/C4NJ00811A – ident: e_1_2_7_28_1 doi: 10.1021/acscatal.8b00660 – ident: e_1_2_7_83_1 doi: 10.1021/acs.langmuir.8b01932 – ident: e_1_2_7_235_1 doi: 10.1007/s10971-015-3666-8 – ident: e_1_2_7_164_1 doi: 10.1016/S0926-860X(01)00645-7 – ident: e_1_2_7_160_1 doi: 10.1039/b006460m – ident: e_1_2_7_50_1 doi: 10.1021/jacs.7b01422 – ident: e_1_2_7_227_1 doi: 10.1016/j.micromeso.2014.01.025 – ident: e_1_2_7_86_1 doi: 10.1021/jacs.7b11467 – ident: e_1_2_7_269_1 doi: 10.1016/j.apcata.2015.09.029 – ident: e_1_2_7_201_1 doi: 10.1016/j.jcat.2005.02.011 – ident: e_1_2_7_236_1 doi: 10.1007/s10971-012-2808-5 – ident: e_1_2_7_180_1 doi: 10.1016/j.micromeso.2019.109801 – ident: e_1_2_7_118_1 doi: 10.1006/jcat.1999.2701 – ident: e_1_2_7_116_1 doi: 10.1021/cs2003774 – ident: e_1_2_7_58_1 doi: 10.1007/BF02113865 – ident: e_1_2_7_138_1 doi: 10.1021/cs2002143 – ident: e_1_2_7_12_1 doi: 10.1002/9781118356760.ch10 – ident: e_1_2_7_22_1 – ident: e_1_2_7_97_1 doi: 10.1039/B300244F – ident: e_1_2_7_133_1 doi: 10.1039/C9CY00071B – ident: e_1_2_7_35_1 doi: 10.1016/S0003-9861(02)00415-0 – ident: e_1_2_7_154_1 doi: 10.1021/acsomega.0c00184 – ident: e_1_2_7_195_1 doi: 10.1039/C8CC00318A – ident: e_1_2_7_29_1 doi: 10.1021/acscatal.8b03331 – ident: e_1_2_7_260_1 doi: 10.1016/j.apcata.2014.09.030 – ident: e_1_2_7_135_1 doi: 10.1021/jp002816s – ident: e_1_2_7_288_1 doi: 10.1016/j.cogsc.2020.100437 – ident: e_1_2_7_234_1 doi: 10.1021/cm802348c – ident: e_1_2_7_173_1 doi: 10.1039/C5RA02493E – ident: e_1_2_7_88_1 doi: 10.1021/jp062368 – ident: e_1_2_7_16_1 doi: 10.1002/admi.202001095 – ident: e_1_2_7_5_1 doi: 10.1016/S0926-860X(01)00793-1 – ident: e_1_2_7_45_1 doi: 10.1021/ja8027313 – ident: e_1_2_7_26_1 doi: 10.1039/b208925b – ident: e_1_2_7_277_1 doi: 10.1039/C7CY00615B – ident: e_1_2_7_250_1 doi: 10.1039/C5CC05328E – ident: e_1_2_7_129_1 doi: 10.1016/0144-2449(92)90159-M – ident: e_1_2_7_31_1 doi: 10.1021/acscatal.0c03340 – ident: e_1_2_7_37_1 doi: 10.1124/pr.113.007781 – ident: e_1_2_7_39_1 doi: 10.1038/nchembio.203 – ident: e_1_2_7_142_1 doi: 10.1039/c3nr01629c – start-page: 415 volume-title: Green Chem. year: 2018 ident: e_1_2_7_6_1 doi: 10.1016/B978-0-12-809270-5.00017-0 – ident: e_1_2_7_270_1 doi: 10.1016/j.jcat.2009.01.013 – ident: e_1_2_7_258_1 doi: 10.1023/A:1027202604286 – ident: e_1_2_7_216_1 doi: 10.1016/S1381-1169(01)00487-3 |
| SSID | ssj0069375 |
| Score | 2.546904 |
| SecondaryResourceType | review_article |
| Snippet | Epoxidation reactions are tremendously important for modern chemistry, as they lead to series of highly useful bulk and fine chemicals, monomers, and... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Catalysis Catalysts Control stability Epoxidation Fine chemicals Grafting Materials science Mesoporous catalysts olefin epoxidation Selectivity Silicon dioxide sol-gel chemistry Sol-gel processes Surface layers titanosilicate TS-1 zeolite Zeolites |
