Recent Advances in Heterogeneous Catalysis for Ammonia Synthesis
Even after a century, ammonia (NH3) synthesis from nitrogen and hydrogen through Haber‐Bosch process is still energy intensive. Even with recently introduced second generation Ru based catalysts with superior performance over commercial Fe based catalysts, there is still place for upgrading with new...
Gespeichert in:
| Veröffentlicht in: | ChemCatChem Jg. 12; H. 23; S. 5838 - 5857 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Weinheim
Wiley Subscription Services, Inc
04.12.2020
|
| Schlagworte: | |
| ISSN: | 1867-3880, 1867-3899 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Even after a century, ammonia (NH3) synthesis from nitrogen and hydrogen through Haber‐Bosch process is still energy intensive. Even with recently introduced second generation Ru based catalysts with superior performance over commercial Fe based catalysts, there is still place for upgrading with new approach using advanced materials in catalyst formulation. The alkali and alkaline metal promoted Ru supported carbon and metal oxide catalyst attracted attention at initial stage and extensively studied for NH3 synthesis in the 20th century. Until recently, advanced materials such as electrides, hydrides, nitrides, oxides and oxy‐hydrides‐nitrides studied as support and active component of catalyst fascinated much attention, with milder reaction conditions for NH3 synthesis. These materials with unique properties of reversible storage of electrons, hydrides, nitrides and oxygen vacancies enrich electron density on Ru catalyst and cleave N≡N bond with very low activation energy (<60 kJ/mol). The mechanistic understanding of these materials leads to the fact that activation N≡N bond is no more rate‐determining step (RDS). Instead, formation of N−H bond is RDS, pushing towards an innovative research directions and scientific basis for development of new catalysts. Enormous maturation of experimental and theoretical methods with improved precession over worldwide research effort helped in gaining a fundamental understanding of these materials in NH3 synthesis. The most of Ru supported on these advanced materials were better in performance compared to benchmark Cs−Ru/MgO and Ru/AC catalysts in NH3 synthesis. Insights on these materials and their mechanism are covered in this review, which digs towards finding a realistic catalyst for NH3 synthesis.
TOC: This review will give insights on recent development in advanced materials such as electrides, hydrides, nitrides, oxides and oxy‐hydrides‐nitrides as support and active component of Ru based catalyst in NH3 synthesis at milder reaction conditions. Electrides, hydrides, nitrides and oxides with their promising unique properties of reversible electron, hydride, nitride and oxide vacancies storage have tremendously improved Ru based catalysts efficiency. Perceptions on these materials and their mechanism digs towards finding a realistic catalyst for NH3 synthesis. |
|---|---|
| AbstractList | Even after a century, ammonia (NH3) synthesis from nitrogen and hydrogen through Haber‐Bosch process is still energy intensive. Even with recently introduced second generation Ru based catalysts with superior performance over commercial Fe based catalysts, there is still place for upgrading with new approach using advanced materials in catalyst formulation. The alkali and alkaline metal promoted Ru supported carbon and metal oxide catalyst attracted attention at initial stage and extensively studied for NH3 synthesis in the 20th century. Until recently, advanced materials such as electrides, hydrides, nitrides, oxides and oxy‐hydrides‐nitrides studied as support and active component of catalyst fascinated much attention, with milder reaction conditions for NH3 synthesis. These materials with unique properties of reversible storage of electrons, hydrides, nitrides and oxygen vacancies enrich electron density on Ru catalyst and cleave N≡N bond with very low activation energy (<60 kJ/mol). The mechanistic understanding of these materials leads to the fact that activation N≡N bond is no more rate‐determining step (RDS). Instead, formation of N−H bond is RDS, pushing towards an innovative research directions and scientific basis for development of new catalysts. Enormous maturation of experimental and theoretical methods with improved precession over worldwide research effort helped in gaining a fundamental understanding of these materials in NH3 synthesis. The most of Ru supported on these advanced materials were better in performance compared to benchmark Cs−Ru/MgO and Ru/AC catalysts in NH3 synthesis. Insights on these materials and their mechanism are covered in this review, which digs towards finding a realistic catalyst for NH3 synthesis.
TOC: This review will give insights on recent development in advanced materials such as electrides, hydrides, nitrides, oxides and oxy‐hydrides‐nitrides as support and active component of Ru based catalyst in NH3 synthesis at milder reaction conditions. Electrides, hydrides, nitrides and oxides with their promising unique properties of reversible electron, hydride, nitride and oxide vacancies storage have tremendously improved Ru based catalysts efficiency. Perceptions on these materials and their mechanism digs towards finding a realistic catalyst for NH3 synthesis. Even after a century, ammonia (NH 3 ) synthesis from nitrogen and hydrogen through Haber‐Bosch process is still energy intensive. Even with recently introduced second generation Ru based catalysts with superior performance over commercial Fe based catalysts, there is still place for upgrading with new approach using advanced materials in catalyst formulation. The alkali and alkaline metal promoted Ru supported carbon and metal oxide catalyst attracted attention at initial stage and extensively studied for NH 3 synthesis in the 20 th century. Until recently, advanced materials such as electrides, hydrides, nitrides, oxides and oxy‐hydrides‐nitrides studied as support and active component of catalyst fascinated much attention, with milder reaction conditions for NH 3 synthesis. These materials with unique properties of reversible storage of electrons, hydrides, nitrides and oxygen vacancies enrich electron density on Ru catalyst and cleave N≡N bond with very low activation energy (<60 kJ/mol). The mechanistic understanding of these materials leads to the fact that activation N≡N bond is no more rate‐determining step (RDS). Instead, formation of N−H bond is RDS, pushing towards an innovative research directions