Gate-Based Quantum Simulation of Gaussian Bosonic Circuits on Exponentially Many Modes

We introduce a framework for simulating, on an ( n + 1 )-qubit quantum computer, the action of a Gaussian bosonic (GB) circuit on a state over 2 n modes. Specifically, we encode the initial bosonic state’s expectation values over quadrature operators (and their covariance matrix) as an input qubit s...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Physical review letters Ročník 134; číslo 7; s. 070604
Hlavní autori: Barthe, Alice, Cerezo, M., Sornborger, Andrew T., Larocca, Martín, García-Martín, Diego
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States American Physical Society (APS) 21.02.2025
Predmet:
ISSN:0031-9007, 1079-7114, 1079-7114
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract We introduce a framework for simulating, on an ( n + 1 )-qubit quantum computer, the action of a Gaussian bosonic (GB) circuit on a state over 2 n modes. Specifically, we encode the initial bosonic state’s expectation values over quadrature operators (and their covariance matrix) as an input qubit state. This is then evolved by a quantum circuit that effectively implements the symplectic propagators induced by the GB gates. We find families of GB circuits and initial states leading to efficient quantum simulations. For this purpose, we introduce a dictionary that maps between GB and qubit gates such that particle- (non-particle-) preserving GB gates lead to real- (imaginary-) time evolutions at the qubit level. For the special case of particle-preserving circuits, we present a bounded-error-quantum-polynomial time (BQP)-complete GB decision problem, indicating that GB evolutions of Gaussian states on exponentially many modes are as powerful as universal quantum computers. We also perform numerical simulations of an interferometer on ∼ 8 × 10 9 modes, illustrating the power of our framework.
AbstractList We introduce a framework for simulating, on an (n+1)-qubit quantum computer, the action of a Gaussian bosonic (GB) circuit on a state over 2^{n} modes. Specifically, we encode the initial bosonic state's expectation values over quadrature operators (and their covariance matrix) as an input qubit state. This is then evolved by a quantum circuit that effectively implements the symplectic propagators induced by the GB gates. We find families of GB circuits and initial states leading to efficient quantum simulations. For this purpose, we introduce a dictionary that maps between GB and qubit gates such that particle- (non-particle-) preserving GB gates lead to real- (imaginary-) time evolutions at the qubit level. For the special case of particle-preserving circuits, we present a bounded-error-quantum-polynomial time (BQP)-complete GB decision problem, indicating that GB evolutions of Gaussian states on exponentially many modes are as powerful as universal quantum computers. We also perform numerical simulations of an interferometer on ∼8×10^{9} modes, illustrating the power of our framework.
We introduce a framework for simulating, on an (n+1)-qubit quantum computer, the action of a Gaussian bosonic (GB) circuit on a state over 2^{n} modes. Specifically, we encode the initial bosonic state's expectation values over quadrature operators (and their covariance matrix) as an input qubit state. This is then evolved by a quantum circuit that effectively implements the symplectic propagators induced by the GB gates. We find families of GB circuits and initial states leading to efficient quantum simulations. For this purpose, we introduce a dictionary that maps between GB and qubit gates such that particle- (non-particle-) preserving GB gates lead to real- (imaginary-) time evolutions at the qubit level. For the special case of particle-preserving circuits, we present a bounded-error-quantum-polynomial time (BQP)-complete GB decision problem, indicating that GB evolutions of Gaussian states on exponentially many modes are as powerful as universal quantum computers. We also perform numerical simulations of an interferometer on ∼8×10^{9} modes, illustrating the power of our framework.We introduce a framework for simulating, on an (n+1)-qubit quantum computer, the action of a Gaussian bosonic (GB) circuit on a state over 2^{n} modes. Specifically, we encode the initial bosonic state's expectation values over quadrature operators (and their covariance matrix) as an input qubit state. This is then evolved by a quantum circuit that effectively implements the symplectic propagators induced by the GB gates. We find families of GB circuits and initial states leading to efficient quantum simulations. For this purpose, we introduce a dictionary that maps between GB and qubit gates such that particle- (non-particle-) preserving GB gates lead to real- (imaginary-) time evolutions at the qubit level. For the special case of particle-preserving circuits, we present a bounded-error-quantum-polynomial time (BQP)-complete GB decision problem, indicating that GB evolutions of Gaussian states on exponentially many modes are as powerful as universal quantum computers. We also perform numerical simulations of an interferometer on ∼8×10^{9} modes, illustrating the power of our framework.
