Gate-Based Quantum Simulation of Gaussian Bosonic Circuits on Exponentially Many Modes

We introduce a framework for simulating, on an ( n + 1 )-qubit quantum computer, the action of a Gaussian bosonic (GB) circuit on a state over 2 n modes. Specifically, we encode the initial bosonic state’s expectation values over quadrature operators (and their covariance matrix) as an input qubit s...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Physical review letters Ročník 134; číslo 7; s. 070604
Hlavní autoři: Barthe, Alice, Cerezo, M., Sornborger, Andrew T., Larocca, Martín, García-Martín, Diego
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States American Physical Society (APS) 21.02.2025
Témata:
ISSN:0031-9007, 1079-7114, 1079-7114
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We introduce a framework for simulating, on an ( n + 1 )-qubit quantum computer, the action of a Gaussian bosonic (GB) circuit on a state over 2 n modes. Specifically, we encode the initial bosonic state’s expectation values over quadrature operators (and their covariance matrix) as an input qubit state. This is then evolved by a quantum circuit that effectively implements the symplectic propagators induced by the GB gates. We find families of GB circuits and initial states leading to efficient quantum simulations. For this purpose, we introduce a dictionary that maps between GB and qubit gates such that particle- (non-particle-) preserving GB gates lead to real- (imaginary-) time evolutions at the qubit level. For the special case of particle-preserving circuits, we present a bounded-error-quantum-polynomial time (BQP)-complete GB decision problem, indicating that GB evolutions of Gaussian states on exponentially many modes are as powerful as universal quantum computers. We also perform numerical simulations of an interferometer on ∼ 8 × 10 9 modes, illustrating the power of our framework.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
89233218CNA000001; 20230049DR; 20230527ECR
USDOE Laboratory Directed Research and Development (LDRD) Program
LA-UR-24-26564
ISSN:0031-9007
1079-7114
1079-7114
DOI:10.1103/PhysRevLett.134.070604