and scientific basis for development of new catalysts. Enormous maturation of experimental and theoretical methods with improved precession over worldwide research effort helped in gaining a fundamental understanding of these materials in NH 3 synthesis. The most of Ru supported on these advanced materials were better in performance compared to benchmark Cs−Ru/MgO and Ru/AC catalysts in NH 3 synthesis. Insights on these materials and their mechanism are covered in this review, which digs towards finding a realistic catalyst for NH 3 synthesis. Even after a century, ammonia (NH3) synthesis from nitrogen and hydrogen through Haber‐Bosch process is still energy intensive. Even with recently introduced second generation Ru based catalysts with superior performance over commercial Fe based catalysts, there is still place for upgrading with new approach using advanced materials in catalyst formulation. The alkali and alkaline metal promoted Ru supported carbon and metal oxide catalyst attracted attention at initial stage and extensively studied for NH3 synthesis in the 20th century. Until recently, advanced materials such as electrides, hydrides, nitrides, oxides and oxy‐hydrides‐nitrides studied as support and active component of catalyst fascinated much attention, with milder reaction conditions for NH3 synthesis. These materials with unique properties of reversible storage of electrons, hydrides, nitrides and oxygen vacancies enrich electron density on Ru catalyst and cleave N≡N bond with very low activation energy (<60 kJ/mol). The mechanistic understanding of these materials leads to the fact that activation N≡N bond is no more rate‐determining step (RDS). Instead, formation of N−H bond is RDS, pushing towards an innovative research directions and scientific basis for development of new catalysts. Enormous maturation of experimental and theoretical methods with improved precession over worldwide research effort helped in gaining a fundamental understanding of these materials in NH3 synthesis. The most of Ru supported on these advanced materials were better in performance compared to benchmark Cs−Ru/MgO and Ru/AC catalysts in NH3 synthesis. Insights on these materials and their mechanism are covered in this review, which digs towards finding a realistic catalyst for NH3 synthesis. |
| Author | Marakatti, Vijaykumar S. Gaigneaux, Eric M. |
| Author_xml | – sequence: 1 givenname: Vijaykumar S. orcidid: 0000-0002-2586-5102 surname: Marakatti fullname: Marakatti, Vijaykumar S. email: vijaykumar.marakatti@uclouvain.be organization: Université catholique de Louvain (UCLouvain) – sequence: 2 givenname: Eric M. orcidid: 0000-0003-2239-4306 surname: Gaigneaux fullname: Gaigneaux, Eric M. organization: Université catholique de Louvain (UCLouvain) |
| BookMark | eNqFkE1LAzEQhoNUsK1ePS943ppkP5LcLItaoSBoPYdsdlZTtklNUmX_vVsqFQTxNC_D88zAO0Ej6ywgdEnwjGBMr7WOekYxxZiQnJygMeElSzMuxOiYOT5DkxDWGJciY8UY3TyBBhuTefOhrIaQGJssIIJ3r2DB7UJSqai6PpiQtM4n883GWaOS597GNxi25-i0VV2Ai-85RS93t6tqkS4f7x-q-TLVOc1IymhZsCbnpADetFld1opnTVPUrQYGQhOArFEiB0GZYpztEcwzPCiDUNNsiq4Od7feve8gRLl2O2-Hl5LmZckIpYIPVH6gtHcheGilNlFF42z0ynSSYLnvSu67kseuBm32S9t6s1G-_1sQB-HTdND_Q8uqWlU_7hdNv356 |
| CitedBy_id | crossref_primary_10_1007_s11244_021_01445_w crossref_primary_10_1007_s11426_024_2471_9 crossref_primary_10_1007_s43938_023_00019_4 crossref_primary_10_1016_j_ijhydene_2024_08_408 crossref_primary_10_1002_cssc_202300234 crossref_primary_10_1016_j_catcom_2023_106689 crossref_primary_10_1016_j_ssi_2023_116384 crossref_primary_10_1039_D3RA00133D crossref_primary_10_3390_catal15020160 crossref_primary_10_1016_j_cej_2023_146354 crossref_primary_10_1002_cctc_202301579 crossref_primary_10_1016_j_apsusc_2021_151658 crossref_primary_10_1016_j_cej_2025_168541 crossref_primary_10_3390_catal13121464 crossref_primary_10_1021_jacs_3c06259 crossref_primary_10_1016_j_cattod_2021_11_005 crossref_primary_10_1088_2632_2153_ac8fe0 crossref_primary_10_2516_stet_2023029 crossref_primary_10_1002_anie_202219298 crossref_primary_10_1002_cctc_202400403 crossref_primary_10_1007_s40145_022_0633_z crossref_primary_10_1021_acscatal_5c03006 crossref_primary_10_1039_D0SE01077D crossref_primary_10_3390_nano13222914 crossref_primary_10_1016_j_est_2023_108165 crossref_primary_10_1016_j_ijhydene_2025_150995 crossref_primary_10_1039_D5TA04960A crossref_primary_10_1016_j_checat_2022_02_009 crossref_primary_10_1016_j_mcat_2024_114393 crossref_primary_10_1016_j_cattod_2025_115342 crossref_primary_10_1016_j_ijhydene_2024_05_176 crossref_primary_10_1002_ange_202219298 crossref_primary_10_1002_adma_202501960 crossref_primary_10_3390_cryst14090818 crossref_primary_10_1039_D5CY00122F crossref_primary_10_1002_slct_202200924 crossref_primary_10_1016_j_fuel_2024_131863 crossref_primary_10_1002_cssc_202101571 crossref_primary_10_1016_j_cej_2024_152506 crossref_primary_10_1021_jacs_4c14966 crossref_primary_10_1002_adma_202005721 crossref_primary_10_1016_j_seppur_2025_133275 crossref_primary_10_1021_jacs_5c06813 crossref_primary_10_1016_j_ijhydene_2024_11_053 crossref_primary_10_1016_j_mcat_2025_114907 crossref_primary_10_1016_j_apcata_2024_119677 crossref_primary_10_1016_j_jcat_2022_10_005 crossref_primary_10_1002_advs_202204248 crossref_primary_10_1016_j_ijhydene_2025_03_083 crossref_primary_10_1002_cssc_202301016 crossref_primary_10_1002_ejic_202100117 crossref_primary_10_1016_j_ijhydene_2021_12_022 crossref_primary_10_1002_cctc_202201172 crossref_primary_10_1039_D1CY01956B crossref_primary_10_1021_acsami_5c10234 crossref_primary_10_1002_slct_202501535 crossref_primary_10_1016_j_ces_2021_117287 crossref_primary_10_1007_s12210_025_01329_1 crossref_primary_10_1016_j_apcata_2024_119562 crossref_primary_10_1088_1361_6463_ad4717 crossref_primary_10_1007_s10562_023_04332_z crossref_primary_10_1039_D1CY01156A crossref_primary_10_1016_j_checat_2021_08_006 crossref_primary_10_1039_D5TA04503G crossref_primary_10_1002_slct_202201359 crossref_primary_10_1039_D4RA03301A crossref_primary_10_3390_chemistry4020035 crossref_primary_10_1038_s44160_023_00321_7 crossref_primary_10_1016_j_apcatb_2021_119955 crossref_primary_10_1016_j_fuproc_2025_108267 crossref_primary_10_1016_j_fmre_2024_11_026 crossref_primary_10_1016_j_jcat_2025_116136 crossref_primary_10_1016_j_fuproc_2023_107851 crossref_primary_10_59761_RCR5094 crossref_primary_10_1016_j_est_2022_105714 crossref_primary_10_1016_j_jechem_2024_07_033 crossref_primary_10_1016_j_jcou_2024_102699 crossref_primary_10_3390_nano12101644 crossref_primary_10_1002_adma_202408434 crossref_primary_10_1246_cl_200855 crossref_primary_10_1002_tcr_202400234 crossref_primary_10_1021_acs_energyfuels_5c02533 crossref_primary_10_1016_j_apcata_2025_120465 crossref_primary_10_1016_j_jcat_2024_115530 crossref_primary_10_1021_acs_jpcc_5c03730 crossref_primary_10_1016_j_ijhydene_2021_04_014 crossref_primary_10_1016_j_mcat_2024_114781 crossref_primary_10_1002_smll_202208272 crossref_primary_10_1016_j_diamond_2025_112797 crossref_primary_10_1016_j_cej_2023_143533 crossref_primary_10_1021_acs_analchem_5c00351 crossref_primary_10_1002_asia_202500657 crossref_primary_10_1016_j_jcat_2021_10_024 crossref_primary_10_1016_j_ces_2025_121676 crossref_primary_10_1016_j_jechem_2024_05_023 crossref_primary_10_1002_adma_202406944 crossref_primary_10_1039_D1RA01584B crossref_primary_10_1016_j_cclet_2022_02_042 crossref_primary_10_1002_cphc_202300182 |
