Loop Between NLRP3 Inflammasome and Reactive Oxygen Species

Inflammasomes are cytosolic multiprotein complexes that mediate innate immune pathways. Inflammasomes activate inflammatory caspases and regulate inflammatory cytokines interleukin (IL)-1β and IL-18 as well as inflammatory cell death (pyroptosis). Among known inflammasomes, NLRP3 (NLR family pyrin d...

Full description

Saved in:
Bibliographic Details
Published in:Antioxidants & redox signaling Vol. 36; no. 10-12; p. 784
Main Authors: Dominic, Abishai, Le, Nhat-Tu, Takahashi, Masafumi
Format: Journal Article
Language:English
Published: United States 01.04.2022
Subjects:
ISSN:1557-7716, 1557-7716
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Inflammasomes are cytosolic multiprotein complexes that mediate innate immune pathways. Inflammasomes activate inflammatory caspases and regulate inflammatory cytokines interleukin (IL)-1β and IL-18 as well as inflammatory cell death (pyroptosis). Among known inflammasomes, NLRP3 (NLR family pyrin domain containing 3) inflammasome is unique and well studied owing to the fact that it senses a broad range of stimuli and is implicated in the pathogenesis of both microbial and sterile inflammatory diseases. Reactive oxygen species (ROS), especially derived from the mitochondria, are one of the critical mediators of NLRP3 inflammasome activation. Furthermore, NLRP3 inflammasome-driven inflammation recruits inflammatory cells, including macrophages and neutrophils, which in turn cause ROS production, suggesting a feedback loop between ROS and NLRP3 inflammasome. The precise mechanism of how ROS affects NLRP3 inflammasome activation still need to be addressed. This review will summarize the current knowledge on the molecular mechanisms underlying the activation of NLRP3 inflammasome with particular emphasis on the intricate balance of feedback loop between ROS and inflammasome activation. Understanding that this relationship is loop rather than traditionally understood linear mechanism will enable to fine-tune inflammasome activation under varied pathological settings. 36, 784-796.
AbstractList Significance: Inflammasomes are cytosolic multiprotein complexes that mediate innate immune pathways. Inflammasomes activate inflammatory caspases and regulate inflammatory cytokines interleukin (IL)-1β and IL-18 as well as inflammatory cell death (pyroptosis). Among known inflammasomes, NLRP3 (NLR family pyrin domain containing 3) inflammasome is unique and well studied owing to the fact that it senses a broad range of stimuli and is implicated in the pathogenesis of both microbial and sterile inflammatory diseases. Recent Advances: Reactive oxygen species (ROS), especially derived from the mitochondria, are one of the critical mediators of NLRP3 inflammasome activation. Furthermore, NLRP3 inflammasome-driven inflammation recruits inflammatory cells, including macrophages and neutrophils, which in turn cause ROS production, suggesting a feedback loop between ROS and NLRP3 inflammasome. Critical Issues: The precise mechanism of how ROS affects NLRP3 inflammasome activation still need to be addressed. This review will summarize the current knowledge on the molecular mechanisms underlying the activation of NLRP3 inflammasome with particular emphasis on the intricate balance of feedback loop between ROS and inflammasome activation. Future Directions: Understanding that this relationship is loop rather than traditionally understood linear mechanism will enable to fine-tune inflammasome activation under varied pathological settings. Antioxid. Redox Signal. 36, 784-796.Significance: Inflammasomes are cytosolic multiprotein complexes that mediate innate immune pathways. Inflammasomes activate inflammatory caspases and regulate inflammatory cytokines interleukin (IL)-1β and IL-18 as well as inflammatory cell death (pyroptosis). Among known inflammasomes, NLRP3 (NLR family pyrin domain containing 3) inflammasome is unique and well studied owing to the fact that it senses a broad range of stimuli and is implicated in the pathogenesis of both microbial and sterile inflammatory diseases. Recent Advances: Reactive oxygen species (ROS), especially derived from the mitochondria, are one of the critical mediators of NLRP3 inflammasome activation. Furthermore, NLRP3 inflammasome-driven inflammation recruits inflammatory cells, including macrophages and neutrophils, which in turn cause ROS production, suggesting a feedback loop between ROS and NLRP3 inflammasome. Critical Issues: The precise mechanism of how ROS affects NLRP3 inflammasome activation still need to be addressed. This review will summarize the current knowledge on the molecular mechanisms underlying the activation of NLRP3 inflammasome with particular emphasis on the intricate balance of feedback loop between ROS and inflammasome activation. Future Directions: Understanding that this relationship is loop rather than traditionally understood linear mechanism will enable to fine-tune inflammasome activation under varied pathological settings. Antioxid. Redox Signal. 36, 784-796.