We introduce a framework for simulating, on an ( n + 1 )-qubit quantum computer, the action of a Gaussian bosonic (GB) circuit on a state over 2 n modes. Specifically, we encode the initial bosonic state’s expectation values over quadrature operators (and their covariance matrix) as an input qubit state. This is then evolved by a quantum circuit that effectively implements the symplectic propagators induced by the GB gates. We find families of GB circuits and initial states leading to efficient quantum simulations. For this purpose, we introduce a dictionary that maps between GB and qubit gates such that particle- (non-particle-) preserving GB gates lead to real- (imaginary-) time evolutions at the qubit level. For the special case of particle-preserving circuits, we present a bounded-error-quantum-polynomial time (BQP)-complete GB decision problem, indicating that GB evolutions of Gaussian states on exponentially many modes are as powerful as universal quantum computers. We also perform numerical simulations of an interferometer on ∼ 8 × 10 9 modes, illustrating the power of our framework.
We introduce a framework for simulating, on an (n+1)-qubit quantum computer, the action of a Gaussian bosonic (GB) circuit on a state over 2n modes. Specifically, we encode the initial bosonic state’s expectation values over quadrature operators (and their covariance matrix) as an input qubit state. This is then evolved by a quantum circuit that effectively implements the symplectic propagators induced by the GB gates. We find families of GB circuits and initial states leading to efficient quantum simulations. For this purpose, we introduce a dictionary that maps between GB and qubit gates such that particle- (non-particle-) preserving GB gates lead to real- (imaginary-) time evolutions at the qubit level. For the special case of particle-preserving circuits, we present a bounded-error-quantum-polynomial time (BQP)-complete GB decision problem, indicating that GB evolutions of Gaussian states on exponentially many modes are as powerful as universal quantum computers. We also perform numerical simulations of an interferometer on ~8 × 109 modes, illustrating the power of our framework.
ArticleNumber 070604
Author Sornborger, Andrew T.
Barthe, Alice
Cerezo, M.
García-Martín, Diego
Larocca, Martín
Author_xml – sequence: 1
  givenname: Alice
  orcidid: 0000-0002-1766-188X
  surname: Barthe
  fullname: Barthe, Alice
– sequence: 2
  givenname: M.
  orcidid: 0000-0002-2757-3170
  surname: Cerezo
  fullname: Cerezo, M.
– sequence: 3
  givenname: Andrew T.
  orcidid: 0000-0001-8036-6624
  surname: Sornborger
  fullname: Sornborger, Andrew T.