| Cites_doi | 10.1103/PhysRevLett.91.126401 10.1038/nature11812 10.1039/C5SC00933B 10.1021/acssuschemeng.7b02168 10.1016/j.catcom.2013.07.001 10.1016/S1872-2067(09)60055-3 10.1016/j.cattod.2018.01.008 10.1021/acssuschemeng.8b04683 10.1021/acs.iecr.8b04915 10.1039/C6CY02089E 10.1002/anie.201703695 10.1166/apm.2014.1079 10.1016/j.catcom.2015.04.016 10.1016/j.apcata.2014.10.030 10.1016/0021-9517(78)90026-X 10.1021/acs.jpcc.7b07268 10.1039/C5NJ03479E 10.1006/jcat.1996.0268 10.1007/s10562-014-1226-4 10.1039/C9CC07385J 10.1016/0021-9517(67)90293-X 10.1039/C9CY01303B 10.1016/S1381-1169(00)00396-4 10.1039/C6SC02382G 10.1021/acssuschemeng.9b06299 10.1002/ange.200301553 10.1038/nchem.1476 10.1021/acscatal.8b02839 10.1039/b707913c 10.1007/s10562-008-9594-2 10.1021/jacs.8b06187 10.1002/aenm.201801772 10.1021/jacs.7b08891 10.1126/science.1083842 10.1016/j.jcat.2020.05.039 10.1246/cl.130574 10.1016/j.catcom.2010.03.008 10.1002/cctc.201700353 10.1039/C9CY00533A 10.1021/acs.jpcc.9b10850 10.1007/BF00765698 10.1006/jcat.2002.3571 10.1016/j.cattod.2011.01.053 10.1039/C9SC01539F 10.1039/C5CY00014A 10.1021/acssuschemeng.7b04586 10.1016/j.jre.2018.09.010 10.1039/C8CP05800H 10.1016/j.jtice.2019.10.006 10.1016/j.jcat.2016.09.013 10.1039/C6CC08566K 10.1021/acsami.6b12253 10.1016/j.ijhydene.2012.09.026 10.1002/cctc.201800287 10.1016/S0926-860X(01)00678-0 10.1021/acs.chemmater.9b03099 10.1016/j.apcata.2018.01.006 10.1038/ncomms7731 10.1016/j.ijhydene.2017.10.108 10.1016/j.solidstatesciences.2019.105983 10.1039/a801643g 10.1021/acscatal.7b00284 10.1021/acs.jpcc.5b06811 10.1016/S0926-860X(01)00626-3 10.1016/0926-860X(92)80001-S 10.1021/jacs.7b10354 10.1007/s10562-016-1862-y 10.1002/cctc.201500309 10.1021/acs.jpcc.9b05366 10.1006/jcat.2001.3431 10.1002/anie.198605581 10.1002/ange.201712398 10.1021/acsaem.0c00754 10.1038/s41586-020-2464-9 10.1039/C9DT03673C 10.1021/acsami.9b11318 10.1016/j.jechem.2019.01.026 10.1021/ja010963d 10.1080/00986445.2014.923995 10.1021/jacs.9b10726 10.1016/j.progsolidstchem.2010.08.003 10.1021/acscatal.6b01940 10.1002/asia.201900618 10.1103/PhysRevLett.83.1814 10.1039/b002930k 10.1002/anie.200301553 10.1016/S0926-860X(00)00764-X 10.1021/cr500032a 10.1039/C7SC05343F 10.1021/acs.jpcc.7b12364 10.1021/acs.iecr.9b01610 10.1039/C9CY01424A 10.1039/C9RA03097B 10.1016/S0926-860X(01)00826-2 10.1016/j.mcat.2016.12.015 10.1016/j.progsolidstchem.2018.09.001 10.1016/S0926-860X(01)00529-4 10.1002/adma.201700924 10.1126/science.1106435 10.1021/acssuschemeng.7b02469 10.1006/jcat.1996.0314 10.1039/C6TA09561E 10.1021/jacs.6b00124 10.1021/jp066970b 10.1007/BF02067978 10.1063/1.481103 10.1016/j.catcom.2006.07.006 10.1039/D0TC01165G 10.1039/C8CC07130F 10.1016/0021-9517(85)90265-9 10.1016/j.apcata.2020.117553 10.1142/9789814355780_0001 10.1016/0021-9517(76)90394-8 10.1016/j.ccr.2012.10.005 10.1016/j.ccr.2019.06.015 10.1080/03602458008067533 10.1007/s10562-010-0464-3 10.1016/j.jallcom.2014.08.079 10.1021/acs.chemrev.6b00441 10.1021/acs.jpcc.8b02128 10.1039/C9SE00781D 10.1021/nn102839k 10.3390/catal9050406 10.1016/S0021-9517(02)93724-3 10.1039/C4CC00802B 10.1021/cs401044a 10.1038/nchem.2595 10.1002/cctc.201800556 10.1021/jacs.8b08334 10.1021/jacs.8b10499 10.1021/acs.iecr.6b01880 10.1023/A:1016501811975 10.1080/01614947108075483 10.1007/s11244-012-9890-3 10.1016/j.jechem.2019.01.027 10.1021/jp501237c 10.1021/ja311261s 10.1016/S1002-0721(09)60152-6 10.1039/C6SC00767H 10.1016/j.molcata.2008.08.006 10.1016/0021-9517(65)90016-3 10.1039/C6RA10540H 10.1007/s003390100775 10.1016/S1872-2067(18)63192-4 10.1016/0021-9517(92)90110-4 10.1023/B:REAC.0000037374.92480.f1 10.1016/j.jcat.2006.01.035 10.1021/acscatal.6b03357 10.1002/cjoc.201800586 10.1016/j.apcata.2013.03.037 10.1016/S0169-4332(01)00374-9 10.1002/ange.201703695 10.1021/acs.iecr.8b02126 10.1016/j.cattod.2017.01.002 10.1021/cm100208a 10.1016/j.apcata.2018.06.017 10.1002/anie.201712398 10.1021/jacs.5b10145 10.1016/0021-9517(67)90292-8 10.1021/cs400336z 10.1002/slct.201700859 10.1038/s41467-020-15868-8 10.1016/j.materresbull.2012.01.022 10.1021/ar9000857 10.1021/acscatal.8b03650 10.1021/acs.jpcc.9b10544 10.1246/bcsj.39.1678 10.1002/anie.201812131 10.1021/jp011027n |
| ContentType | Journal Article |
| Copyright | 2020 Wiley‐VCH GmbH |
| Copyright_xml | – notice: 2020 Wiley‐VCH GmbH |
| DBID | AAYXX CITATION |
| DOI | 10.1002/cctc.202001141 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1867-3899 |
| EndPage | 5857 |
| ExternalDocumentID | 10_1002_cctc_202001141 CCTC202001141 |
| Genre | reviewArticle |
| GrantInformation_xml | – fundername: Marie Skłodowska Curie – Individual Fellowship funderid: MSCA-IF-EF-ST – fundername: Horizon 2020 funderid: 841964 |
| GroupedDBID | 05W 0R~ 1OC 33P 4.4 5DZ 77Q 8-1 A00 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AASGY AAXRX AAYCA AAZKR ABCUV ABDBF ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACUHS ACXBN ACXQS ADBBV ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFGKR AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI DCZOG DRFUL DRSTM DU5 EBS ESX G-S HGLYW HZ~ I-F LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MXFUL MXSTM MY~ NNB O9- P2W P4E ROL SUPJJ TUS WBKPD WOHZO WXSBR WYJ XV2 ZZTAW AAMMB AAYXX AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY CITATION |
| ID | FETCH-LOGICAL-c4231-72657d4815e8df3b6ba83dd5bfce7e9c1ee3da94e927a787f3b60830d48e8db23 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 131 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000567889100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1867-3880 |
| IngestDate | Fri Jul 25 12:26:23 EDT 2025 Tue Nov 18 22:14:37 EST 2025 Sat Nov 29 07:12:47 EST 2025 Wed Jan 22 16:31:25 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 23 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4231-72657d4815e8df3b6ba83dd5bfce7e9c1ee3da94e927a787f3b60830d48e8db23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-2239-4306 0000-0002-2586-5102 |
