Recent Advances in Heterogeneous Catalysis for Ammonia Synthesis

Even after a century, ammonia (NH3) synthesis from nitrogen and hydrogen through Haber‐Bosch process is still energy intensive. Even with recently introduced second generation Ru based catalysts with superior performance over commercial Fe based catalysts, there is still place for upgrading with new...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ChemCatChem Jg. 12; H. 23; S. 5838 - 5857
Hauptverfasser: Marakatti, Vijaykumar S., Gaigneaux, Eric M.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Weinheim Wiley Subscription Services, Inc 04.12.2020
Schlagworte:
ISSN:1867-3880, 1867-3899
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Even after a century, ammonia (NH3) synthesis from nitrogen and hydrogen through Haber‐Bosch process is still energy intensive. Even with recently introduced second generation Ru based catalysts with superior performance over commercial Fe based catalysts, there is still place for upgrading with new approach using advanced materials in catalyst formulation. The alkali and alkaline metal promoted Ru supported carbon and metal oxide catalyst attracted attention at initial stage and extensively studied for NH3 synthesis in the 20th century. Until recently, advanced materials such as electrides, hydrides, nitrides, oxides and oxy‐hydrides‐nitrides studied as support and active component of catalyst fascinated much attention, with milder reaction conditions for NH3 synthesis. These materials with unique properties of reversible storage of electrons, hydrides, nitrides and oxygen vacancies enrich electron density on Ru catalyst and cleave N≡N bond with very low activation energy (<60 kJ/mol). The mechanistic understanding of these materials leads to the fact that activation N≡N bond is no more rate‐determining step (RDS). Instead, formation of N−H bond is RDS, pushing towards an innovative research directions and scientific basis for development of new catalysts. Enormous maturation of experimental and theoretical methods with improved precession over worldwide research effort helped in gaining a fundamental understanding of these materials in NH3 synthesis. The most of Ru supported on these advanced materials were better in performance compared to benchmark Cs−Ru/MgO and Ru/AC catalysts in NH3 synthesis. Insights on these materials and their mechanism are covered in this review, which digs towards finding a realistic catalyst for NH3 synthesis. TOC: This review will give insights on recent development in advanced materials such as electrides, hydrides, nitrides, oxides and oxy‐hydrides‐nitrides as support and active component of Ru based catalyst in NH3 synthesis at milder reaction conditions. Electrides, hydrides, nitrides and oxides with their promising unique properties of reversible electron, hydride, nitride and oxide vacancies storage have tremendously improved Ru based catalysts efficiency. Perceptions on these materials and their mechanism digs towards finding a realistic catalyst for NH3 synthesis.
AbstractList Even after a century, ammonia (NH3) synthesis from nitrogen and hydrogen through Haber‐Bosch process is still energy intensive. Even with recently introduced second generation Ru based catalysts with superior performance over commercial Fe based catalysts, there is still place for upgrading with new approach using advanced materials in catalyst formulation. The alkali and alkaline metal promoted Ru supported carbon and metal oxide catalyst attracted attention at initial stage and extensively studied for NH3 synthesis in the 20th century. Until recently, advanced materials such as electrides, hydrides, nitrides, oxides and oxy‐hydrides‐nitrides studied as support and active component of catalyst fascinated much attention, with milder reaction conditions for NH3 synthesis. These materials with unique properties of reversible storage of electrons, hydrides, nitrides and oxygen vacancies enrich electron density on Ru catalyst and cleave N≡N bond with very low activation energy (<60 kJ/mol). The mechanistic understanding of these materials leads to the fact that activation N≡N bond is no more rate‐determining step (RDS). Instead, formation of N−H bond is RDS, pushing towards an innovative research directions and scientific basis for development of new catalysts. Enormous maturation of experimental and theoretical methods with improved precession over worldwide research effort helped in gaining a fundamental understanding of these materials in NH3 synthesis. The most of Ru supported on these advanced materials were better in performance compared to benchmark Cs−Ru/MgO and Ru/AC catalysts in NH3 synthesis. Insights on these materials and their mechanism are covered in this review, which digs towards finding a realistic catalyst for NH3 synthesis. TOC: This review will give insights on recent development in advanced materials such as electrides, hydrides, nitrides, oxides and oxy‐hydrides‐nitrides as support and active component of Ru based catalyst in NH3 synthesis at milder reaction conditions. Electrides, hydrides, nitrides and oxides with their promising unique properties of reversible electron, hydride, nitride and oxide vacancies storage have tremendously improved Ru based catalysts efficiency. Perceptions on these materials and their mechanism digs towards finding a realistic catalyst for NH3 synthesis.
Even after a century, ammonia (NH 3 ) synthesis from nitrogen and hydrogen through Haber‐Bosch process is still energy intensive. Even with recently introduced second generation Ru based catalysts with superior performance over commercial Fe based catalysts, there is still place for upgrading with new approach using advanced materials in catalyst formulation. The alkali and alkaline metal promoted Ru supported carbon and metal oxide catalyst attracted attention at initial stage and extensively studied for NH 3 synthesis in the 20 th century. Until recently, advanced materials such as electrides, hydrides, nitrides, oxides and oxy‐hydrides‐nitrides studied as support and active component of catalyst fascinated much attention, with milder reaction conditions for NH 3 synthesis. These materials with unique properties of reversible storage of electrons, hydrides, nitrides and oxygen vacancies enrich electron density on Ru catalyst and cleave N≡N bond with very low activation energy (<60 kJ/mol). The mechanistic understanding of these materials leads to the fact that activation N≡N bond is no more rate‐determining step (RDS). Instead, formation of N−H bond is RDS, pushing towards an innovative research directions and scientific basis for development of new catalysts. Enormous maturation of experimental and theoretical methods with improved precession over worldwide research effort helped in gaining a fundamental understanding of these materials in NH 3 synthesis. The most of Ru supported on these advanced materials were better in performance compared to benchmark Cs−Ru/MgO and Ru/AC catalysts in NH 3 synthesis. Insights on these materials and their mechanism are covered in this review, which digs towards finding a realistic catalyst for NH 3 synthesis.
Even after a century, ammonia (NH3) synthesis from nitrogen and hydrogen through Haber‐Bosch process is still energy intensive. Even with recently introduced second generation Ru based catalysts with superior performance over commercial Fe based catalysts, there is still place for upgrading with new approach using advanced materials in catalyst formulation. The alkali and alkaline metal promoted Ru supported carbon and metal oxide catalyst attracted attention at initial stage and extensively studied for NH3 synthesis in the 20th century. Until recently, advanced materials such as electrides, hydrides, nitrides, oxides and oxy‐hydrides‐nitrides studied as support and active component of catalyst fascinated much attention, with milder reaction conditions for NH3 synthesis. These materials with unique properties of reversible storage of electrons, hydrides, nitrides and oxygen vacancies enrich electron density on Ru catalyst and cleave N≡N bond with very low activation energy (<60 kJ/mol). The mechanistic understanding of these materials leads to the fact that activation N≡N bond is no more rate‐determining step (RDS). Instead, formation of N−H bond is RDS, pushing towards an innovative research directions and scientific basis for development of new catalysts. Enormous maturation of experimental and theoretical methods with improved precession over worldwide research effort helped in gaining a fundamental understanding of these materials in NH3 synthesis. The most of Ru supported on these advanced materials were better in performance compared to benchmark Cs−Ru/MgO and Ru/AC catalysts in NH3 synthesis. Insights on these materials and their mechanism are covered in this review, which digs towards finding a realistic catalyst for NH3 synthesis.
Author Marakatti, Vijaykumar S.
Gaigneaux, Eric M.