– sequence: 4
  givenname: Martín
  orcidid: 0000-0002-8700-4308
  surname: Larocca
  fullname: Larocca, Martín
– sequence: 5
  givenname: Diego
  orcidid: 0000-0002-0693-1952
  surname: García-Martín
  fullname: García-Martín, Diego
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40054000$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/2520183$$D View this record in Osti.gov
BookMark eNqFkcFO3DAQhq0KVBbaV0BRT71kO2MncSL1UlZ0qbQVUApXy3EmwlVib2MHdd8e0wUJ9dLDzBzm-2dG8x-zA-cdMXaKsEQE8enqfhd-0MOGYlyiKJYgoYLiDVsgyCaXiMUBWwAIzBsAecSOQ_gFAMir-i07KgDKFLBgd2sdKT_TgbrsetYuzmN2Y8d50NF6l_k-W-s5BKtdduaDd9ZkKzuZ2caQpf75n226y0Wrh2GXfdcuJd9ReMcOez0Eev9cT9jt1_Ofq4t8c7n-tvqyyU3Becx7iY1sZQVQNQ0J2badprow0BUlGs11xXtZCNMCYSPqsgIhO401EYmmpV6csA_7uT5Eq4Kxkcy98c6RiYqXHLAWCfq4h7aT_z1TiGq0wdAwaEd-DkqgLEFyjpjQ02d0bkfq1Hayo5526uVhCfi8B8zkQ5ioV2nn31_FSdtBIagnf9Qrf1TyR-39SfLqH_nLhv8IHwGp4pep
CitedBy_id crossref_primary_10_1103_3y65_f5w6
crossref_primary_10_1016_j_cherd_2025_08_031
crossref_primary_10_1038_s41467_025_57451_z
Cites_doi 10.1007/s42484-020-00033-7
10.1103/PhysRevX.13.041041
10.1038/35051009
10.1103/PhysRevA.89.062316
10.1145/1806689.1806711
10.1142/S1230161214400010
10.26421/QIC3.1-7
10.1103/PhysRevResearch.5.013105
10.26421/QIC12.11-12-1
10.22331/q-2022-09-22-814
10.26421/QIC16.3-4-6
10.1103/RevModPhys.77.513
10.1103/PhysRevLett.103.150502
10.1088/2058-9565/ac39f5
10.22331/q-2018-01-08-44
10.1103/PhysRevLett.106.170501
10.1103/PhysRevLett.119.220502
10.1038/s41567-019-0704-4
10.1103/PhysRevApplied.20.044059
10.1038/s41598-023-45540-2
10.1137/S0097539796300921
ContentType Journal Article
CorporateAuthor Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
CorporateAuthor_xml – name: Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
DBID AAYXX
CITATION
NPM
7X8
OTOTI
DOI 10.1103/PhysRevLett.134.070604
DatabaseName CrossRef
PubMed
MEDLINE - Academic
OSTI.GOV
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1079-7114
ExternalDocumentID 2520183
40054000
10_1103_PhysRevLett_134_070604
Genre Journal Article
GroupedDBID ---
-DZ
-~X
123
186
2-P
29O
3MX
3O-
41~
5VS
6TJ
85S
8NH
8WZ
9M8
A6W
AAYJJ
AAYXX
ABSSX
ABUFD
ACBEA
ACGFO
ACKIV
ACNCT
ADXHL
AECSF
AENEX
AEQTI
AETEA
AFFNX
AFGMR
AGDNE
AJQPL
ALMA_UNASSIGNED_HOLDINGS
APKKM
AUAIK
CITATION
CS3
D0L
DU5
EBS
EJD
ER.
F5P
H~9
MVM
N9A
NEJ
NHB
NPBMV
OHT
OK1
P0-
P2P
RNS
ROL
S7W
SJN
T9H
TN5
UBC
UBE
VOH
WH7
XOL
XSW
YNT
YYP
ZCG
ZPR
ZY4
~02
NPM
7X8
OTOTI
ID FETCH-LOGICAL-c422t-f7197b7600699e37bbdae84c0d451ca2a62f743cb0e193856037da18eee39bef3
IEDL.DBID 3MX
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001455840700012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0031-9007
1079-7114
IngestDate Mon Apr 14 02:30:57 EDT 2025
Fri Jul 11 13:07:59 EDT 2025
Mon Jul 21 05:59:28 EDT 2025
Tue Nov 18 21:51:55 EST 2025
Sat Nov 29 07:41:11 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c422t-f7197b7600699e37bbdae84c0d451ca2a62f743cb0e193856037da18eee39bef3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
89233218CNA000001; 20230049DR; 20230527ECR
USDOE Laboratory Directed Research and Development (LDRD) Program
LA-UR-24-26564
ORCID 0000-0001-8036-6624
0000-0002-0693-1952
0000-0002-2757-3170
0000-0002-1766-188X
0000-0002-8700-4308
000000021766188X
0000000287004308
0000000180366624
0000000227573170