| OpenAccessLink | http://hdl.handle.net/2078.1/235219 |
| PQID | 2466712298 |
| PQPubID | 986343 |
| PageCount | 20 |
| ParticipantIDs | proquest_journals_2466712298 crossref_citationtrail_10_1002_cctc_202001141 crossref_primary_10_1002_cctc_202001141 wiley_primary_10_1002_cctc_202001141_CCTC202001141 |
| PublicationCentury | 2000 |
| PublicationDate | December 4, 2020 |
| PublicationDateYYYYMMDD | 2020-12-04 |
| PublicationDate_xml | – month: 12 year: 2020 text: December 4, 2020 day: 04 |
| PublicationDecade | 2020 |
| PublicationPlace | Weinheim |
| PublicationPlace_xml | – name: Weinheim |
| PublicationTitle | ChemCatChem |
| PublicationYear | 2020 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2010; 11 2018; 562 1985; 29 2013; 3 2019; 11 2019; 10 2019; 14 2016; 146 2020; 11 2020; 99 2020; 10 2017; 433 2010; 22 2018; 6 2018; 9 2018; 8 2015; 137 2018; 1 2019; 21 2010; 28 1965; 4 2007; 8 1985; 92 2016; 40 2017; 286 2019; 397 1971; 4 2019; 9 2010; 31 2010; 38 1976; 44 2019; 31 1978; 54 2019; 37 2019; 36 2019; 39 2019; 105 2002; 81 2008; 126 2020; 389 2000; 112 2017 2017; 56 129 2012; 37 2006; 239 2001; 209 2011; 5 2017; 139 2015; 68 1967; 8 2016; 6 2016; 7 2019; 40 1986; 25 1992; 136 2019; 48 2013; 458 2014; 35 2015; 119 2011; 141 2012; 47 2014; 144 2018; 10 1998; 8 1990; 4 2017; 5 2017; 7 2018; 122 2017; 42 2001; 222 2017; 8 2017; 2 2009; 42 2001; 180 2019; 55 2019; 58 2016; 344 2015; 504 2020; 56 2020; 124 1999; 83 2012; 55 2017; 9 2019; 123 2001; 105 2020; 8 2020; 4 2014; 4 2020; 3 2003; 91 2001 2000 2018 2018; 57 130 2015; 618 2005; 307 2000; 163 2016; 116 2017; 121 2001; 218 2014; 50 2001; 219 1992; 82 2001; 215 2014; 118 2001; 123 2001; 72 2015; 6 2004; 83 1966; 39 2015; 5 2018; 140 2015; 202 2020; 583 2013; 42 1980; 21 2013; 41 2002; 211 1996; 162 2007 2016; 52 2017; 29 2003 2003; 42 115 1996; 163 2011; 174 2019; 141 2015; 7 2014; 114 2016; 55 2020 2018; 316 2007; 111 2018; 554 2002; 205 2018 2013; 257 2013; 135 2018; 52 2016; 138 2020; 598 2013 2013; 494 2002; 208 2009; 305 2003; 301 2012; 4 2018; 57 e_1_2_6_114_1 e_1_2_6_137_1 e_1_2_6_53_1 e_1_2_6_76_1 e_1_2_6_95_1 e_1_2_6_118_1 e_1_2_6_30_1 e_1_2_6_72_1 e_1_2_6_91_1 Liang C. (e_1_2_6_140_1) 2001 e_1_2_6_152_1 e_1_2_6_110_1 e_1_2_6_133_1 e_1_2_6_156_1 e_1_2_6_19_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_99_1 e_1_2_6_125_1 e_1_2_6_64_1 e_1_2_6_87_1 e_1_2_6_106_1 e_1_2_6_148_1 e_1_2_6_129_1 e_1_2_6_41_1 e_1_2_6_60_1 e_1_2_6_83_1 e_1_2_6_163_1 e_1_2_6_121_1 e_1_2_6_167_1 e_1_2_6_102_1 e_1_2_6_144_1 e_1_2_6_9_1 Foster S. L. (e_1_2_6_1_1) 2018; 1 e_1_2_6_5_1 e_1_2_6_170_1 Liu H. (e_1_2_6_4_1) 2014; 35 e_1_2_6_49_1 e_1_2_6_22_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_68_1 e_1_2_6_73_1 e_1_2_6_136_1 e_1_2_6_54_1 e_1_2_6_96_1 e_1_2_6_117_1 e_1_2_6_159_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_92_1 e_1_2_6_151_1 e_1_2_6_132_1 e_1_2_6_113_1 e_1_2_6_155_1 e_1_2_6_58_2 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_39_1 e_1_2_6_77_1 e_1_2_6_16_1 e_1_2_6_58_1 e_1_2_6_84_1 e_1_2_6_42_1 e_1_2_6_105_1 e_1_2_6_128_1 e_1_2_6_147_1 e_1_2_6_65_1 e_1_2_6_80_1 e_1_2_6_109_1 e_1_2_6_61_1 e_1_2_6_120_1 e_1_2_6_162_1 e_1_2_6_101_1 e_1_2_6_124_1 e_1_2_6_143_1 e_1_2_6_166_1 e_1_2_6_6_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_88_1 e_1_2_6_27_1 e_1_2_6_46_1 e_1_2_6_69_1 e_1_2_6_51_1 e_1_2_6_74_1 e_1_2_6_97_1 e_1_2_6_116_1 e_1_2_6_139_1 e_1_2_6_158_1 e_1_2_6_32_1 e_1_2_6_70_1 e_1_2_6_93_1 e_1_2_6_131_1 e_1_2_6_150_1 e_1_2_6_173_1 e_1_2_6_112_1 e_1_2_6_135_1 e_1_2_6_154_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_78_1 e_1_2_6_62_1 e_1_2_6_104_1 e_1_2_6_43_1 e_1_2_6_127_1 e_1_2_6_169_1 e_1_2_6_81_1 e_1_2_6_20_1 e_1_2_6_108_1 e_1_2_6_142_1 e_1_2_6_161_1 Aslan M. Y. (e_1_2_6_85_1) 2020 e_1_2_6_100_1 e_1_2_6_146_1 e_1_2_6_123_1 e_1_2_6_165_1 e_1_2_6_7_2 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_66_1 e_1_2_6_89_1 e_1_2_6_28_1 e_1_2_6_47_1 e_1_2_6_52_1 e_1_2_6_98_1 e_1_2_6_115_1 Hargreaves J. S. J. (e_1_2_6_25_1) 2018 e_1_2_6_75_1 e_1_2_6_138_1 e_1_2_6_10_1 e_1_2_6_94_1 e_1_2_6_119_1 e_1_2_6_71_1 e_1_2_6_90_1 e_1_2_6_153_1 e_1_2_6_130_1 e_1_2_6_172_1 e_1_2_6_111_1 e_1_2_6_157_1 e_1_2_6_134_1 Gong Y. (e_1_2_6_40_1) 2018; 1 e_1_2_6_160_1 e_1_2_6_14_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_56_1 e_1_2_6_37_1 e_1_2_6_79_1 e_1_2_6_103_1 e_1_2_6_126_1 e_1_2_6_149_1 e_1_2_6_63_1 e_1_2_6_86_1 e_1_2_6_107_1 e_1_2_6_82_1 e_1_2_6_141_1 e_1_2_6_164_1 e_1_2_6_160_2 e_1_2_6_122_1 e_1_2_6_145_1 e_1_2_6_168_1 e_1_2_6_8_1 Hargreaves J. S. J. (e_1_2_6_21_1) e_1_2_6_171_1 e_1_2_6_48_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_67_1 |
| References_xml | – volume: 4 start-page: 674 year: 2014 end-page: 680 publication-title: ACS Catal. – volume: 91 year: 2003 publication-title: Phys. Rev. Lett. – volume: 10 start-page: 105 year: 2020 end-page: 112 publication-title: Catal. Sci. Technol. – volume: 123 start-page: 18475 year: 2019 end-page: 18481 publication-title: J. Phys. Chem. C. – volume: 21 start-page: 5117 year: 2019 end-page: 5122 publication-title: Phys. Chem. Chem. Phys. – volume: 138 start-page: 3970 year: 2016 end-page: 3973 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 351 year: 2007 end-page: 354 publication-title: Catal. Commun. – volume: 2 start-page: 6040 year: 2017 end-page: 6046 publication-title: ChemistrySelect. – volume: 9 start-page: 2230 year: 2018 end-page: 2237 publication-title: Chem. Sci. – volume: 1 start-page: 178 year: 2018 end-page: 185 publication-title: Nat. Can. – volume: 5 start-page: 5550 year: 2017 end-page: 5558 publication-title: J. Mater. Chem. A. – volume: 6 start-page: 17258 year: 2018 end-page: 17266 publication-title: ACS Sustainable Chem. Eng. – volume: 112 start-page: 5343 year: 2000 end-page: 5347 publication-title: J. Chem. Phys. – volume: 6 start-page: 3577 year: 2015 end-page: 3581 publication-title: Chem. Sci. – volume: 305 start-page: 125 year: 2009 end-page: 129 publication-title: J. Mol. Catal. A – volume: 135 start-page: 5493 year: 2013 end-page: 5496 publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 934 year: 2012 end-page: 940 publication-title: Nat. Chem. – volume: 7 start-page: 4036 year: 2016 end-page: 4043 publication-title: Chem. Sci. – volume: 162 start-page: 138 year: 1996 end-page: 142 publication-title: J. Catal. – volume: 163 start-page: 148 year: 1996 end-page: 157 publication-title: J. Catal. – volume: 8 start-page: 10977 year: 2018 end-page: 10984 publication-title: ACS Catal. – volume: 