Author_xml – sequence: 1
  givenname: Vijaykumar S.
  orcidid: 0000-0002-2586-5102
  surname: Marakatti
  fullname: Marakatti, Vijaykumar S.
  email: vijaykumar.marakatti@uclouvain.be
  organization: Université catholique de Louvain (UCLouvain)
– sequence: 2
  givenname: Eric M.
  orcidid: 0000-0003-2239-4306
  surname: Gaigneaux
  fullname: Gaigneaux, Eric M.
  organization: Université catholique de Louvain (UCLouvain)
BookMark eNqFkE1LAzEQhoNUsK1ePS943ppkP5LcLItaoSBoPYdsdlZTtklNUmX_vVsqFQTxNC_D88zAO0Ej6ywgdEnwjGBMr7WOekYxxZiQnJygMeElSzMuxOiYOT5DkxDWGJciY8UY3TyBBhuTefOhrIaQGJssIIJ3r2DB7UJSqai6PpiQtM4n883GWaOS597GNxi25-i0VV2Ai-85RS93t6tqkS4f7x-q-TLVOc1IymhZsCbnpADetFld1opnTVPUrQYGQhOArFEiB0GZYpztEcwzPCiDUNNsiq4Od7feve8gRLl2O2-Hl5LmZckIpYIPVH6gtHcheGilNlFF42z0ynSSYLnvSu67kseuBm32S9t6s1G-_1sQB-HTdND_Q8uqWlU_7hdNv356
CitedBy_id crossref_primary_10_1007_s11244_021_01445_w
crossref_primary_10_1007_s11426_024_2471_9
crossref_primary_10_1007_s43938_023_00019_4
crossref_primary_10_1016_j_ijhydene_2024_08_408
crossref_primary_10_1002_cssc_202300234
crossref_primary_10_1016_j_catcom_2023_106689
crossref_primary_10_1016_j_ssi_2023_116384
crossref_primary_10_1039_D3RA00133D
crossref_primary_10_3390_catal15020160
crossref_primary_10_1016_j_cej_2023_146354
crossref_primary_10_1002_cctc_202301579
crossref_primary_10_1016_j_apsusc_2021_151658
crossref_primary_10_1016_j_cej_2025_168541
crossref_primary_10_3390_catal13121464
crossref_primary_10_1021_jacs_3c06259
crossref_primary_10_1016_j_cattod_2021_11_005
crossref_primary_10_1088_2632_2153_ac8fe0
crossref_primary_10_2516_stet_2023029
crossref_primary_10_1002_anie_202219298
crossref_primary_10_1002_cctc_202400403
crossref_primary_10_1007_s40145_022_0633_z
crossref_primary_10_1021_acscatal_5c03006
crossref_primary_10_1039_D0SE01077D
crossref_primary_10_3390_nano13222914
crossref_primary_10_1016_j_est_2023_108165
crossref_primary_10_1016_j_ijhydene_2025_150995
crossref_primary_10_1039_D5TA04960A
crossref_primary_10_1016_j_checat_2022_02_009
crossref_primary_10_1016_j_mcat_2024_114393
crossref_primary_10_1016_j_cattod_2025_115342
crossref_primary_10_1016_j_ijhydene_2024_05_176
crossref_primary_10_1002_ange_202219298
crossref_primary_10_1002_adma_202501960
crossref_primary_10_3390_cryst14090818
crossref_primary_10_1039_D5CY00122F
crossref_primary_10_1002_slct_202200924
crossref_primary_10_1016_j_fuel_2024_131863
crossref_primary_10_1002_cssc_202101571
crossref_primary_10_1016_j_cej_2024_152506
crossref_primary_10_1021_jacs_4c14966
crossref_primary_10_1002_adma_202005721
crossref_primary_10_1016_j_seppur_2025_133275
crossref_primary_10_1021_jacs_5c06813
crossref_primary_10_1016_j_ijhydene_2024_11_053
crossref_primary_10_1016_j_mcat_2025_114907
crossref_primary_10_1016_j_apcata_2024_119677
crossref_primary_10_1016_j_jcat_2022_10_005
crossref_primary_10_1002_advs_202204248
crossref_primary_10_1016_j_ijhydene_2025_03_083
crossref_primary_10_1002_cssc_202301016
crossref_primary_10_1002_ejic_202100117
crossref_primary_10_1016_j_ijhydene_2021_12_022
crossref_primary_10_1002_cctc_202201172
crossref_primary_10_1039_D1CY01956B
crossref_primary_10_1021_acsami_5c10234
crossref_primary_10_1002_slct_202501535
crossref_primary_10_1016_j_ces_2021_117287
crossref_primary_10_1007_s12210_025_01329_1
crossref_primary_10_1016_j_apcata_2024_119562
crossref_primary_10_1088_1361_6463_ad4717
crossref_primary_10_1007_s10562_023_04332_z
crossref_primary_10_1039_D1CY01156A
crossref_primary_10_1016_j_checat_2021_08_006
crossref_primary_10_1039_D5TA04503G
crossref_primary_10_1002_slct_202201359
crossref_primary_10_1039_D4RA03301A
crossref_primary_10_3390_chemistry4020035
crossref_primary_10_1038_s44160_023_00321_7
crossref_primary_10_1016_j_apcatb_2021_119955
crossref_primary_10_1016_j_fuproc_2025_108267
crossref_primary_10_1016_j_fmre_2024_11_026
crossref_primary_10_1016_j_jcat_2025_116136
crossref_primary_10_1016_j_fuproc_2023_107851
crossref_primary_10_59761_RCR5094
crossref_primary_10_1016_j_est_2022_105714
crossref_primary_10_1016_j_jechem_2024_07_033
crossref_primary_10_1016_j_jcou_2024_102699
crossref_primary_10_3390_nano12101644
crossref_primary_10_1002_adma_202408434
crossref_primary_10_1246_cl_200855
crossref_primary_10_1002_tcr_202400234
crossref_primary_10_1021_acs_energyfuels_5c02533
crossref_primary_10_1016_j_apcata_2025_120465
crossref_primary_10_1016_j_jcat_2024_115530
crossref_primary_10_1021_acs_jpcc_5c03730
crossref_primary_10_1016_j_ijhydene_2021_04_014
crossref_primary_10_1016_j_mcat_2024_114781
crossref_primary_10_1002_smll_202208272
crossref_primary_10_1016_j_diamond_2025_112797
crossref_primary_10_1016_j_cej_2023_143533
crossref_primary_10_1021_acs_analchem_5c00351
crossref_primary_10_1002_asia_202500657
crossref_primary_10_1016_j_jcat_2021_10_024
crossref_primary_10_1016_j_ces_2025_121676
crossref_primary_10_1016_j_jechem_2024_05_023
crossref_primary_10_1002_adma_202406944
crossref_primary_10_1039_D1RA01584B
crossref_primary_10_1016_j_cclet_2022_02_042
crossref_primary_10_1002_cphc_202300182
Cites_doi 10.1103/PhysRevLett.91.126401
10.1038/nature11812
10.1039/C5SC00933B
10.1021/acssuschemeng.7b02168
10.1016/j.catcom.2013.07.001
10.1016/S1872-2067(09)60055-3
10.1016/j.cattod.2018.01.008
10.1021/acssuschemeng.8b04683
10.1021/acs.iecr.8b04915
10.1039/C6CY02089E
10.1002/anie.201703695
10.1166/apm.2014.1079
10.1016/j.catcom.2015.04.016
10.1016/j.apcata.2014.10.030
10.1016/0021-9517(78)90026-X
10.1021/acs.jpcc.7b07268
10.1039/C5NJ03479E
10.1006/jcat.1996.0268
10.1007/s10562-014-1226-4
10.1039/C9CC07385J
10.1016/0021-9517(67)90293-X
10.1039/C9CY01303B
10.1016/S1381-1169(00)00396-4
10.1039/C6SC02382G
10.1021/acssuschemeng.9b06299
10.1002/ange.200301553
10.1038/nchem.1476
10.1021/acscatal.8b02839
10.1039/b707913c
10.1007/s10562-008-9594-2
10.1021/jacs.8b06187
10.1002/aenm.201801772
10.1021/jacs.7b08891
10.1126/science.1083842
10.1016/j.jcat.2020.05.039
10.1246/cl.130574
10.1016/j.catcom.2010.03.008
10.1002/cctc.201700353
10.1039/C9CY00533A
10.1021/acs.jpcc.9b10850
10.1007/BF00765698
10.1006/jcat.2002.3571
10.1016/j.cattod.2011.01.053
10.1039/C9SC01539F
10.1039/C5CY00014A
10.1021/acssuschemeng.7b04586
10.1016/j.jre.2018.09.010
10.1039/C8CP05800H
10.1016/j.jtice.2019.10.006
10.1016/j.jcat.2016.09.013
10.1039/C6CC08566K
10.1021/acsami.6b12253
10.1016/j.ijhydene.2012.09.026
10.1002/cctc.201800287
10.1016/S0926-860X(01)00678-0
10.1021/acs.chemmater.9b03099
10.1016/j.apcata.2018.01.006
10.1038/ncomms7731
10.1016/j.ijhydene.2017.10.108
10.1016/j.solidstatesciences.2019.105983
10.1039/a801643g
10.1021/acscatal.7b00284
10.1021/acs.jpcc.5b06811
10.1016/S0926-860X(01)00626-3
10.1016/0926-860X(92)80001-S
10.1021/jacs.7b10354
10.1007/s10562-016-1862-y
10.1002/cctc.201500309
10.1021/acs.jpcc.9b05366
10.1006/jcat.2001.3431
10.1002/anie.198605581