Inflammasomes are cytosolic multiprotein complexes that mediate innate immune pathways. Inflammasomes activate inflammatory caspases and regulate inflammatory cytokines interleukin (IL)-1β and IL-18 as well as inflammatory cell death (pyroptosis). Among known inflammasomes, NLRP3 (NLR family pyrin domain containing 3) inflammasome is unique and well studied owing to the fact that it senses a broad range of stimuli and is implicated in the pathogenesis of both microbial and sterile inflammatory diseases. Reactive oxygen species (ROS), especially derived from the mitochondria, are one of the critical mediators of NLRP3 inflammasome activation. Furthermore, NLRP3 inflammasome-driven inflammation recruits inflammatory cells, including macrophages and neutrophils, which in turn cause ROS production, suggesting a feedback loop between ROS and NLRP3 inflammasome. The precise mechanism of how ROS affects NLRP3 inflammasome activation still need to be addressed. This review will summarize the current knowledge on the molecular mechanisms underlying the activation of NLRP3 inflammasome with particular emphasis on the intricate balance of feedback loop between ROS and inflammasome activation. Understanding that this relationship is loop rather than traditionally understood linear mechanism will enable to fine-tune inflammasome activation under varied pathological settings. 36, 784-796.
Author Takahashi, Masafumi
Le, Nhat-Tu
Dominic, Abishai
Author_xml – sequence: 1
  givenname: Abishai
  surname: Dominic
  fullname: Dominic, Abishai
  organization: Department of Cardiovascular Sciences, Center for Cardiovascular Regeneration, Houston Methodist Research Institute, Houston, Texas, USA
– sequence: 2
  givenname: Nhat-Tu
  surname: Le
  fullname: Le, Nhat-Tu
  organization: Department of Cardiovascular Sciences, Center for Cardiovascular Regeneration, Houston Methodist Research Institute, Houston, Texas, USA
– sequence: 3
  givenname: Masafumi
  orcidid: 0000-0003-2716-7532
  surname: Takahashi
  fullname: Takahashi, Masafumi
  organization: Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34538111$$D View this record in MEDLINE/PubMed
BookMark eNpNj0tLw0AUhQep2Icu3UqWblLvvDIJrrT4KAQrVdfhduZGInmZSa399was4OqcxcfhfFM2qpuaGDvnMOcQJ1fY-bkAAfNYaHPEJlxrExrDo9G_PmZT7z8AQHAOJ2wslZYx53zCrtOmaYNb6ndEdfCUrp9lsKzzEqsKfVNRgLUL1oS2L74oWH3v3wfspSVbkD9lxzmWns4OOWNv93evi8cwXT0sFzdpaJUQfUhOooU4z4cjwpJGUhBJbYHMRsjEGkgcWqkQI4U25zZyGOlEkYk0udyJGbv83W275nNLvs-qwlsqS6yp2fpsEFdGxsLAgF4c0O2mIpe1XVFht8_-hMUPxaBYiw
CitedBy_id crossref_primary_10_1016_j_ijpharm_2025_125281
crossref_primary_10_1016_j_intimp_2023_110466
crossref_primary_10_1039_D3FO03464J
crossref_primary_10_3390_ijms26104947
crossref_primary_10_1016_j_heliyon_2024_e28838
crossref_primary_10_1089_dna_2022_0265
crossref_primary_10_1007_s11064_022_03796_6
crossref_primary_10_1039_D5AY00984G
crossref_primary_10_1016_j_bcp_2024_116667
crossref_primary_10_1038_s41467_024_49549_7
crossref_primary_10_1111_jcmm_18239
crossref_primary_10_1080_08830185_2024_2415688
crossref_primary_10_3390_biology13060374
crossref_primary_10_1186_s12964_024_01695_7
crossref_primary_10_1097_MCP_0000000000001020
crossref_primary_10_1161_JAHA_123_032904
crossref_primary_10_3390_cells14110808
crossref_primary_10_3390_antiox12111935
crossref_primary_10_3389_fcvm_2022_997469
crossref_primary_10_3389_fimmu_2023_1178434
crossref_primary_10_1186_s12985_023_02194_w
crossref_primary_10_1038_s41598_025_88634_9
crossref_primary_10_3389_fimmu_2025_1624770
crossref_primary_10_3389_fphar_2025_1596087
crossref_primary_10_3390_ijms252111386
crossref_primary_10_3892_ol_2025_14939