9 start-page: 64 year: 2017 end-page: 70 publication-title: Nat. Chem. – volume: 119 start-page: 28368 year: 2015 end-page: 28376 publication-title: J. Phys. Chem. C. – volume: 554 start-page: 1 year: 2018 end-page: 9 publication-title: Appl. Catal. A – volume: 105 start-page: 7525 year: 2001 end-page: 7532 publication-title: J. Phys. Chem. B. – volume: 126 start-page: 134 year: 2008 end-page: 141 publication-title: Catal. Lett. – volume: 6 start-page: 51106 year: 2016 end-page: 51110 publication-title: RSC Adv. – volume: 56 129 start-page: 8716 8842 year: 2017 2017 end-page: 8720 8846 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 55 start-page: 1046 year: 2012 end-page: 1053 publication-title: Top. Catal. – volume: 8 start-page: 10551 year: 2020 end-page: 10567 publication-title: J. Mater. Chem. C. – volume: 52 start-page: 14369 year: 2016 end-page: 14372 publication-title: Chem. Commun. – volume: 141 start-page: 22 year: 2011 end-page: 26 publication-title: Catal. Lett. – volume: 389 start-page: 218 year: 2020 end-page: 228 publication-title: J. Catal. – volume: 11 start-page: 37602 year: 2019 end-page: 37616 publication-title: ACS Appl. Mater. Interfaces. – volume: 25 start-page: 558 year: 1986 end-page: 559 publication-title: Angew. Chem. Int. Ed. Engl. – volume: 40 start-page: 5448 year: 2016 end-page: 5457 publication-title: New J. Chem. – volume: 92 start-page: 305 year: 1985 end-page: 311 publication-title: J. Catal. – start-page: 173 year: 2018 end-page: 192 – volume: 307 start-page: 555 year: 2005 end-page: 558 publication-title: Science. – volume: 174 start-page: 97 year: 2011 end-page: 105 publication-title: Catal. Today. – volume: 205 start-page: 205 year: 2002 end-page: 212 publication-title: J. Catal. – volume: 504 start-page: 44 year: 2015 end-page: 50 publication-title: Appl. Catal. A – volume: 14 start-page: 2815 year: 2019 end-page: 2821 publication-title: Chem. Asian J. – volume: 36 start-page: 25 year: 2019 end-page: 36 publication-title: J. Energy Chem. – volume: 50 start-page: 4791 year: 2014 end-page: 4794 publication-title: Chem. Commun. – volume: 5 start-page: 2829 year: 2015 end-page: 2838 publication-title: Catal. Sci. Technol. – volume: 22 start-page: 2898 year: 2010 end-page: 2907 publication-title: Chem. Mater. – volume: 6 start-page: 6731 year: 2015 end-page: 6739 publication-title: Nat. Commun. – volume: 209 start-page: 317 year: 2001 end-page: 325 publication-title: Appl. Catal. A – volume: 215 start-page: 149 year: 2001 end-page: 160 publication-title: Appl. Catal. A – volume: 8 start-page: 674 year: 2017 end-page: 679 publication-title: Chem. Sci. – volume: 494 start-page: 336 year: 2013 end-page: 340 publication-title: Nature – start-page: 1057 year: 2000 end-page: 1058 publication-title: Chem. Commun. – volume: 83 start-page: 39 year: 2004 end-page: 45 publication-title: React. Kinet. Catal. Lett. – volume: 9 start-page: 4785 year: 2019 end-page: 4820 publication-title: Catal. Sci. Technol. – volume: 118 start-page: 7615 year: 2014 end-page: 7621 publication-title: J. Phys. Chem. C. – volume: 140 start-page: 17702 year: 2018 end-page: 17710 publication-title: J. Am. Chem. Soc. – volume: 146 start-page: 2324 year: 2016 end-page: 2329 publication-title: Catal. Lett. – volume: 583 start-page: 391 year: 2020 end-page: 395 publication-title: Nature – volume: 316 start-page: 230 year: 2018 end-page: 236 publication-title: Catal. Today. – volume: 29 start-page: 267 year: 1985 end-page: 274 publication-title: React. Kinet. Catal. Lett. – volume: 35 start-page: 1619 year: 2014 end-page: 1640 publication-title: . J. Catal. – volume: 42 115 start-page: 2004 2050 year: 2003 2003 end-page: 2008 2055 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 208 start-page: 180 year: 2002 end-page: 186 publication-title: J. Catal. – volume: 301 start-page: 626 year: 2003 end-page: 629 publication-title: Science. – volume: 239 start-page: 313 year: 2006 end-page: 325 publication-title: J. Catal. – volume: 10 start-page: 3411 year: 2018 end-page: 3414 publication-title: ChemCatChem. – volume: 42 start-page: 29745 year: 2017 end-page: 29755 publication-title: Int. J. Hydrogen Energy. – volume: 4 start-page: 1 year: 1971 end-page: 26 publication-title: Catal. Rev. – volume: 7 start-page: 3654 year: 2017 end-page: 3661 publication-title: ACS Catal. – volume: 397 start-page: 138 year: 2019 end-page: 167 publication-title: Coord. Chem. Rev. – volume: 124 start-page: 1529 year: 2020 end-page: 1534 publication-title: J. Phys. Chem. C. – volume: 116 start-page: 8315 year: 2016 end-page: 8317 publication-title: Chem. Rev. – volume: 140 start-page: 14799 year: 2018 end-page: 14806 publication-title: J. Am. Chem. Soc. – volume: 56 start-page: 1141 year: 2020 end-page: 1144 publication-title: Chem. Commun. – volume: 31 start-page: 9413 year: 2019 end-page: 9421 publication-title: Chem. Mater. – volume: 163 start-page: 19 year: 2000 end-page: 26 publication-title: J. Mol. Catal. A – volume: 9 start-page: 22045 year: 2019 end-page: 22052 publication-title: RSC Adv. – volume: 68 start-page: 53 year: 2015 end-page: 57 publication-title: Catal. Commun. – volume: 9 start-page: 406 year: 2019 end-page: 427 publication-title: Catalysts. – volume: 37 start-page: 492 year: 2019 end-page: 499 publication-title: J. Rare Earths. – volume: 139 start-page: 18240 year: 2017 end-page: 18246 publication-title: J. Am. Chem. Soc. – volume: 222 start-page: 19 year: 2001 end-page: 29 publication-title: Appl. Catal. A – volume: 55 start-page: 474 year: 2019 end-page: 477 publication-title: , Chem. Commun – volume: 6 start-page: 7577 year: 2016 end-page: 7584 publication-title: ACS Catal. – volume: 8 start-page: 1901 year: 1998 end-page: 1909 publication-title: J. Mater. Chem. – volume: 144 start-page: 545 year: 2014 end-page: 552 publication-title: Catal. Lett. – volume: 562 start-page: 223 year: 2018 end-page: 233 publication-title: Appl. Catal. A – volume: 9 start-page: 6217 year: 2019 end-page: 6221 publication-title: Catal. Sci. Technol. – volume: 105 start-page: 50 year: 2019 end-page: 56 publication-title: J. Inst. Chem. – start-page: 1 year: 2013 end-page: 65 – volume: 11 start-page: 867 year: 2010 end-page: 870 publication-title: Catal. Commun. – volume: 58 start-page: 10285 year: 2019 end-page: 10295 publication-title: Ind. Eng. Chem. Res. – start-page: 2014 end-page: 10 publication-title: Appl. Petrochem. Res. – volume: 5 start-page: 1907 year: 2011 end-page: 1914 publication-title: ACS Nano. – volume: 9 start-page: 1670 year: 2019 end-page: 1679 publication-title: ACS