10.1002/ange.201712398
10.1021/acsaem.0c00754
10.1038/s41586-020-2464-9
10.1039/C9DT03673C
10.1021/acsami.9b11318
10.1016/j.jechem.2019.01.026
10.1021/ja010963d
10.1080/00986445.2014.923995
10.1021/jacs.9b10726
10.1016/j.progsolidstchem.2010.08.003
10.1021/acscatal.6b01940
10.1002/asia.201900618
10.1103/PhysRevLett.83.1814
10.1039/b002930k
10.1002/anie.200301553
10.1016/S0926-860X(00)00764-X
10.1021/cr500032a
10.1039/C7SC05343F
10.1021/acs.jpcc.7b12364
10.1021/acs.iecr.9b01610
10.1039/C9CY01424A
10.1039/C9RA03097B
10.1016/S0926-860X(01)00826-2
10.1016/j.mcat.2016.12.015
10.1016/j.progsolidstchem.2018.09.001
10.1016/S0926-860X(01)00529-4
10.1002/adma.201700924
10.1126/science.1106435
10.1021/acssuschemeng.7b02469
10.1006/jcat.1996.0314
10.1039/C6TA09561E
10.1021/jacs.6b00124
10.1021/jp066970b
10.1007/BF02067978
10.1063/1.481103
10.1016/j.catcom.2006.07.006
10.1039/D0TC01165G
10.1039/C8CC07130F
10.1016/0021-9517(85)90265-9
10.1016/j.apcata.2020.117553
10.1142/9789814355780_0001
10.1016/0021-9517(76)90394-8
10.1016/j.ccr.2012.10.005
10.1016/j.ccr.2019.06.015
10.1080/03602458008067533
10.1007/s10562-010-0464-3
10.1016/j.jallcom.2014.08.079
10.1021/acs.chemrev.6b00441
10.1021/acs.jpcc.8b02128
10.1039/C9SE00781D
10.1021/nn102839k
10.3390/catal9050406
10.1016/S0021-9517(02)93724-3
10.1039/C4CC00802B
10.1021/cs401044a
10.1038/nchem.2595
10.1002/cctc.201800556
10.1021/jacs.8b08334
10.1021/jacs.8b10499
10.1021/acs.iecr.6b01880
10.1023/A:1016501811975
10.1080/01614947108075483
10.1007/s11244-012-9890-3
10.1016/j.jechem.2019.01.027
10.1021/jp501237c
10.1021/ja311261s
10.1016/S1002-0721(09)60152-6
10.1039/C6SC00767H
10.1016/j.molcata.2008.08.006
10.1016/0021-9517(65)90016-3
10.1039/C6RA10540H
10.1007/s003390100775
10.1016/S1872-2067(18)63192-4
10.1016/0021-9517(92)90110-4
10.1023/B:REAC.0000037374.92480.f1
10.1016/j.jcat.2006.01.035
10.1021/acscatal.6b03357
10.1002/cjoc.201800586
10.1016/j.apcata.2013.03.037
10.1016/S0169-4332(01)00374-9
10.1002/ange.201703695
10.1021/acs.iecr.8b02126
10.1016/j.cattod.2017.01.002
10.1021/cm100208a
10.1016/j.apcata.2018.06.017
10.1002/anie.201712398
10.1021/jacs.5b10145
10.1016/0021-9517(67)90292-8
10.1021/cs400336z
10.1002/slct.201700859
10.1038/s41467-020-15868-8
10.1016/j.materresbull.2012.01.022
10.1021/ar9000857
10.1021/acscatal.8b03650
10.1021/acs.jpcc.9b10544
10.1246/bcsj.39.1678
10.1002/anie.201812131
10.1021/jp011027n
ContentType Journal Article
Copyright 2020 Wiley‐VCH GmbH
Copyright_xml – notice: 2020 Wiley‐VCH GmbH
DBID AAYXX
CITATION
DOI 10.1002/cctc.202001141
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1867-3899
EndPage 5857
ExternalDocumentID 10_1002_cctc_202001141
CCTC202001141
Genre reviewArticle
GrantInformation_xml – fundername: Marie Skłodowska Curie – Individual Fellowship
  funderid: MSCA-IF-EF-ST
– fundername: Horizon 2020
  funderid: 841964
GroupedDBID 05W
0R~
1OC
33P
4.4
5DZ
77Q
8-1
A00
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABDBF
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACUHS
ACXBN
ACXQS
ADBBV
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
DCZOG
DRFUL
DRSTM
DU5
EBS
ESX
G-S
HGLYW
HZ~
I-F
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MXFUL
MXSTM
MY~
NNB
O9-
P2W
P4E
ROL
SUPJJ
TUS
WBKPD
WOHZO
WXSBR
WYJ
XV2
ZZTAW
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
ID FETCH-LOGICAL-c4231-72657d4815e8df3b6ba83dd5bfce7e9c1ee3da94e927a787f3b60830d48e8db23
IEDL.DBID DRFUL
ISICitedReferencesCount 131
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000567889100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1867-3880
IngestDate Fri Jul 25 12:26:23 EDT 2025
Tue Nov 18 22:14:37 EST 2025
Sat Nov 29 07:12:47 EST 2025
Wed Jan 22 16:31:25 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 23
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4231-72657d4815e8df3b6ba83dd5bfce7e9c1ee3da94e927a787f3b60830d48e8db23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2239-4306
0000-0002-2586-5102
OpenAccessLink http://hdl.handle.net/2078.1/235219
PQID 2466712298
PQPubID 986343
PageCount 20
ParticipantIDs proquest_journals_2466712298
crossref_citationtrail_10_1002_cctc_202001141
crossref_primary_10_1002_cctc_202001141
wiley_primary_10_1002_cctc_202001141_CCTC202001141
PublicationCentury 2000
PublicationDate December 4, 2020
PublicationDateYYYYMMDD 2020-12-04
PublicationDate_xml – month: 12
  year: 2020
  text: December 4, 2020
  day: 04
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle ChemCatChem
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2010; 11
2018; 562
1985; 29
2013; 3
2019; 11
2019; 10
2019; 14
2016; 146
2020; 11
2020; 99
2020; 10
2017; 433
2010; 22
2018; 6
2018; 9
2018; 8
2015; 137
2018; 1
2019; 21
2010; 28
1965; 4
2007; 8
1985; 92
2016; 40
2017; 286
2019; 397
1971; 4
2019; 9
2010; 31
2010; 38
1976; 44
2019; 31
1978; 54
2019; 37
2019; 36
2019; 39
2019; 105
2002; 81
2008; 126
2020; 389
2000; 112
2017 2017; 56 129
2012; 37
2006; 239
2001; 209
2011; 5
2017; 139
2015; 68
1967; 8
2016; 6
2016; 7
2019; 40
1986; 25
1992; 136
2019; 48
2013; 458
2014; 35
2015; 119
2011; 141
2012; 47
2014; 144
2018; 10
1998; 8
1990; 4
2017; 5
2017; 7
2018; 122
2017; 42
2001; 222
2017; 8
2017; 2
2009; 42
2001; 180
2019; 55
2019; 58
2016; 344
2015; 504
2020; 56
2020; 124
1999; 83
2012; 55
2017; 9
2019; 123
2001; 105
2020; 8
2020; 4
2014; 4
2020; 3
2003; 91
2001
2000
2018 2018; 57 130
2015; 618
2005; 307
2000; 163
2016; 116
2017; 121
2001; 218
2014; 50
2001; 219
1992; 82
2001; 215
2014; 118
2001; 123
2001; 72
2015; 6
2004; 83
1966; 39
2015; 5
2018; 140
2015; 202
2020; 583
2013; 42
1980; 21
2013; 41
2002; 211
1996; 162
2007
2016; 52
2017; 29
2003 2003; 42 115
1996; 163
2011; 174
2019; 141
2015; 7
2014; 114
2016; 55
2020
2018; 316
2007; 111
2018; 554
2002; 205
2018
2013; 257
2013; 135
2018; 52
2016; 138
2020; 598
2013
2013; 494
2002; 208
2009; 305
2003; 301
2012; 4
2018; 57
e_1_2_6_114_1
e_1_2_6_137_1
e_1_2_6_53_1
e_1_2_6_76_1
e_1_2_6_95_1
e_1_2_6_118_1
e_1_2_6_30_1
e_1_2_6_72_1
e_1_2_6_91_1
Liang C. (e_1_2_6_140_1) 2001
e_1_2_6_152_1
e_1_2_6_110_1
e_1_2_6_133_1
e_1_2_6_156_1
e_1_2_6_19_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_99_1
e_1_2_6_125_1
e_1_2_6_64_1
e_1_2_6_87_1
e_1_2_6_106_1
e_1_2_6_148_1
e_1_2_6_129_1
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_83_1
e_1_2_6_163_1
e_1_2_6_121_1
e_1_2_6_167_1
e_1_2_6_102_1
e_1_2_6_144_1
e_1_2_6_9_1
Foster S. L. (e_1_2_6_1_1) 2018; 1
e_1_2_6_5_1
e_1_2_6_170_1
Liu H. (e_1_2_6_4_1) 2014; 35
e_1_2_6_49_1
e_1_2_6_22_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_68_1
e_1_2_6_73_1
e_1_2_6_136_1
e_1_2_6_54_1
e_1_2_6_96_1
e_1_2_6_117_1
e_1_2_6_159_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_92_1
e_1_2_6_151_1
e_1_2_6_132_1
e_1_2_6_113_1
e_1_2_6_155_1
e_1_2_6_58_2
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_39_1