0000000206931952
OpenAccessLink https://doi.org/10.1103/physrevlett.134.070604
PMID 40054000
PQID 3175072211
PQPubID 23479
ParticipantIDs osti_scitechconnect_2520183
proquest_miscellaneous_3175072211
pubmed_primary_40054000
crossref_citationtrail_10_1103_PhysRevLett_134_070604
crossref_primary_10_1103_PhysRevLett_134_070604
PublicationCentury 2000
PublicationDate 2025-02-21
PublicationDateYYYYMMDD 2025-02-21
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-21
  day: 21
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Physical review letters
PublicationTitleAlternate Phys Rev Lett
PublicationYear 2025
Publisher American Physical Society (APS)
Publisher_xml – name: American Physical Society (APS)
References PhysRevLett.134.070604Cc25R1
PhysRevLett.134.070604Cc13R1
PhysRevLett.134.070604Cc12R1
PhysRevLett.134.070604Cc23R1
PhysRevLett.134.070604Cc22R1
PhysRevLett.134.070604Cc18R1
PhysRevLett.134.070604Cc17R1
PhysRevLett.134.070604Cc16R1
PhysRevLett.134.070604Cc15R1
PhysRevLett.134.070604Cc1R1
PhysRevLett.134.070604Cc19R1
M. A. Nielsen (PhysRevLett.134.070604Cc21R1) 2000
S. Aaronson (PhysRevLett.134.070604Cc2R1) 2010
PhysRevLett.134.070604Cc6R1
PhysRevLett.134.070604Cc7R1
PhysRevLett.134.070604Cc8R1
PhysRevLett.134.070604Cc9R1
PhysRevLett.134.070604Cc3R1
PhysRevLett.134.070604Cc4R1
PhysRevLett.134.070604Cc5R1
PhysRevLett.134.070604Cc10R1
PhysRevLett.134.070604Cc20R1
References_xml – ident: PhysRevLett.134.070604Cc16R1
  doi: 10.1007/s42484-020-00033-7
– ident: PhysRevLett.134.070604Cc5R1
  doi: 10.1103/PhysRevX.13.041041
– ident: PhysRevLett.134.070604Cc6R1
  doi: 10.1038/35051009
– ident: PhysRevLett.134.070604Cc7R1
  doi: 10.1103/PhysRevA.89.062316
– volume-title: Proceedings of the Forty-Second ACM Symposium on Theory of Computing
  year: 2010
  ident: PhysRevLett.134.070604Cc2R1
  doi: 10.1145/1806689.1806711
– ident: PhysRevLett.134.070604Cc13R1
  doi: 10.1142/S1230161214400010
– ident: PhysRevLett.134.070604Cc25R1
  doi: 10.26421/QIC3.1-7
– ident: PhysRevLett.134.070604Cc20R1
  doi: 10.1103/PhysRevResearch.5.013105
– ident: PhysRevLett.134.070604Cc19R1
  doi: 10.26421/QIC12.11-12-1
– ident: PhysRevLett.134.070604Cc23R1
  doi: 10.22331/q-2022-09-22-814
– ident: PhysRevLett.134.070604Cc8R1
  doi: 10.26421/QIC16.3-4-6
– volume-title: Quantum Computation and Quantum Information
  year: 2000
  ident: PhysRevLett.134.070604Cc21R1
– ident: PhysRevLett.134.070604Cc9R1
  doi: 10.1103/RevModPhys.77.513
– ident: PhysRevLett.134.070604Cc3R1
  doi: 10.1103/PhysRevLett.103.150502
– ident: PhysRevLett.134.070604Cc22R1
  doi: 10.1088/2058-9565/ac39f5
– ident: PhysRevLett.134.070604Cc4R1
  doi: 10.22331/q-2018-01-08-44
– ident: PhysRevLett.134.070604Cc10R1
  doi: 10.1103/PhysRevLett.106.170501
– ident: PhysRevLett.134.070604Cc12R1
  doi: 10.1103/PhysRevLett.119.220502
– ident: PhysRevLett.134.070604Cc15R1
  doi: 10.1038/s41567-019-0704-4
– ident: PhysRevLett.134.070604Cc17R1
  doi: 10.1103/PhysRevApplied.20.044059
– ident: PhysRevLett.134.070604Cc18R1
  doi: 10.1038/s41598-023-45540-2
– ident: PhysRevLett.134.070604Cc1R1
  doi: 10.1137/S0097539796300921
SSID ssj0001268
Score 2.4955084
Snippet We introduce a framework for simulating, on an ( n + 1 )-qubit quantum computer, the action of a Gaussian bosonic (GB) circuit on a state over 2 n modes....