Catal. – volume: 9 start-page: 3602 year: 2017 end-page: 3615 publication-title: ACS Appl. Mater. Interfaces. – volume: 37 start-page: 442 year: 2019 end-page: 451 publication-title: Chin. J. Chem. – volume: 3 start-page: 1719 year: 2013 end-page: 1725 publication-title: ACS Catal. – volume: 37 start-page: 17921 year: 2012 end-page: 17927 publication-title: Int. J. Hydrogen Energy. – volume: 10 start-page: 5712 year: 2019 end-page: 5718 publication-title: Chem. Sci. – volume: 5 start-page: 10439 year: 2017 end-page: 10446 publication-title: ACS Sustainable Chem. Eng. – volume: 137 start-page: 14517 year: 2015 end-page: 14524 publication-title: J. Am. Chem. Soc. – volume: 29 start-page: 1700924 year: 2017 end-page: 1700931 publication-title: Adv. Mater. – volume: 598 start-page: 117553 year: 2020 end-page: 117568 publication-title: Appl. Catal. A – volume: 458 start-page: 130 year: 2013 end-page: 136 publication-title: Appl. Catal. A – volume: 7 start-page: 191 year: 2017 end-page: 199 publication-title: Catal. Sci. Technol. – volume: 8 start-page: 105 year: 1967 end-page: 112 publication-title: J. Catal. – volume: 39 start-page: 1678 year: 1966 end-page: 1681 publication-title: Bull. Chem. Soc. Jpn. – volume: 344 start-page: 16 year: 2016 end-page: 28 publication-title: J. Catal. – volume: 219 start-page: 157 year: 2001 end-page: 170 publication-title: Appl. Catal. A – volume: 114 start-page: 10292 year: 2014 end-page: 10368 publication-title: Chem. Rev. – volume: 122 start-page: 10468 year: 2018 end-page: 10475 publication-title: J. Phys. Chem. C. – volume: 211 start-page: 278 year: 2002 end-page: 282 publication-title: J. Catal. – start-page: 3051 year: 2007 end-page: 3053 publication-title: Chem. Commun. – volume: 55 start-page: 8922 year: 2016 end-page: 8932 publication-title: Ind. Eng. Chem. Res. – volume: 31 start-page: 377 year: 2010 end-page: 379 publication-title: Chin. J. Catal. – volume: 180 start-page: 328 year: 2001 end-page: 335 publication-title: Appl. Surf. Sci. – volume: 40 start-page: 114 year: 2019 end-page: 123 publication-title: A Chin. J. Catal. – volume: 42 start-page: 1282 year: 2013 end-page: 1284 publication-title: Chem. Lett. – volume: 433 start-page: 235 year: 2017 end-page: 241 publication-title: Mol. Catal. – volume: 1 start-page: 490 year: 2018 end-page: 500 publication-title: Nat. Can. – volume: 9 start-page: 3078 year: 2017 end-page: 3083 publication-title: ChemCatChem. – volume: 4 start-page: 157 year: 1990 end-page: 161 publication-title: Catal. Lett. – volume: 286 start-page: 85 year: 2017 end-page: 100 publication-title: Catal. Today. – volume: 83 start-page: 1814 year: 1999 end-page: 1817 publication-title: Phys. Rev. Lett. – volume: 7 start-page: 2836 year: 2015 end-page: 2839 publication-title: ChemCatChem. – volume: 41 start-page: 110 year: 2013 end-page: 114 publication-title: Catal. Commun. – volume: 44 start-page: 236 year: 1976 end-page: 243 publication-title: J. Catal. – volume: 58 start-page: 825 year: 2019 end-page: 829 publication-title: Angew. Chem. Int. Ed. – volume: 82 start-page: 1 year: 1992 end-page: 12 publication-title: Appl. Catal. A – volume: 202 start-page: 420 year: 2015 end-page: 448 publication-title: Chem. Eng. Commun. – volume: 257 start-page: 2015 year: 2013 end-page: 2031 publication-title: Coord. Chem. Rev. – volume: 140 start-page: 46 year: 2018 end-page: 49 publication-title: J. Am. Chem. Soc. – volume: 48 start-page: 16786 year: 2019 end-page: 16792 publication-title: Dalton Trans. – volume: 81 start-page: 265 year: 2002 end-page: 269 publication-title: Catal. Lett. – volume: 11 start-page: 2001 year: 2020 publication-title: Nat. Commun. – volume: 6 start-page: 7325 year: 2018 end-page: 7338 publication-title: ACS Sustainable Chem. Eng. – volume: 57 130 start-page: 2648 2678 year: 2018 2018 end-page: 2652 2682 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 8 start-page: 113 year: 1967 end-page: 119 publication-title: J. Catal. – volume: 10 start-page: 3086 year: 2018 end-page: 3095 publication-title: ChemCatChem. – volume: 5 start-page: 9214 year: 2017 end-page: 9222 publication-title: ACS Sustainable Chem. Eng. – volume: 8 year: 2018 publication-title: Met. Adv. Energy Mater. – volume: 28 start-page: 552 year: 2010 end-page: 555 publication-title: J. Rare Earths. – volume: 52 start-page: 1 year: 2018 end-page: 30 publication-title: Prog. Solid State Chem. – volume: 57 start-page: 17375 year: 2018 end-page: 17383 publication-title: Ind. Eng. Chem. Res. – volume: 57 start-page: 9127 year: 2018 end-page: 9135 publication-title: Ind. Eng. Chem. Res. – volume: 39 start-page: 170 year: 2019 end-page: 175 publication-title: J. Energy Chem. – volume: 99 year: 2020 publication-title: Solid State Sci. – volume: 618 start-page: 562 year: 2015 end-page: 606 publication-title: J. Alloys Compd. – volume: 72 start-page: 225 year: 2001 end-page: 238 publication-title: Appl. Phys. A. – volume: 4 start-page: 253 year: 1965 end-page: 259 publication-title: J. Catal. – volume: 141 start-page: 20344 year: 2019 end-page: 20353 publication-title: J. Am. Chem. Soc. – volume: 124 start-page: 2070 year: 2020 end-page: 2078 publication-title: J. Phys. Chem. C. – volume: 47 start-page: 1251 year: 2012 end-page: 1256 publication-title: D. Mater. Res. Bull. – volume: 140 start-page: 11170 year: 2018 end-page: 11173 publication-title: J. Am. Chem. Soc. – start-page: 283 year: 2001 end-page: 290 – volume: 38 start-page: 1 year: 2010 end-page: 37 publication-title: Prog. Solid State Chem. – volume: 42 start-page: 1564 year: 2009 end-page: 1572 publication-title: Acc. Chem. Res. – volume: 218 start-page: 121 year: 2001 end-page: 128 publication-title: Appl. Catal. A – volume: 8 start-page: 2726 year: 2020 end-page: 2734 publication-title: ACS Sustainable Chem. Eng. – volume: 121 start-page: 20900 year: 2017 end-page: 20904 publication-title: J. Phys. Chem. C. – volume: 123 start-page: 8404 year: 2001 end-page: 8405 publication-title: J. Am. Chem. Soc. – volume: 21 start-page: 201 year: 1980 end-page: 223 publication-title: Catal. Rev. – volume: 7 start-page: 2313 year: 2017 end-page: 2324 publication-title: ACS Catal. – year: 2020 publication-title: , Faraday Discuss. – volume: 136 start-page: 110 year: 1992 end-page: 117 publication-title: J. Catal. – volume: 54 start-page: 52 year: 1978 end-page: 56 publication-title: J. Catal. – volume: 3 start-page: 6573 year: 2020 end-page: 6582 publication-title: ACS Appl. Energy Mater. – volume: 111 start-page: 9427 year: 2007 end-page: 9436 publication-title: J. Phys. Chem. C. – volume: 4 