e_1_2_6_77_1
e_1_2_6_16_1
e_1_2_6_58_1
e_1_2_6_84_1
e_1_2_6_42_1
e_1_2_6_105_1
e_1_2_6_128_1
e_1_2_6_147_1
e_1_2_6_65_1
e_1_2_6_80_1
e_1_2_6_109_1
e_1_2_6_61_1
e_1_2_6_120_1
e_1_2_6_162_1
e_1_2_6_101_1
e_1_2_6_124_1
e_1_2_6_143_1
e_1_2_6_166_1
e_1_2_6_6_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_88_1
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_69_1
e_1_2_6_51_1
e_1_2_6_74_1
e_1_2_6_97_1
e_1_2_6_116_1
e_1_2_6_139_1
e_1_2_6_158_1
e_1_2_6_32_1
e_1_2_6_70_1
e_1_2_6_93_1
e_1_2_6_131_1
e_1_2_6_150_1
e_1_2_6_173_1
e_1_2_6_112_1
e_1_2_6_135_1
e_1_2_6_154_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_78_1
e_1_2_6_62_1
e_1_2_6_104_1
e_1_2_6_43_1
e_1_2_6_127_1
e_1_2_6_169_1
e_1_2_6_81_1
e_1_2_6_20_1
e_1_2_6_108_1
e_1_2_6_142_1
e_1_2_6_161_1
Aslan M. Y. (e_1_2_6_85_1) 2020
e_1_2_6_100_1
e_1_2_6_146_1
e_1_2_6_123_1
e_1_2_6_165_1
e_1_2_6_7_2
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_66_1
e_1_2_6_89_1
e_1_2_6_28_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_98_1
e_1_2_6_115_1
Hargreaves J. S. J. (e_1_2_6_25_1) 2018
e_1_2_6_75_1
e_1_2_6_138_1
e_1_2_6_10_1
e_1_2_6_94_1
e_1_2_6_119_1
e_1_2_6_71_1
e_1_2_6_90_1
e_1_2_6_153_1
e_1_2_6_130_1
e_1_2_6_172_1
e_1_2_6_111_1
e_1_2_6_157_1
e_1_2_6_134_1
Gong Y. (e_1_2_6_40_1) 2018; 1
e_1_2_6_160_1
e_1_2_6_14_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_56_1
e_1_2_6_37_1
e_1_2_6_79_1
e_1_2_6_103_1
e_1_2_6_126_1
e_1_2_6_149_1
e_1_2_6_63_1
e_1_2_6_86_1
e_1_2_6_107_1
e_1_2_6_82_1
e_1_2_6_141_1
e_1_2_6_164_1
e_1_2_6_160_2
e_1_2_6_122_1
e_1_2_6_145_1
e_1_2_6_168_1
e_1_2_6_8_1
Hargreaves J. S. J. (e_1_2_6_21_1)
e_1_2_6_171_1
e_1_2_6_48_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_67_1
References_xml – volume: 4
  start-page: 674
  year: 2014
  end-page: 680
  publication-title: ACS Catal.
– volume: 91
  year: 2003
  publication-title: Phys. Rev. Lett.
– volume: 10
  start-page: 105
  year: 2020
  end-page: 112
  publication-title: Catal. Sci. Technol.
– volume: 123
  start-page: 18475
  year: 2019
  end-page: 18481
  publication-title: J. Phys. Chem. C.
– volume: 21
  start-page: 5117
  year: 2019
  end-page: 5122
  publication-title: Phys. Chem. Chem. Phys.
– volume: 138
  start-page: 3970
  year: 2016
  end-page: 3973
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 351
  year: 2007
  end-page: 354
  publication-title: Catal. Commun.
– volume: 2
  start-page: 6040
  year: 2017
  end-page: 6046
  publication-title: ChemistrySelect.
– volume: 9
  start-page: 2230
  year: 2018
  end-page: 2237
  publication-title: Chem. Sci.
– volume: 1
  start-page: 178
  year: 2018
  end-page: 185
  publication-title: Nat. Can.
– volume: 5
  start-page: 5550
  year: 2017
  end-page: 5558
  publication-title: J. Mater. Chem. A.
– volume: 6
  start-page: 17258
  year: 2018
  end-page: 17266
  publication-title: ACS Sustainable Chem. Eng.
– volume: 112
  start-page: 5343
  year: 2000
  end-page: 5347
  publication-title: J. Chem. Phys.
– volume: 6
  start-page: 3577
  year: 2015
  end-page: 3581
  publication-title: Chem. Sci.
– volume: 305
  start-page: 125
  year: 2009
  end-page: 129
  publication-title: J. Mol. Catal. A
– volume: 135
  start-page: 5493
  year: 2013
  end-page: 5496
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 934
  year: 2012
  end-page: 940
  publication-title: Nat. Chem.
– volume: 7
  start-page: 4036
  year: 2016
  end-page: 4043
  publication-title: Chem. Sci.
– volume: 162
  start-page: 138
  year: 1996
  end-page: 142
  publication-title: J. Catal.
– volume: 163
  start-page: 148
  year: 1996
  end-page: 157
  publication-title: J. Catal.
– volume: 8
  start-page: 10977
  year: 2018
  end-page: 10984
  publication-title: ACS Catal.
– volume: 9
  start-page: 64
  year: 2017
  end-page: 70
  publication-title: Nat. Chem.
– volume: 119
  start-page: 28368
  year: 2015
  end-page: 28376
  publication-title: J. Phys. Chem. C.
– volume: 554
  start-page: 1
  year: 2018
  end-page: 9
  publication-title: Appl. Catal. A
– volume: 105
  start-page: 7525
  year: 2001
  end-page: 7532
  publication-title: J. Phys. Chem. B.
– volume: 126
  start-page: 134
  year: 2008
  end-page: 141
  publication-title: Catal. Lett.
– volume: 6
  start-page: 51106
  year: 2016
  end-page: 51110
  publication-title: RSC Adv.
– volume: 56 129
  start-page: 8716 8842
  year: 2017 2017
  end-page: 8720 8846
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 55
  start-page: 1046
  year: 2012
  end-page: 1053
  publication-title: Top. Catal.
– volume: 8
  start-page: 10551
  year: 2020
  end-page: 10567
  publication-title: J. Mater. Chem. C.
– volume: 52
  start-page: 14369
  year: 2016
  end-page: 14372
  publication-title: Chem. Commun.
– volume: 141
  start-page: 22
  year: 2011
  end-page: 26
  publication-title: Catal. Lett.
– volume: 389
  start-page: 218
  year: 2020
  end-page: 228
  publication-title: J. Catal.
– volume: 11
  start-page: 37602
  year: 2019
  end-page: 37616
  publication-title: ACS Appl. Mater. Interfaces.
– volume: 25
  start-page: 558
  year: 1986
  end-page: 559
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 40
  start-page: 5448
  year: 2016
  end-page: 5457
  publication-title: New J. Chem.
– volume: 92
  start-page: 305
  year: 1985
  end-page: 311
  publication-title: J. Catal.
– start-page: 173
  year: 2018
  end-page: 192
– volume: 307
  start-page: 555
  year: 2005
  end-page: 558
  publication-title: Science.
– volume: 174
  start-page: 97
  year: 2011
  end-page: 105
  publication-title: Catal. Today.
– volume: 205
  start-page: 205
  year: 2002
  end-page: 212
  publication-title: J. Catal.
– volume: 504
  start-page: 44
  year: 2015
  end-page: 50
  publication-title: Appl. Catal. A
– volume: 14
  start-page: 2815
  year: 2019
  end-page: 2821
  publication-title: Chem. Asian J.
– volume: 36
  start-page: 25
  year: 2019
  end-page: 36
  publication-title: J. Energy Chem.
– volume: 50
  start-page: 4791
  year: 2014
  end-page: 4794
  publication-title: Chem. Commun.
– volume: 5
  start-page: 2829
  year: 2015
  end-page: 2838
  publication-title: Catal. Sci. Technol.
– volume: 22
  start-page: 2898
  year: 2010
  end-page: 2907
  publication-title: Chem. Mater.
– volume: 6
  start-page: 6731
  year: 2015
  end-page: 6739
  publication-title: Nat. Commun.
– volume: 209
  start-page: 317
  year: 2001
  end-page: 325
  publication-title: Appl. Catal. A
– volume: 215
  start-page: 149
  year: 2001
  end-page: 160
  publication-title: Appl. Catal. A
– volume: 8
  start-page: 674
  year: 2017
  end-page: 679
  publication-title: Chem. Sci.
– volume: 494
  start-page: 336
  year: 2013
  end-page: 340
  publication-title: Nature
– start-page: 1057
  year: 2000
  end-page: 1058
  publication-title: Chem. Commun.
