Fast-Match: Fast Affine Template Matching

Fast-Match is a fast algorithm for approximate template matching under 2D affine transformations that minimizes the Sum-of-Absolute-Differences (SAD) error measure. There is a huge number of transformations to consider but we prove that they can be sampled using a density that depends on the smoothn...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:International journal of computer vision Ročník 121; číslo 1; s. 111 - 125
Hlavní autori: Korman, Simon, Reichman, Daniel, Tsur, Gilad, Avidan, Shai
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.01.2017
Springer
Springer Nature B.V
Predmet:
ISSN:0920-5691, 1573-1405
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Fast-Match is a fast algorithm for approximate template matching under 2D affine transformations that minimizes the Sum-of-Absolute-Differences (SAD) error measure. There is a huge number of transformations to consider but we prove that they can be sampled using a density that depends on the smoothness of the image. For each potential transformation, we approximate the SAD error using a sublinear algorithm that randomly examines only a small number of pixels. We further accelerate the algorithm using a branch-and-bound-like scheme. As images are known to be piecewise smooth, the result is a practical affine template matching algorithm with approximation guarantees, that takes a few seconds to run on a standard machine. We perform several experiments on three different datasets, and report very good results.
Bibliografia:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:0920-5691
1573-1405
DOI:10.1007/s11263-016-0926-1