start-page: 832 year: 2020 end-page: 842 publication-title: Sustainable Energy Fuels. – volume: 122 start-page: 6078 year: 2018 end-page: 6082 publication-title: J. Phys. Chem. C. – ident: e_1_2_6_30_1 doi: 10.1103/PhysRevLett.91.126401 – ident: e_1_2_6_46_1 doi: 10.1038/nature11812 – ident: e_1_2_6_47_1 doi: 10.1039/C5SC00933B – ident: e_1_2_6_87_1 doi: 10.1021/acssuschemeng.7b02168 – start-page: 2014 ident: e_1_2_6_21_1 publication-title: Appl. Petrochem. Res. – ident: e_1_2_6_138_1 doi: 10.1016/j.catcom.2013.07.001 – ident: e_1_2_6_129_1 doi: 10.1016/S1872-2067(09)60055-3 – ident: e_1_2_6_150_1 doi: 10.1016/j.cattod.2018.01.008 – ident: e_1_2_6_121_1 doi: 10.1021/acssuschemeng.8b04683 – ident: e_1_2_6_131_1 doi: 10.1021/acs.iecr.8b04915 – ident: e_1_2_6_110_1 doi: 10.1039/C6CY02089E – ident: e_1_2_6_58_1 doi: 10.1002/anie.201703695 – ident: e_1_2_6_161_1 doi: 10.1166/apm.2014.1079 – ident: e_1_2_6_93_1 doi: 10.1016/j.catcom.2015.04.016 – ident: e_1_2_6_84_1 doi: 10.1016/j.apcata.2014.10.030 – ident: e_1_2_6_101_1 doi: 10.1016/0021-9517(78)90026-X – ident: e_1_2_6_48_1 doi: 10.1021/acs.jpcc.7b07268 – ident: e_1_2_6_100_1 doi: 10.1039/C5NJ03479E – ident: e_1_2_6_109_1 doi: 10.1006/jcat.1996.0268 – ident: e_1_2_6_136_1 doi: 10.1007/s10562-014-1226-4 – ident: e_1_2_6_114_1 doi: 10.1039/C9CC07385J – ident: e_1_2_6_64_1 doi: 10.1016/0021-9517(67)90293-X – ident: e_1_2_6_157_1 doi: 10.1039/C9CY01303B – ident: e_1_2_6_13_1 doi: 10.1016/S1381-1169(00)00396-4 – ident: e_1_2_6_119_1 doi: 10.1039/C6SC02382G – volume: 35 start-page: 1619 year: 2014 ident: e_1_2_6_4_1 publication-title: . J. Catal. – ident: e_1_2_6_118_1 doi: 10.1021/acssuschemeng.9b06299 – ident: e_1_2_6_7_2 doi: 10.1002/ange.200301553 – ident: e_1_2_6_19_1 doi: 10.1038/nchem.1476 – ident: e_1_2_6_37_1 doi: 10.1021/acscatal.8b02839 – ident: e_1_2_6_76_1 doi: 10.1039/b707913c – ident: e_1_2_6_147_1 doi: 10.1007/s10562-008-9594-2 – ident: e_1_2_6_61_1 doi: 10.1021/jacs.8b06187 – ident: e_1_2_6_60_1 doi: 10.1002/aenm.201801772 – ident: e_1_2_6_59_1 doi: 10.1021/jacs.7b08891 – ident: e_1_2_6_28_1 doi: 10.1126/science.1083842 – ident: e_1_2_6_95_1 doi: 10.1016/j.jcat.2020.05.039 – ident: e_1_2_6_124_1 doi: 10.1246/cl.130574 – ident: e_1_2_6_125_1 doi: 10.1016/j.catcom.2010.03.008 – ident: e_1_2_6_35_1 doi: 10.1002/cctc.201700353 – ident: e_1_2_6_168_1 doi: 10.1039/C9CY00533A – ident: e_1_2_6_49_1 doi: 10.1021/acs.jpcc.9b10850 – ident: e_1_2_6_103_1 doi: 10.1007/BF00765698 – ident: e_1_2_6_73_1 doi: 10.1006/jcat.2002.3571 – ident: e_1_2_6_146_1 doi: 10.1016/j.cattod.2011.01.053 – ident: e_1_2_6_42_1 doi: 10.1039/C9SC01539F – ident: e_1_2_6_151_1 doi: 10.1039/C5CY00014A – ident: e_1_2_6_98_1 doi: 10.1021/acssuschemeng.7b04586 – ident: e_1_2_6_115_1 doi: 10.1016/j.jre.2018.09.010 – ident: e_1_2_6_106_1 doi: 10.1039/C8CP05800H – ident: e_1_2_6_120_1 doi: 10.1016/j.jtice.2019.10.006 – ident: e_1_2_6_10_1 doi: 10.1016/j.jcat.2016.09.013 – ident: e_1_2_6_86_1 doi: 10.1039/C6CC08566K – ident: e_1_2_6_99_1 doi: 10.1021/acsami.6b12253 – ident: e_1_2_6_141_1 doi: 10.1016/j.ijhydene.2012.09.026 – ident: e_1_2_6_172_1 doi: 10.1002/cctc.201800287 – ident: e_1_2_6_72_1 doi: 10.1016/S0926-860X(01)00678-0 – ident: e_1_2_6_134_1 doi: 10.1021/acs.chemmater.9b03099 – start-page: 173 volume-title: Hydrogenation, 7. Heterogeneously catalyzed ammonia synthesis year: 2018 ident: e_1_2_6_25_1 – ident: e_1_2_6_132_1 doi: 10.1016/j.apcata.2018.01.006 – ident: e_1_2_6_32_1 doi: 10.1038/ncomms7731 – ident: e_1_2_6_127_1 doi: 10.1016/j.ijhydene.2017.10.108 – ident: e_1_2_6_112_1 doi: 10.1016/j.solidstatesciences.2019.105983 – ident: e_1_2_6_90_1 doi: 10.1039/a801643g – ident: e_1_2_6_51_1 doi: 10.1021/acscatal.7b00284 – ident: e_1_2_6_81_1 doi: 10.1021/acs.jpcc.5b06811 – ident: e_1_2_6_70_1 doi: 10.1016/S0926-860X(01)00626-3 – ident: e_1_2_6_43_1 doi: 10.1016/0926-860X(92)80001-S – ident: e_1_2_6_105_1 doi: 10.1021/jacs.7b10354 – ident: e_1_2_6_144_1 doi: 10.1007/s10562-016-1862-y – ident: e_1_2_6_149_1 doi: 10.1002/cctc.201500309 – ident: e_1_2_6_165_1 doi: 10.1021/acs.jpcc.9b05366 – ident: e_1_2_6_17_1 doi: 10.1006/jcat.2001.3431 – ident: e_1_2_6_15_1 doi: 10.1002/anie.198605581 – ident: e_1_2_6_160_2 doi: 10.1002/ange.201712398 – ident: e_1_2_6_135_1 doi: 10.1021/acsaem.0c00754 – ident: e_1_2_6_94_1 doi: 10.1038/s41586-020-2464-9 – ident: e_1_2_6_91_1 doi: 10.1039/C9DT03673C – ident: e_1_2_6_97_1 doi: 10.1021/acsami.9b11318 – ident: e_1_2_6_88_1 doi: 10.1016/j.jechem.2019.01.026 – ident: e_1_2_6_74_1 doi: 10.1021/ja010963d – ident: e_1_2_6_16_1 doi: 10.1080/00986445.2014.923995 – ident: e_1_2_6_22_1 doi: 10.1021/jacs.9b10726 – ident: e_1_2_6_55_1 doi: 10.1016/j.progsolidstchem.2010.08.003 – ident: e_1_2_6_133_1 doi: 10.1021/acscatal.6b01940 – ident: e_1_2_6_128_1 doi: 10.1002/asia.201900618 – ident: e_1_2_6_11_1 doi: 10.1103/PhysRevLett.83.1814 – ident: e_1_2_6_71_1 doi: 10.1039/b002930k – ident: e_1_2_6_7_1 doi: 10.1002/anie.200301553 – ident: e_1_2_6_67_1 doi: 10.1016/S0926-860X(00)00764-X – ident: e_1_2_6_170_1 doi: 10.1021/cr500032a – year: 2020 ident: e_1_2_6_85_1 publication-title: , Faraday Discuss. – ident: e_1_2_6_117_1 doi: 10.1039/C7SC05343F – ident: e_1_2_6_83_1 doi: 10.1021/acs.jpcc.7b12364 – ident: e_1_2_6_159_1 doi: 10.1021/acs.iecr.9b01610 – ident: e_1_2_6_130_1 doi: 10.1039/C9CY01424A – ident: e_1_2_6_156_1 doi: 10.1039/C9RA03097B – ident: e_1_2_6_75_1 doi: 10.1016/S0926-860X(01)00826-2 – ident: e_1_2_6_158_1 doi: 10.1016/j.mcat.2016.12.015 – ident: e_1_2_6_96_1 doi: 10.1016/j.progsolidstchem.2018.09.001 – ident: e_1_2_6_69_1 doi: 10.1016/S0926-860X(01)00529-4 – ident: e_1_2_6_39_1 doi: 10.1002/adma.201700924 – ident: e_1_2_6_12_1 doi: 10.1126/science.1106435 – ident: e_1_2_6_123_1 doi: 10.1021/acssuschemeng.7b02469 – ident: e_1_2_6_162_1 doi: 10.1006/jcat.1996.0314 – ident: e_1_2_6_50_1 doi: 10.1039/C6TA09561E – ident: e_1_2_6_38_1 doi: 10.1021/jacs.6b00124 – ident: e_1_2_6_18_1 doi: 10.1021/jp066970b – ident: e_1_2_6_66_1 doi: 10.1007/BF02067978 – ident: e_1_2_6_6_1 doi: 10.1063/1.481103 – ident: e_1_2_6_145_1 doi: 10.1016/j.catcom.2006.07.006 – ident: e_1_2_6_20_1 doi: 10.1039/D0TC01165G – ident: e_1_2_6_122_1 doi: 10.1039/C8CC07130F – ident: e_1_2_6_14_1 doi: 10.1016/0021-9517(85)90265-9 – ident: e_1_2_6_173_1 doi: 10.1016/j.apcata.2020.117553 – ident: e_1_2_6_2_1 doi: 10.1142/9789814355780_0001 – ident: e_1_2_6_53_1 doi: 10.1016/0021-9517(76)90394-8 – ident: e_1_2_6_68_1 doi: 10.1016/j.ccr.2012.10.005 – ident: e_1_2_6_169_1 doi: 10.1016/j.ccr.2019.06.015 – ident: e_1_2_6_5_1 doi: 10.1080/03602458008067533 – ident: e_1_2_6_78_1 doi: 