– volume: 83
  start-page: 39
  year: 2004
  end-page: 45
  publication-title: React. Kinet. Catal. Lett.
– volume: 9
  start-page: 4785
  year: 2019
  end-page: 4820
  publication-title: Catal. Sci. Technol.
– volume: 118
  start-page: 7615
  year: 2014
  end-page: 7621
  publication-title: J. Phys. Chem. C.
– volume: 140
  start-page: 17702
  year: 2018
  end-page: 17710
  publication-title: J. Am. Chem. Soc.
– volume: 146
  start-page: 2324
  year: 2016
  end-page: 2329
  publication-title: Catal. Lett.
– volume: 583
  start-page: 391
  year: 2020
  end-page: 395
  publication-title: Nature
– volume: 316
  start-page: 230
  year: 2018
  end-page: 236
  publication-title: Catal. Today.
– volume: 29
  start-page: 267
  year: 1985
  end-page: 274
  publication-title: React. Kinet. Catal. Lett.
– volume: 35
  start-page: 1619
  year: 2014
  end-page: 1640
  publication-title: . J. Catal.
– volume: 42 115
  start-page: 2004 2050
  year: 2003 2003
  end-page: 2008 2055
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 208
  start-page: 180
  year: 2002
  end-page: 186
  publication-title: J. Catal.
– volume: 301
  start-page: 626
  year: 2003
  end-page: 629
  publication-title: Science.
– volume: 239
  start-page: 313
  year: 2006
  end-page: 325
  publication-title: J. Catal.
– volume: 10
  start-page: 3411
  year: 2018
  end-page: 3414
  publication-title: ChemCatChem.
– volume: 42
  start-page: 29745
  year: 2017
  end-page: 29755
  publication-title: Int. J. Hydrogen Energy.
– volume: 4
  start-page: 1
  year: 1971
  end-page: 26
  publication-title: Catal. Rev.
– volume: 7
  start-page: 3654
  year: 2017
  end-page: 3661
  publication-title: ACS Catal.
– volume: 397
  start-page: 138
  year: 2019
  end-page: 167
  publication-title: Coord. Chem. Rev.
– volume: 124
  start-page: 1529
  year: 2020
  end-page: 1534
  publication-title: J. Phys. Chem. C.
– volume: 116
  start-page: 8315
  year: 2016
  end-page: 8317
  publication-title: Chem. Rev.
– volume: 140
  start-page: 14799
  year: 2018
  end-page: 14806
  publication-title: J. Am. Chem. Soc.
– volume: 56
  start-page: 1141
  year: 2020
  end-page: 1144
  publication-title: Chem. Commun.
– volume: 31
  start-page: 9413
  year: 2019
  end-page: 9421
  publication-title: Chem. Mater.
– volume: 163
  start-page: 19
  year: 2000
  end-page: 26
  publication-title: J. Mol. Catal. A
– volume: 9
  start-page: 22045
  year: 2019
  end-page: 22052
  publication-title: RSC Adv.
– volume: 68
  start-page: 53
  year: 2015
  end-page: 57
  publication-title: Catal. Commun.
– volume: 9
  start-page: 406
  year: 2019
  end-page: 427
  publication-title: Catalysts.
– volume: 37
  start-page: 492
  year: 2019
  end-page: 499
  publication-title: J. Rare Earths.
– volume: 139
  start-page: 18240
  year: 2017
  end-page: 18246
  publication-title: J. Am. Chem. Soc.
– volume: 222
  start-page: 19
  year: 2001
  end-page: 29
  publication-title: Appl. Catal. A
– volume: 55
  start-page: 474
  year: 2019
  end-page: 477
  publication-title: , Chem. Commun
– volume: 6
  start-page: 7577
  year: 2016
  end-page: 7584
  publication-title: ACS Catal.
– volume: 8
  start-page: 1901
  year: 1998
  end-page: 1909
  publication-title: J. Mater. Chem.
– volume: 144
  start-page: 545
  year: 2014
  end-page: 552
  publication-title: Catal. Lett.
– volume: 562
  start-page: 223
  year: 2018
  end-page: 233
  publication-title: Appl. Catal. A
– volume: 9
  start-page: 6217
  year: 2019
  end-page: 6221
  publication-title: Catal. Sci. Technol.
– volume: 105
  start-page: 50
  year: 2019
  end-page: 56
  publication-title: J. Inst. Chem.
– start-page: 1
  year: 2013
  end-page: 65
– volume: 11
  start-page: 867
  year: 2010
  end-page: 870
  publication-title: Catal. Commun.
– volume: 58
  start-page: 10285
  year: 2019
  end-page: 10295
  publication-title: Ind. Eng. Chem. Res.
– start-page: 2014
  end-page: 10
  publication-title: Appl. Petrochem. Res.
– volume: 5
  start-page: 1907
  year: 2011
  end-page: 1914
  publication-title: ACS Nano.
– volume: 9
  start-page: 1670
  year: 2019
  end-page: 1679
  publication-title: ACS Catal.
– volume: 9
  start-page: 3602
  year: 2017
  end-page: 3615
  publication-title: ACS Appl. Mater. Interfaces.
– volume: 37
  start-page: 442
  year: 2019
  end-page: 451
  publication-title: Chin. J. Chem.
– volume: 3
  start-page: 1719
  year: 2013
  end-page: 1725
  publication-title: ACS Catal.
– volume: 37
  start-page: 17921
  year: 2012
  end-page: 17927
  publication-title: Int. J. Hydrogen Energy.
– volume: 10
  start-page: 5712
  year: 2019
  end-page: 5718
  publication-title: Chem. Sci.
– volume: 5
  start-page: 10439
  year: 2017
  end-page: 10446
  publication-title: ACS Sustainable Chem. Eng.
– volume: 137
  start-page: 14517
  year: 2015
  end-page: 14524
  publication-title: J. Am. Chem. Soc.
– volume: 29
  start-page: 1700924
  year: 2017
  end-page: 1700931
  publication-title: Adv. Mater.
– volume: 598
  start-page: 117553
  year: 2020
  end-page: 117568
  publication-title: Appl. Catal. A
– volume: 458
  start-page: 130
  year: 2013
  end-page: 136
  publication-title: Appl. Catal. A
– volume: 7
  start-page: 191
  year: 2017
  end-page: 199
  publication-title: Catal. Sci. Technol.
– volume: 8
  start-page: 105
  year: 1967
  end-page: 112
  publication-title: J. Catal.
– volume: 39
  start-page: 1678
  year: 1966
  end-page: 1681
  publication-title: Bull. Chem. Soc. Jpn.
– volume: 344
  start-page: 16
  year: 2016
  end-page: 28
  publication-title: J. Catal.
– volume: 219
  start-page: 157
  year: 2001
  end-page: 170
  publication-title: Appl. Catal. A
– volume: 114
  start-page: 10292
  year: 2014
  end-page: 10368
  publication-title: Chem. Rev.
– volume: 122
  start-page: 10468
  year: 2018
  end-page: 10475
  publication-title: J. Phys. Chem. C.
– volume: 211
  start-page: 278
  year: 2002
  end-page: 282
  publication-title: J. Catal.
– start-page: 3051
  year: 2007
  end-page: 3053
  publication-title: Chem. Commun.
– volume: 55
  start-page: 8922
  year: 2016
  end-page: 8932
  publication-title: Ind. Eng. Chem. Res.
– volume: 31
  start-page: 377
  year: 2010
  end-page: 379
  publication-title: Chin. J. Catal.
– volume: 180
  start-page: 328
  year: 2001
  end-page: 335
  publication-title: Appl. Surf. Sci.
– volume: 40
  start-page: 114
  year: 2019
  end-page: 123
  publication-title: A Chin. J. Catal.
– volume: 42
  start-page: 1282
  year: 2013
  end-page: 1284
  publication-title: Chem. Lett.
– volume: 433
  start-page: 235
  year: 2017
  end-page: 241
  publication-title: Mol. Catal.
– volume: 1
  start-page: 490
  year: 2018
  end-page: 500
  publication-title: Nat. Can.
– volume: 9
  start-page: 3078
  year: 2017
  end-page: 3083
  publication-title: ChemCatChem.
– volume: 4
  start-page: 157
  year: 1990
  end-page: 161
  publication-title: Catal. Lett.
– volume: 286
  start-page: 85
  year: 2017
  end-page: 100
  publication-title: Catal. Today.
– volume: 83
  start-page: 1814
  year: 1999
  end-page: 1817
  publication-title: Phys. Rev. Lett.
– volume: 7
  start-page: 2836
  year: 2015
  end-page: 2839
  publication-title: ChemCatChem.
– volume: 41
  start-page: 110
  year: 2013
  end-page: 114
  publication-title: Catal. Commun.
– volume: 44
  start-page: 236
  year: 1976
  end-page: 243
  publication-title: J. Catal.