| Title | Titanosilicate Epoxidation Catalysts: A Review of Challenges and Opportunities |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcctc.202101132 https://www.proquest.com/docview/2619055947 |
| Volume | 14 |
| WOSCitedRecordID | wos000706319900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1867-3899 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0069375 issn: 1867-3880 databaseCode: DRFUL dateStart: 20090101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7oJuiLd3HeyIPgU1iWpjffRt3wQaZIhb2VNG2hIO1YN9F_b05v2x5E0MdCGsJJTs53kpzvA7iVRqTd2TBoKFhIhZsI6oSmRU3JpMON0IiYLMUm7MnEmU7dl7Uq_oofoj1wQ88o92t0cBkW_RVpqFIlBaFOWVAsfRu6XC9eswPdh9fx21OzG1s6_OIzRuRto0h80hA3Mt7f7GEzMK3Q5jpmLYPO-OD_wz2E_RpwkmG1Qo5gK86OYddrdN5OYOKnGiDmRVqVw5HRLP9MK6Ul4uHhzlexKO7JkFTXCCRPiNcosBREZhF5niGIX2YlOesp-OOR7z3SWmWBKrykpVyogRTSNhLTlMYgjGSExxzKTFzHji1TOko4lhVHLBGWqTQgUBZzZKKhkkDyvDPoZHkWnwOxld4hQhbrbNsWUvBQYpmqFK6MVKRxTQ9oY-FA1QzkKITxHlTcyTxAIwWtkXpw17afVdwbP7a8aiYsqH2wCDA3ZDphEnYPeDk1v_QSeJ7vtV8Xf_npEvY41kcwfCd4BZ3FfBlfw476WKTF_KZem99qt-MU |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bS8MwFD7oJuiLd3E6NQ-CT2FZm17m26gbE2cVqbC3kqYtFKQb6yb6783pbe5BBPGxkIaQnJN85yTn-wCuhR4qd9Z1GnAWUN6LObUDw6SGYMLW9EAPmcjFJizXtSeT3nP5mhBrYQp-iDrhhp6R79fo4JiQ7qxYQ6XMOQhVzIJq6ZvQ5MqWlJE3716Gr-NqOzbV-YvvGJG4jSLzScXcyLTOeg_rJ9MKbn4HrfmpM9z7h_Huw24JOUm_sJED2IjSQ9h2KqW3I3C9REHEaZYUBXFkMJt-JIXWEnEwvfOZLbJb0ifFRQKZxsSpNFgyItKQPM0Qxi_TnJ71GLzhwHNGtNRZoBKvaanGZVdwYemxYQi9G4QixESHNOKebUWmIWzJbdOMQhZz05AKEkiT2SJWYIkjfd4JNNJpGp0CsaTaIwIWqXjb4oJrgcBCVcF7IpShQjYtoNUU-7LkIEcpjDe_YE_WfJwkv56kFtzU7WcF-8aPLdvVivmlF2Y-RodMhUzcaoGWr80vvfiO4zn119lffrqC7ZH3OPbH9-7DOexoWC3B8NVgGxqL-TK6gC35vkiy-WVpqF8YqucE |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEB60FfXiW6xWzUHwFEx3sy9vZdtFsdQiFXpbsskuFGRbuq3ovzezj9YeRBCPC9kQJpnMN0nm-wBuhKm0O5smjTiLKPcSTt3IsqklmHANMzIVE7nYhNPvu6ORNyhfE2ItTMEPsTxwQ8_I92t08HiqkrsVa6iUOQehzllQLX0T6hyVZGpQ77wEr71qO7Z1_MV3jEjcRpH5pGJuZMbdeg_rkWkFN7-D1jzqBPv_MN4D2CshJ2kXa-QQNuL0CHb8SuntGPrDsYaIk2xcFMSR7nTyMS60loiPxzuf2Ty7J21SXCSQSUL8SoMlIyJV5HmKMH6R5vSsJzAMukP_gZY6C1TiNS01uGwJLhwzsSxhtiIlFB50SCvxXCe2LeFK7tp2rFjCbUtqSCBt5opEgyWO9HmnUEsnaXwGxJF6j4hYrPNthwtuRAILVQX3hJJKI5sG0MrEoSw5yFEK4y0s2JONEI0ULo3UgNtl-2nBvvFjy2Y1Y2HphVmI2SHTKRN3GmDkc_NLL6HvD_3l1_lffrqG7UEnCHuP_acL2DWwWILho8Em1OazRXwJW_J9Ps5mV-U6_QLGS-Z_ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Titanosilicate+Epoxidation+Catalysts%3A+A+Review+of+Challenges+and+Opportunities&rft.jtitle=ChemCatChem&rft.au=Smeets%2C+Valentin&rft.au=Gaigneaux%2C+Eric+M.&rft.au=Debecker%2C+Damien+P.&rft.date=2022-01-10&rft.issn=1867-3880&rft.eissn=1867-3899&rft.volume=14&rft.issue=1&rft_id=info:doi/10.1002%2Fcctc.202101132&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_cctc_202101132 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1867-3880&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1867-3880&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1867-3880&client=summon |