We introduce a framework for simulating, on an (n+1)-qubit quantum computer, the action of a Gaussian bosonic (GB) circuit on a state over 2^{n} modes....
We introduce a framework for simulating, on an (n+1)-qubit quantum computer, the action of a Gaussian bosonic (GB) circuit on a state over 2n modes....
SourceID osti
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 070604
SubjectTerms bosonic systems
BQP-complete
computational complexity
exponential advantage
quantum algorithms & computation
quantum circuits
quantum harmonic oscillator
quantum simulations
Title Gate-Based Quantum Simulation of Gaussian Bosonic Circuits on Exponentially Many Modes
URI https://www.ncbi.nlm.nih.gov/pubmed/40054000
https://www.proquest.com/docview/3175072211
https://www.osti.gov/biblio/2520183
Volume 134
WOSCitedRecordID wos001455840700012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABR
  databaseName: American Physical Society Journals
  customDbUrl:
  eissn: 1079-7114
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001268
  issn: 0031-9007
  databaseCode: 3MX
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://journals.aps.org/
  providerName: American Physical Society
– providerCode: PRVIAO
  databaseName: SCOAP3 Journals
  customDbUrl:
  eissn: 1079-7114
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001268
  issn: 0031-9007
  databaseCode: ER.
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://scoap3.org/
  providerName: SCOAP3 (Sponsoring Consortium for Open Access Publishing in Particle Physics)
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Ja9wwFH6EoYVe0j2dpi0K9OpElmxLOjYhy6EJSdqGuQlbCwxMxmFsh-bf5z3bGVpoKLn4YmSJt37y2wC-ehm1SVF4vfZFkkVDKhVNokTwRRFD7vq-BVff1dmZns3M-Qbwf0fwUy73KBPyMtxSdctuKrNd3vd7IaOrMxpZIE9na9ObimIwvZLyDrgaS4If_8xf3mhSo1Y9jjR7j3P08ulnfQWbI7pk3wZxeA0bYfkGnvdZnq55C1f0ryzZR8fl2UWHNO2u2Y_59TjBi9WRHZddQ2WVbL9uqGkuO5ivXDdvG4bvD3_f1EvKLioXizt2imaE0Si15h38Ojr8eXCSjIMVEpcJ0SZRpUZVFJIrjAlSVZUvg84c91meulKUhYiILFzFA-I7jaBIKl-mOoQgTRWifA-TJW74AViQPEZpgpeIzKqcGE-XHu2l4sopPYX8gcDWjV3HafjFwva3Dy7tHzSzSDM70GwKe-t1N0Pfjf-u2Cb-WUQO1P7WUZ6Qa63IEeJoOYWdB7ZaVCCKipTLUHeNJQDFlcCL8BS2Bn6vd8x6RMv5xyefZhteCJoUTMXv6SeYtKsufIZn7radN6svvdTiU830Pel-6gA
linkProvider American Physical Society
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gate-Based+Quantum+Simulation+of+Gaussian+Bosonic+Circuits+on+Exponentially+Many+Modes&rft.jtitle=Physical+review+letters&rft.au=Barthe%2C+Alice&rft.au=Cerezo%2C+M&rft.au=Sornborger%2C+Andrew+T&rft.au=Larocca%2C+Mart%C3%ADn&rft.date=2025-02-21&rft.eissn=1079-7114&rft.volume=134&rft.issue=7&rft.spage=070604&rft_id=info:doi/10.1103%2FPhysRevLett.134.070604&rft_id=info%3Apmid%2F40054000&rft.externalDocID=40054000
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-9007&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-9007&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-9007&client=summon