– volume: 58
  start-page: 825
  year: 2019
  end-page: 829
  publication-title: Angew. Chem. Int. Ed.
– volume: 82
  start-page: 1
  year: 1992
  end-page: 12
  publication-title: Appl. Catal. A
– volume: 202
  start-page: 420
  year: 2015
  end-page: 448
  publication-title: Chem. Eng. Commun.
– volume: 257
  start-page: 2015
  year: 2013
  end-page: 2031
  publication-title: Coord. Chem. Rev.
– volume: 140
  start-page: 46
  year: 2018
  end-page: 49
  publication-title: J. Am. Chem. Soc.
– volume: 48
  start-page: 16786
  year: 2019
  end-page: 16792
  publication-title: Dalton Trans.
– volume: 81
  start-page: 265
  year: 2002
  end-page: 269
  publication-title: Catal. Lett.
– volume: 11
  start-page: 2001
  year: 2020
  publication-title: Nat. Commun.
– volume: 6
  start-page: 7325
  year: 2018
  end-page: 7338
  publication-title: ACS Sustainable Chem. Eng.
– volume: 57 130
  start-page: 2648 2678
  year: 2018 2018
  end-page: 2652 2682
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 8
  start-page: 113
  year: 1967
  end-page: 119
  publication-title: J. Catal.
– volume: 10
  start-page: 3086
  year: 2018
  end-page: 3095
  publication-title: ChemCatChem.
– volume: 5
  start-page: 9214
  year: 2017
  end-page: 9222
  publication-title: ACS Sustainable Chem. Eng.
– volume: 8
  year: 2018
  publication-title: Met. Adv. Energy Mater.
– volume: 28
  start-page: 552
  year: 2010
  end-page: 555
  publication-title: J. Rare Earths.
– volume: 52
  start-page: 1
  year: 2018
  end-page: 30
  publication-title: Prog. Solid State Chem.
– volume: 57
  start-page: 17375
  year: 2018
  end-page: 17383
  publication-title: Ind. Eng. Chem. Res.
– volume: 57
  start-page: 9127
  year: 2018
  end-page: 9135
  publication-title: Ind. Eng. Chem. Res.
– volume: 39
  start-page: 170
  year: 2019
  end-page: 175
  publication-title: J. Energy Chem.
– volume: 99
  year: 2020
  publication-title: Solid State Sci.
– volume: 618
  start-page: 562
  year: 2015
  end-page: 606
  publication-title: J. Alloys Compd.
– volume: 72
  start-page: 225
  year: 2001
  end-page: 238
  publication-title: Appl. Phys. A.
– volume: 4
  start-page: 253
  year: 1965
  end-page: 259
  publication-title: J. Catal.
– volume: 141
  start-page: 20344
  year: 2019
  end-page: 20353
  publication-title: J. Am. Chem. Soc.
– volume: 124
  start-page: 2070
  year: 2020
  end-page: 2078
  publication-title: J. Phys. Chem. C.
– volume: 47
  start-page: 1251
  year: 2012
  end-page: 1256
  publication-title: D. Mater. Res. Bull.
– volume: 140
  start-page: 11170
  year: 2018
  end-page: 11173
  publication-title: J. Am. Chem. Soc.
– start-page: 283
  year: 2001
  end-page: 290
– volume: 38
  start-page: 1
  year: 2010
  end-page: 37
  publication-title: Prog. Solid State Chem.
– volume: 42
  start-page: 1564
  year: 2009
  end-page: 1572
  publication-title: Acc. Chem. Res.
– volume: 218
  start-page: 121
  year: 2001
  end-page: 128
  publication-title: Appl. Catal. A
– volume: 8
  start-page: 2726
  year: 2020
  end-page: 2734
  publication-title: ACS Sustainable Chem. Eng.
– volume: 121
  start-page: 20900
  year: 2017
  end-page: 20904
  publication-title: J. Phys. Chem. C.
– volume: 123
  start-page: 8404
  year: 2001
  end-page: 8405
  publication-title: J. Am. Chem. Soc.
– volume: 21
  start-page: 201
  year: 1980
  end-page: 223
  publication-title: Catal. Rev.
– volume: 7
  start-page: 2313
  year: 2017
  end-page: 2324
  publication-title: ACS Catal.
– year: 2020
  publication-title: , Faraday Discuss.
– volume: 136
  start-page: 110
  year: 1992
  end-page: 117
  publication-title: J. Catal.
– volume: 54
  start-page: 52
  year: 1978
  end-page: 56
  publication-title: J. Catal.
– volume: 3
  start-page: 6573
  year: 2020
  end-page: 6582
  publication-title: ACS Appl. Energy Mater.
– volume: 111
  start-page: 9427
  year: 2007
  end-page: 9436
  publication-title: J. Phys. Chem. C.
– volume: 4
  start-page: 832
  year: 2020
  end-page: 842
  publication-title: Sustainable Energy Fuels.
– volume: 122
  start-page: 6078
  year: 2018
  end-page: 6082
  publication-title: J. Phys. Chem. C.
– ident: e_1_2_6_30_1
  doi: 10.1103/PhysRevLett.91.126401
– ident: e_1_2_6_46_1
  doi: 10.1038/nature11812
– ident: e_1_2_6_47_1
  doi: 10.1039/C5SC00933B
– ident: e_1_2_6_87_1
  doi: 10.1021/acssuschemeng.7b02168
– start-page: 2014
  ident: e_1_2_6_21_1
  publication-title: Appl. Petrochem. Res.
– ident: e_1_2_6_138_1
  doi: 10.1016/j.catcom.2013.07.001
– ident: e_1_2_6_129_1
  doi: 10.1016/S1872-2067(09)60055-3
– ident: e_1_2_6_150_1
  doi: 10.1016/j.cattod.2018.01.008
– ident: e_1_2_6_121_1
  doi: 10.1021/acssuschemeng.8b04683
– ident: e_1_2_6_131_1
  doi: 10.1021/acs.iecr.8b04915
– ident: e_1_2_6_110_1
  doi: 10.1039/C6CY02089E
– ident: e_1_2_6_58_1
  doi: 10.1002/anie.201703695
– ident: e_1_2_6_161_1
  doi: 10.1166/apm.2014.1079
– ident: e_1_2_6_93_1
  doi: 10.1016/j.catcom.2015.04.016
– ident: e_1_2_6_84_1
  doi: 10.1016/j.apcata.2014.10.030
– ident: e_1_2_6_101_1
  doi: 10.1016/0021-9517(78)90026-X
– ident: e_1_2_6_48_1
  doi: 10.1021/acs.jpcc.7b07268
– ident: e_1_2_6_100_1
  doi: 10.1039/C5NJ03479E
– ident: e_1_2_6_109_1
  doi: 10.1006/jcat.1996.0268
– ident: e_1_2_6_136_1
  doi: 10.1007/s10562-014-1226-4
– ident: e_1_2_6_114_1
  doi: 10.1039/C9CC07385J
– ident: e_1_2_6_64_1
  doi: 10.1016/0021-9517(67)90293-X
– ident: e_1_2_6_157_1
  doi: 10.1039/C9CY01303B
– ident: e_1_2_6_13_1
  doi: 10.1016/S1381-1169(00)00396-4
– ident: e_1_2_6_119_1
  doi: 10.1039/C6SC02382G
– volume: 35
  start-page: 1619
  year: 2014
  ident: e_1_2_6_4_1
  publication-title: . J. Catal.