10.1007/s10562-010-0464-3 – ident: e_1_2_6_167_1 doi: 10.1016/j.jallcom.2014.08.079 – ident: e_1_2_6_54_1 doi: 10.1021/acs.chemrev.6b00441 – ident: e_1_2_6_104_1 doi: 10.1021/acs.jpcc.8b02128 – ident: e_1_2_6_142_1 doi: 10.1039/C9SE00781D – ident: e_1_2_6_29_1 doi: 10.1021/nn102839k – ident: e_1_2_6_154_1 doi: 10.3390/catal9050406 – ident: e_1_2_6_143_1 doi: 10.1016/S0021-9517(02)93724-3 – ident: e_1_2_6_45_1 doi: 10.1039/C4CC00802B – ident: e_1_2_6_33_1 doi: 10.1021/cs401044a – volume: 1 start-page: 178 year: 2018 ident: e_1_2_6_40_1 publication-title: Nat. Can. – ident: e_1_2_6_56_1 doi: 10.1038/nchem.2595 – ident: e_1_2_6_153_1 doi: 10.1002/cctc.201800556 – ident: e_1_2_6_57_1 doi: 10.1021/jacs.8b08334 – ident: e_1_2_6_108_1 doi: 10.1021/jacs.8b10499 – ident: e_1_2_6_116_1 doi: 10.1021/acs.iecr.6b01880 – ident: e_1_2_6_164_1 doi: 10.1023/A:1016501811975 – ident: e_1_2_6_23_1 doi: 10.1080/01614947108075483 – ident: e_1_2_6_92_1 doi: 10.1007/s11244-012-9890-3 – ident: e_1_2_6_3_1 doi: 10.1016/j.jechem.2019.01.027 – ident: e_1_2_6_82_1 doi: 10.1021/jp501237c – ident: e_1_2_6_171_1 doi: 10.1021/ja311261s – ident: e_1_2_6_148_1 doi: 10.1016/S1002-0721(09)60152-6 – ident: e_1_2_6_36_1 doi: 10.1039/C6SC00767H – ident: e_1_2_6_77_1 doi: 10.1016/j.molcata.2008.08.006 – ident: e_1_2_6_65_1 doi: 10.1016/0021-9517(65)90016-3 – ident: e_1_2_6_113_1 doi: 10.1039/C6RA10540H – ident: e_1_2_6_166_1 doi: 10.1007/s003390100775 – ident: e_1_2_6_155_1 doi: 10.1016/S1872-2067(18)63192-4 – ident: e_1_2_6_44_1 doi: 10.1016/0021-9517(92)90110-4 – ident: e_1_2_6_139_1 doi: 10.1023/B:REAC.0000037374.92480.f1 – ident: e_1_2_6_8_1 doi: 10.1016/j.jcat.2006.01.035 – ident: e_1_2_6_24_1 doi: 10.1021/acscatal.6b03357 – ident: e_1_2_6_26_1 doi: 10.1002/cjoc.201800586 – ident: e_1_2_6_126_1 doi: 10.1016/j.apcata.2013.03.037 – ident: e_1_2_6_137_1 doi: 10.1016/S0169-4332(01)00374-9 – ident: e_1_2_6_58_2 doi: 10.1002/ange.201703695 – ident: e_1_2_6_111_1 doi: 10.1021/acs.iecr.8b02126 – ident: e_1_2_6_9_1 doi: 10.1016/j.cattod.2017.01.002 – ident: e_1_2_6_79_1 doi: 10.1021/cm100208a – volume: 1 start-page: 490 year: 2018 ident: e_1_2_6_1_1 publication-title: Nat. Can. – ident: e_1_2_6_107_1 doi: 10.1016/j.apcata.2018.06.017 – ident: e_1_2_6_160_1 doi: 10.1002/anie.201712398 – ident: e_1_2_6_31_1 doi: 10.1021/jacs.5b10145 – ident: e_1_2_6_63_1 doi: 10.1016/0021-9517(67)90292-8 – start-page: 283 volume-title: Stud. Surf. Sci. Catal. year: 2001 ident: e_1_2_6_140_1 – ident: e_1_2_6_80_1 doi: 10.1021/cs400336z – ident: e_1_2_6_152_1 doi: 10.1002/slct.201700859 – ident: e_1_2_6_62_1 doi: 10.1038/s41467-020-15868-8 – ident: e_1_2_6_89_1 doi: 10.1016/j.materresbull.2012.01.022 – ident: e_1_2_6_27_1 doi: 10.1021/ar9000857 – ident: e_1_2_6_34_1 doi: 10.1021/acscatal.8b03650 – ident: e_1_2_6_52_1 doi: 10.1021/acs.jpcc.9b10544 – ident: e_1_2_6_102_1 doi: 10.1246/bcsj.39.1678 – ident: e_1_2_6_41_1 doi: 10.1002/anie.201812131 – ident: e_1_2_6_163_1 doi: 10.1021/jp011027n |
| SSID | ssj0069375 |
| Score | 2.6040165 |
| SecondaryResourceType | review_article |
| Snippet | Even after a century, ammonia (NH3) synthesis from nitrogen and hydrogen through Haber‐Bosch process is still energy intensive. Even with recently introduced... Even after a century, ammonia (NH 3 ) synthesis from nitrogen and hydrogen through Haber‐Bosch process is still energy intensive. Even with recently introduced... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 5838 |
| SubjectTerms | Ammonia Catalysis Catalysts Chemical synthesis Electride Electron density Haber Bosch process Hydride Hydrides Hydrogen bonds Mechanism Metal oxides Nitride Nitrides Nitrogen Oxide Oxygen enrichment Ruthenium |
| Title | Recent Advances in Heterogeneous Catalysis for Ammonia Synthesis |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcctc.202001141 https://www.proquest.com/docview/2466712298 |
| Volume | 12 |
| WOSCitedRecordID | wos000567889100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1867-3899 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0069375 issn: 1867-3880 databaseCode: DRFUL dateStart: 20090101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3PS8MwFMeDbIJe_C1Op-QgeApbk65pbo7q2GEM0Q12K2l-wEA6WTfB_96X_tp2EEFvbUlCSd7L-ya8fILQvc-Zsl6oiPIlIz6znEiI5KQnAs2sJ7QtIEkjPh6Hs5l42TrFX_Ah6g035xn5fO0cXCZZZwMNVSpHENL8OCisf5oUjLfXQM2n18F0VM3GAYRfl8bouG3EgU8qcGOXdnZb2A1MG7W5rVnzoDM4_v_vnqCjUnDifmEhp2jPpGfoIKrueTtHj6AcIfLgfpENkOF5iocuSWYBtmUW6wxHbovHkUswKFzcd5Y7l_jtKwXxCF8v0HTwPImGpLxXAQYE5BzhNOhx7SgtJtSWJUEiQ6Z1L7HKcCOUZwzTUvhGUC7BoV0RUGpdqAIVEsouUSNdpOYKYZZIWBEm1BpNfamVUDZ0WC9hPWkYoy1Eqk6NVQkdd3dfvMcFLpnGrl_iul9a6KEu_1HgNn4s2a7GKC7dLoupHwTco1SELUTz0fillTiKJlH9dv2XSjfo0D3nKS5-GzVWy7W5RfvqczXPlnelOX4DmejfTw |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1LSwMxEMeDtEK9-BarVXMQPC3tJtvdzc2yWirWItpCb0s2DyjIVvoQ_PbO7KO1BxHE44YkLMlM5p8w-YWQay_gyrqhcpQnueNxGzgSIrnTFr7m1hXa5pCkfjAYhOOxeC6yCfEuTM6HWB24oWdk6zU6OB5IN9fUUKUyBiHL7oPCBqjqgS2BkVfvXrqjfrkc-xB_MY8RwW0Okk9KcmOLNTd72IxMa7n5XbRmUae79w__u092C8lJO7mNHJAtkx6SWlS-9HZEbkE7QuyhnTwfYE4nKe1hmswUrMtMl3Ma4SEPsksoaFzaQdudSPr6mYJ8hNJjMureD6OeU7ysAFMCgs4JmN8ONHJaTKgtT_xEhlzrdmKVCYxQrjFcS-EZwQIJLo1VQKu1oAk0SBg_IZV0mppTQnkiYU-YMGs086RWQtkQwV7CutJwzurEKUc1VgV2HF-_eItzYDKLcVzi1bjUyc2q_nsO3PixZqOcpLhwvHnMPN8PXMZEWCcsm45feomjaBitvs7-0uiK1HrDp37cfxg8npMdLM8SXrwGqSxmS3NBttXHYjKfXRa2-QUMYeM_ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEB6kFfXiW6xWzUHwtLSbbHc3N8vqUrEU0QrelmweUJBt6UPw35vZR2sPIojHDTNhycxkvoTJNwDXXsCkcUPpSE8wx2MmcITN5E6H-4oZlytTkCT1g8EgfHvjT2U1Ib6FKfghlhduGBn5fo0BrifKtFasoVLmHIQ0fw9qD0B1DzvJ1KB-9xy_9qvt2Lf5F-sYkbjNQeaTirmxTVvrM6xnphXc_A5a86wT7_3D_-7Dbgk5SbfwkQPY0NkhbEdVp7cjuLXY0eYe0i3qAWZklJEelsmMrXfp8WJGIrzkQe4SYjEu6aLvjgR5-cwsfLSjx_Aa3w-jnlN2VrAmsYDOCajfCRTytOhQGZb6qQiZUp3USB1oLl2tmRLc05wGwoY0ilis1rYqViGl7ARq2TjTp0BYKuyZMKVGK-oJJbk0IRJ7ceMKzRhtgFOtaiJL2nHsfvGeFITJNMF1SZbr0oCbpfykINz4UbJZGSkpA2-WUM_3A5dSHjaA5ub4ZZYkiobR8uvsL0pXsPV0Fyf9h8HjOezgcF7v4jWhNp8u9AVsyo_5aDa9LF3zC7_f4ro |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+Advances+in+Heterogeneous+Catalysis+for+Ammonia+Synthesis&rft.jtitle=ChemCatChem&rft.au=Marakatti%2C+Vijaykumar+S.&rft.au=Gaigneaux%2C+Eric+M.&rft.date=2020-12-04&rft.issn=1867-3880&rft.eissn=1867-3899&rft.volume=12&rft.issue=23&rft.spage=5838&rft.epage=5857&rft_id=info:doi/10.1002%2Fcctc.202001141&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_cctc_202001141 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1867-3880&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1867-3880&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1867-3880&client=summon |