A Fast Approximate Algorithm for Mapping Long Reads to Large Reference Databases

Emerging single-molecule sequencing technologies from Pacific Biosciences and Oxford Nanopore have revived interest in long-read mapping algorithms. Alignment-based seed-and-extend methods demonstrate good accuracy, but face limited scalability, while faster alignment-free methods typically trade de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational biology Jg. 25; H. 7; S. 766
Hauptverfasser: Jain, Chirag, Dilthey, Alexander, Koren, Sergey, Aluru, Srinivas, Phillippy, Adam M
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States 01.07.2018
Schlagworte:
ISSN:1557-8666, 1557-8666
Online-Zugang:Weitere Angaben
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Emerging single-molecule sequencing technologies from Pacific Biosciences and Oxford Nanopore have revived interest in long-read mapping algorithms. Alignment-based seed-and-extend methods demonstrate good accuracy, but face limited scalability, while faster alignment-free methods typically trade decreased precision for efficiency. In this article, we combine a fast approximate read mapping algorithm based on minimizers with a novel MinHash identity estimation technique to achieve both scalability and precision. In contrast to prior methods, we develop a mathematical framework that defines the types of mapping targets we uncover, establish probabilistic estimates of p-value and sensitivity, and demonstrate tolerance for alignment error rates up to 20%. With this framework, our algorithm automatically adapts to different minimum length and identity requirements and provides both positional and identity estimates for each mapping reported. For mapping human PacBio reads to the hg38 reference, our method is 290 × faster than Burrows-Wheeler Aligner-MEM with a lower memory footprint and recall rate of 96%. We further demonstrate the scalability of our method by mapping noisy PacBio reads (each ≥5 kbp in length) to the complete NCBI RefSeq database containing 838 Gbp of sequence and >60,000 genomes.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1557-8666
1557-8666
DOI:10.1089/cmb.2018.0036