– ident: e_1_2_6_118_1
  doi: 10.1021/acssuschemeng.9b06299
– ident: e_1_2_6_7_2
  doi: 10.1002/ange.200301553
– ident: e_1_2_6_19_1
  doi: 10.1038/nchem.1476
– ident: e_1_2_6_37_1
  doi: 10.1021/acscatal.8b02839
– ident: e_1_2_6_76_1
  doi: 10.1039/b707913c
– ident: e_1_2_6_147_1
  doi: 10.1007/s10562-008-9594-2
– ident: e_1_2_6_61_1
  doi: 10.1021/jacs.8b06187
– ident: e_1_2_6_60_1
  doi: 10.1002/aenm.201801772
– ident: e_1_2_6_59_1
  doi: 10.1021/jacs.7b08891
– ident: e_1_2_6_28_1
  doi: 10.1126/science.1083842
– ident: e_1_2_6_95_1
  doi: 10.1016/j.jcat.2020.05.039
– ident: e_1_2_6_124_1
  doi: 10.1246/cl.130574
– ident: e_1_2_6_125_1
  doi: 10.1016/j.catcom.2010.03.008
– ident: e_1_2_6_35_1
  doi: 10.1002/cctc.201700353
– ident: e_1_2_6_168_1
  doi: 10.1039/C9CY00533A
– ident: e_1_2_6_49_1
  doi: 10.1021/acs.jpcc.9b10850
– ident: e_1_2_6_103_1
  doi: 10.1007/BF00765698
– ident: e_1_2_6_73_1
  doi: 10.1006/jcat.2002.3571
– ident: e_1_2_6_146_1
  doi: 10.1016/j.cattod.2011.01.053
– ident: e_1_2_6_42_1
  doi: 10.1039/C9SC01539F
– ident: e_1_2_6_151_1
  doi: 10.1039/C5CY00014A
– ident: e_1_2_6_98_1
  doi: 10.1021/acssuschemeng.7b04586
– ident: e_1_2_6_115_1
  doi: 10.1016/j.jre.2018.09.010
– ident: e_1_2_6_106_1
  doi: 10.1039/C8CP05800H
– ident: e_1_2_6_120_1
  doi: 10.1016/j.jtice.2019.10.006
– ident: e_1_2_6_10_1
  doi: 10.1016/j.jcat.2016.09.013
– ident: e_1_2_6_86_1
  doi: 10.1039/C6CC08566K
– ident: e_1_2_6_99_1
  doi: 10.1021/acsami.6b12253
– ident: e_1_2_6_141_1
  doi: 10.1016/j.ijhydene.2012.09.026
– ident: e_1_2_6_172_1
  doi: 10.1002/cctc.201800287
– ident: e_1_2_6_72_1
  doi: 10.1016/S0926-860X(01)00678-0
– ident: e_1_2_6_134_1
  doi: 10.1021/acs.chemmater.9b03099
– start-page: 173
  volume-title: Hydrogenation, 7. Heterogeneously catalyzed ammonia synthesis
  year: 2018
  ident: e_1_2_6_25_1
– ident: e_1_2_6_132_1
  doi: 10.1016/j.apcata.2018.01.006
– ident: e_1_2_6_32_1
  doi: 10.1038/ncomms7731
– ident: e_1_2_6_127_1
  doi: 10.1016/j.ijhydene.2017.10.108
– ident: e_1_2_6_112_1
  doi: 10.1016/j.solidstatesciences.2019.105983
– ident: e_1_2_6_90_1
  doi: 10.1039/a801643g
– ident: e_1_2_6_51_1
  doi: 10.1021/acscatal.7b00284
– ident: e_1_2_6_81_1
  doi: 10.1021/acs.jpcc.5b06811
– ident: e_1_2_6_70_1
  doi: 10.1016/S0926-860X(01)00626-3
– ident: e_1_2_6_43_1
  doi: 10.1016/0926-860X(92)80001-S
– ident: e_1_2_6_105_1
  doi: 10.1021/jacs.7b10354
– ident: e_1_2_6_144_1
  doi: 10.1007/s10562-016-1862-y
– ident: e_1_2_6_149_1
  doi: 10.1002/cctc.201500309
– ident: e_1_2_6_165_1
  doi: 10.1021/acs.jpcc.9b05366
– ident: e_1_2_6_17_1
  doi: 10.1006/jcat.2001.3431
– ident: e_1_2_6_15_1
  doi: 10.1002/anie.198605581
– ident: e_1_2_6_160_2
  doi: 10.1002/ange.201712398
– ident: e_1_2_6_135_1
  doi: 10.1021/acsaem.0c00754
– ident: e_1_2_6_94_1
  doi: 10.1038/s41586-020-2464-9
– ident: e_1_2_6_91_1
  doi: 10.1039/C9DT03673C
– ident: e_1_2_6_97_1
  doi: 10.1021/acsami.9b11318
– ident: e_1_2_6_88_1
  doi: 10.1016/j.jechem.2019.01.026
– ident: e_1_2_6_74_1
  doi: 10.1021/ja010963d
– ident: e_1_2_6_16_1
  doi: 10.1080/00986445.2014.923995
– ident: e_1_2_6_22_1
  doi: 10.1021/jacs.9b10726
– ident: e_1_2_6_55_1
  doi: 10.1016/j.progsolidstchem.2010.08.003
– ident: e_1_2_6_133_1
  doi: 10.1021/acscatal.6b01940
– ident: e_1_2_6_128_1
  doi: 10.1002/asia.201900618
– ident: e_1_2_6_11_1
  doi: 10.1103/PhysRevLett.83.1814
– ident: e_1_2_6_71_1
  doi: 10.1039/b002930k
– ident: e_1_2_6_7_1
  doi: 10.1002/anie.200301553
– ident: e_1_2_6_67_1
  doi: 10.1016/S0926-860X(00)00764-X
– ident: e_1_2_6_170_1
  doi: 10.1021/cr500032a
– year: 2020
  ident: e_1_2_6_85_1
  publication-title: , Faraday Discuss.
– ident: e_1_2_6_117_1
  doi: 10.1039/C7SC05343F
– ident: e_1_2_6_83_1
  doi: 10.1021/acs.jpcc.7b12364
– ident: e_1_2_6_159_1
  doi: 10.1021/acs.iecr.9b01610
– ident: e_1_2_6_130_1
  doi: 10.1039/C9CY01424A
– ident: e_1_2_6_156_1
  doi: 10.1039/C9RA03097B
– ident: e_1_2_6_75_1
  doi: 10.1016/S0926-860X(01)00826-2
– ident: e_1_2_6_158_1
  doi: 10.1016/j.mcat.2016.12.015
– ident: e_1_2_6_96_1
  doi: 10.1016/j.progsolidstchem.2018.09.001
– ident: e_1_2_6_69_1
  doi: 10.1016/S0926-860X(01)00529-4
– ident: e_1_2_6_39_1
  doi: 10.1002/adma.201700924
– ident: e_1_2_6_12_1
  doi: 10.1126/science.1106435
– ident: e_1_2_6_123_1
  doi: 10.1021/acssuschemeng.7b02469
– ident: e_1_2_6_162_1
  doi: 10.1006/jcat.1996.0314
– ident: e_1_2_6_50_1
  doi: 10.1039/C6TA09561E
– ident: e_1_2_6_38_1
  doi: 10.1021/jacs.6b00124
– ident: e_1_2_6_18_1
  doi: 10.1021/jp066970b
– ident: e_1_2_6_66_1
  doi: 10.1007/BF02067978
– ident: e_1_2_6_6_1
  doi: 10.1063/1.481103
– ident: e_1_2_6_145_1
  doi: 10.1016/j.catcom.2006.07.006
– ident: e_1_2_6_20_1
  doi: 10.1039/D0TC01165G
– ident: e_1_2_6_122_1
  doi: 10.1039/C8CC07130F
– ident: e_1_2_6_14_1
  doi: 10.1016/0021-9517(85)90265-9
– ident: e_1_2_6_173_1
  doi: 10.1016/j.apcata.2020.117553
– ident: e_1_2_6_2_1
  doi: 10.1142/9789814355780_0001
– ident: e_1_2_6_53_1
  doi: 10.1016/0021-9517(76)90394-8
– ident: e_1_2_6_68_1
  doi: 10.1016/j.ccr.2012.10.005
– ident: e_1_2_6_169_1
  doi: 10.1016/j.ccr.2019.06.015
– ident: e_1_2_6_5_1
  doi: 10.1080/03602458008067533
– ident: e_1_2_6_78_1
  doi: 10.1007/s10562-010-0464-3
– ident: e_1_2_6_167_1
  doi: 10.1016/j.jallcom.2014.08.079
– ident: e_1_2_6_54_1
  doi: 10.1021/acs.chemrev.6b00441
– ident: e_1_2_6_104_1
  doi: 10.1021/acs.jpcc.8b02128
– ident: e_1_2_6_142_1
  doi: 10.1039/C9SE00781D
– ident: e_1_2_6_29_1
  doi: 10.1021/nn102839k
– ident: e_1_2_6_154_1
  doi: 10.3390/catal9050406
– ident: e_1_2_6_143_1
  doi: 10.1016/S0021-9517(02)93724-3
– ident: e_1_2_6_45_1
  doi: 10.1039/C4CC00802B
– ident: e_1_2_6_33_1
  doi: 10.1021/cs401044a
– volume: 1
  start-page: 178
  year: 2018
  ident: e_1_2_6_40_1
  publication-title: Nat. Can.
– ident: e_1_2_6_56_1
  doi: 10.1038/nchem.2595
– ident: e_1_2_6_153_1
  doi: 10.1002/cctc.201800556
– ident: e_1_2_6_57_1
  doi: 10.1021/jacs.8b08334
– ident: e_1_2_6_108_1
  doi: 10.1021/jacs.8b10499
– ident: e_1_2_6_116_1
  doi: 10.1021/acs.iecr.6b01880
– ident: e_1_2_6_164_1
  doi: 10.1023/A:1016501811975
– ident: e_1_2_6_23_1
  doi: 10.1080/01614947108075483
– ident: e_1_2_6_92_1
  doi: 10.1007/s11244-012-9890-3
– ident: e_1_2_6_3_1
  doi: 10.1016/j.jechem.2019.01.027
– ident: e_1_2_6_82_1
  doi: 10.1021/jp501237c
– ident: e_1_2_6_171_1
  doi: 10.1021/ja311261s
– ident: e_1_2_6_148_1
  doi: 10.1016/S1002-0721(09)60152-6
– ident: e_1_2_6_36_1
  doi: 10.1039/C6SC00767H
– ident: e_1_2_6_77_1
  doi: 10.1016/j.molcata.2008.08.006
– ident: e_1_2_6_65_1
  doi: 10.1016/0021-9517(65)90016-3
– ident: e_1_2_6_113_1
  doi: 10.1039/C6RA10540H
– ident: e_1_2_6_166_1
  doi: 10.1007/s003390100775
– ident: e_1_2_6_155_1
  doi: 10.1016/S1872-2067(18)63192-4
– ident: e_1_2_6_44_1
  doi: 10.1016/0021-9517(92)90110-4
– ident: e_1_2_6_139_1
  doi: 10.1023/B:REAC.0000037374.92480.f1
– ident: e_1_2_6_8_1
  doi: 10.1016/j.jcat.2006.01.035
– ident: e_1_2_6_24_1
  doi: 10.1021/acscatal.6b03357
– ident: e_1_2_6_26_1
  doi: 10.1002/cjoc.201800586
– ident: e_1_2_6_126_1
  doi: 10.1016/j.apcata.2013.03.037
– ident: e_1_2_6_137_1
  doi: 10.1016/S0169-4332(01)00374-9
– ident: e_1_2_6_58_2
  doi: 10.1002/ange.201703695
– ident: e_1_2_6_111_1
  doi: 10.1021/acs.iecr.8b02126
– ident: e_1_2_6_9_1
  doi: 10.1016/j.cattod.2017.01.002
– ident: e_1_2_6_79_1
  doi: 10.1021/cm100208a
– volume: 1
  start-page: 490
  year: 2018
  ident: e_1_2_6_1_1
  publication-title: Nat. Can.
– ident: e_1_2_6_107_1
  doi: 10.1016/j.apcata.2018.06.017
– ident: e_1_2_6_160_1
  doi: 10.1002/anie.201712398
– ident: e_1_2_6_31_1
  doi: 10.1021/jacs.5b10145
– ident: e_1_2_6_63_1
  doi: 10.1016/0021-9517(67)90292-8
– start-page: 283
  volume-title: Stud. Surf. Sci. Catal.
  year: 2001
  ident: e_1_2_6_140_1
– ident: e_1_2_6_80_1
  doi: 10.1021/cs400336z
– ident: e_1_2_6_152_1
  doi: 10.1002/slct.201700859
– ident: e_1_2_6_62_1
  doi: 10.1038/s41467-020-15868-8
– ident: e_1_2_6_89_1
  doi: 10.1016/j.materresbull.2012.01.022
– ident: e_1_2_6_27_1
  doi: 10.1021/ar9000857
– ident: e_1_2_6_34_1
  doi: 10.1021/acscatal.8b03650
– ident: e_1_2_6_52_1
  doi: 10.1021/acs.jpcc.9b10544
– ident: e_1_2_6_102_1
  doi: 10.1246/bcsj.39.1678
– ident: e_1_2_6_41_1
  doi: 10.1002/anie.201812131
– ident: e_1_2_6_163_1
  doi: 10.1021/jp011027n
SSID ssj0069375
Score 2.6040165
SecondaryResourceType review_article
Snippet Even after a century, ammonia (NH3) synthesis from nitrogen and hydrogen through Haber‐Bosch process is still energy intensive. Even with recently introduced...
Even after a century, ammonia (NH 3 ) synthesis from nitrogen and hydrogen through Haber‐Bosch process is still energy intensive. Even with recently introduced...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5838
SubjectTerms Ammonia
Catalysis
Catalysts
Chemical synthesis
Electride
Electron density
Haber Bosch process
Hydride
Hydrides
Hydrogen bonds
Mechanism
Metal oxides
Nitride
Nitrides
Nitrogen
Oxide
Oxygen enrichment
Ruthenium
Title Recent Advances in Heterogeneous Catalysis for Ammonia Synthesis
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcctc.202001141
https://www.proquest.com/docview/2466712298
Volume 12
WOSCitedRecordID wos000567889100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library
  customDbUrl:
  eissn: 1867-3899
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0069375
  issn: 1867-3880
  databaseCode: DRFUL
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB6kFfTiW6xW2YPgaWm7SXeTmyVaeihFtIXewr4CBUmlaQX_vbN59HEQQW_ZMLOE2ZmdL8vsNwD3oRGa-9xQbbWivg05RVRvqNRCGeYb05Y5Zf5QjEbBdBq-bN3iL_gh1gduLjLy_doFuFRZa0MaqnVOQcjy66D4_1Nn6LzdGtSfXvuTYbUbc0y_rozR8bZRR3xSETe2WWt3ht3EtEGb25g1Tzr94_9_7gkclYCT9AoPOYU9m57BQVT1eTuHR0SOmHlIr6gGyMgsJQNXJDNH37LzVUYid8TjmEsIIlzSc547k-TtK0XwiG8vYNJ_HkcDWvZVoBrBU4cKxrvCOJYWG5jEU1zJwDOmqxJthQ11x1rPyBAXjgmJAe1EEKm1UQUVFPMuoZbOU3sFRBrl8UQlmOYShDZWdnXoWSuY52tfKtMAWhk11iXpuOt98R4XdMksdnaJ13ZpwMNa_qOg2_hRslmtUVyGXRYzn3PRYSwMGsDy1fhlljiKxtF6dP0XpRs4dM95iYvfhNpysbK3sK8_l7NscVe64zfNquCh
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7SCvXiW6xWzUHwFNpmt8nuzbJaKq5FtIXelrwWCrKVbiv4753sq_YggnjckAkh-SbzbZh8g9C1r7liLtNEGSWJa3xGgNVrIhSXmrpad0QmmR_y0cibTv3nIpvQvoXJ9SGqCzfrGdl5bR3cXki316qhSmUahDR7Dwo_QHUXsAQgr9-9DCZheRwziL82j9EKtxGrfFIqN3Zoe3OEzci0ppvfSWsWdQZ7_zDffbRbUE7czzFygLZMcogaQVnp7QjdAneE2IP7eT5AimcJHto0mTmgy8xXKQ7sJY_VLsHAcXHfYncm8OtnAvQRWo_RZHA_DoakqKxAFNCnLuGU9bi2Oi3G07EjmRSeo3VPxspw46uuMY4WPmwd5QJc2nYBrtYBEzCQ1DlBtWSemFOEhZYOi2UMgS4GcmNET_mOMZw6rnKF1E1EylWNVCE7bqtfvEW5YDKN7LpE1bo00U3V_z0X3PixZ6vcpKhwvDSiLmO8S6nvNRHNtuOXUaIgGAfV19lfjK5QYzh-CqPwYfR4jnZse5bw4rZQbblYmQu0rT6Ws3RxWWDzC1HV5JE
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEB6kinrxLVar5iB4Cm2z22T3ZtlaFEsp2kJvS14LBdmWtgr-eyf7qPYggnjckAlhHplvw-QbgJvQCM19bqi2WlHfhpwiqjdUaqEM841pyIwyvyf6_WA8DgdFNaF7C5PzQ6wu3FxkZOe1C3A7M0n9izVU64yDkGXvQfEHaNN3nWQqsNl57o565XHMMf-6OkZH3EYd80nJ3Nhg9fUV1jPTF9z8DlqzrNPd_4f9HsBeATlJO_eRQ9iw6RHsRGWnt2O4Q-yIuYe083qABZmk5MGVyUzRu-z0bUEid8njuEsIYlzSdr47keTlI0X4iKMnMOreD6MHWnRWoBrhU5MKxlvCOJ4WG5jEU1zJwDOmpRJthQ1101rPyBBNx4TEkHZTEKs1UAQFFPNOoZJOU3sGRBrl8UQlmOgSBDdWtnToWSuY52tfKlMFWmo11gXtuOt-8RrnhMksdnqJV3qpwu1q_iwn3PhxZq00UlwE3iJmPueiyVgYVIFl5vhllTiKhtHq6_wvQtewPeh0495j_-kCdt1wVu_i16CynL_ZS9jS78vJYn5VuOYnBBDkDA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+Advances+in+Heterogeneous+Catalysis+for+Ammonia+Synthesis&rft.jtitle=ChemCatChem&rft.au=Marakatti%2C+Vijaykumar+S.&rft.au=Gaigneaux%2C+Eric+M.&rft.date=2020-12-04&rft.issn=1867-3880&rft.eissn=1867-3899&rft.volume=12&rft.issue=23&rft.spage=5838&rft.epage=5857&rft_id=info:doi/10.1002%2Fcctc.202001141&rft.externalDBID=10.1002%252Fcctc.202001141&rft.externalDocID=CCTC202001141
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1867-3880&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1867-3880&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1867-3880&client=summon