crossref_primary_10_1186_s10020_025_01290_7
crossref_primary_10_1038_s41423_022_00962_2
crossref_primary_10_1016_j_bbamcr_2024_119823
crossref_primary_10_1016_j_biopha_2023_115619
crossref_primary_10_1016_j_toxicon_2023_107288
crossref_primary_10_1002_jat_4719
crossref_primary_10_1016_j_neuropharm_2025_110642
crossref_primary_10_3390_ijms242115519
crossref_primary_10_1016_j_brainresbull_2025_111365
crossref_primary_10_1016_j_phymed_2023_155159
crossref_primary_10_1080_10286020_2025_2482054
crossref_primary_10_3389_fendo_2023_1322907
crossref_primary_10_1016_j_intimp_2025_115458
crossref_primary_10_1186_s13045_023_01512_7
crossref_primary_10_1016_j_yjmcc_2025_09_004
crossref_primary_10_1007_s00204_022_03421_z
crossref_primary_10_1016_j_slasd_2025_100258
crossref_primary_10_1111_imr_13417
crossref_primary_10_1016_j_ejmech_2024_116254
crossref_primary_10_3390_biom14060670
crossref_primary_10_1016_j_bcp_2023_115435
crossref_primary_10_1093_rheumatology_keac650
crossref_primary_10_1016_j_nantod_2024_102593
crossref_primary_10_1080_1061186X_2023_2295268
crossref_primary_10_1016_j_biopha_2024_117367
crossref_primary_10_1016_j_intimp_2024_113700
crossref_primary_10_3390_nu15133016
crossref_primary_10_4103_NRR_NRR_D_24_00112
crossref_primary_10_1155_2022_8011988
crossref_primary_10_31083_j_fbl2906210
crossref_primary_10_3390_cells14120930
crossref_primary_10_1093_toxres_tfaf084
crossref_primary_10_3389_fendo_2025_1621968
crossref_primary_10_1186_s12967_023_04313_1
crossref_primary_10_1016_j_pharmthera_2025_108864
crossref_primary_10_1177_09612033251352734
crossref_primary_10_1016_j_freeradbiomed_2025_06_006
crossref_primary_10_1007_s12013_025_01865_5
crossref_primary_10_1016_j_phymed_2023_155059
crossref_primary_10_1016_j_intimp_2025_114469
crossref_primary_10_1007_s00011_024_01961_x
crossref_primary_10_1016_j_imbio_2025_153118
crossref_primary_10_1016_j_ecoenv_2024_116439
crossref_primary_10_1089_ars_2022_0209
crossref_primary_10_1371_journal_pone_0295837
crossref_primary_10_3390_biom14080978
crossref_primary_10_1007_s12011_023_03922_7
crossref_primary_10_1016_j_scitotenv_2023_167267
crossref_primary_10_3389_fphar_2023_1213602
crossref_primary_10_3390_ijms26178544
crossref_primary_10_1016_j_intimp_2024_113806
crossref_primary_10_3390_ijms252011197
crossref_primary_10_1007_s11033_024_09329_4
crossref_primary_10_1016_j_fct_2024_114762
crossref_primary_10_1080_02713683_2025_2497330
crossref_primary_10_1016_j_jbc_2024_107372
crossref_primary_10_3390_cells14130994
crossref_primary_10_14336_AD_2025_0502
crossref_primary_10_3390_cells11142208
crossref_primary_10_1021_acsnano_5c04011
crossref_primary_10_1007_s12035_024_04359_2
crossref_primary_10_1080_10715762_2025_2529914
crossref_primary_10_1002_cam4_6673
crossref_primary_10_1007_s00705_024_05978_9
crossref_primary_10_1111_prd_12532
crossref_primary_10_1007_s00011_024_01949_7
crossref_primary_10_3892_ijmm_2025_5489
crossref_primary_10_3390_ijms242216276
crossref_primary_10_3390_cells13070600
crossref_primary_10_1016_j_biopha_2025_118286
crossref_primary_10_1186_s12951_025_03549_x
crossref_primary_10_3389_fnmol_2024_1482015
crossref_primary_10_1186_s40035_024_00434_9
crossref_primary_10_1007_s00221_024_06824_9
crossref_primary_10_2147_JIR_S454221
crossref_primary_10_1007_s11481_024_10131_z
crossref_primary_10_1002_adfm_202214693
crossref_primary_10_1016_j_vph_2025_107462
crossref_primary_10_1016_j_jare_2025_08_031
crossref_primary_10_1016_j_colsurfb_2023_113147
crossref_primary_10_1016_j_jtcme_2025_06_003
crossref_primary_10_3389_fendo_2025_1576597
crossref_primary_10_1007_s00210_022_02365_6
crossref_primary_10_1007_s12035_023_03614_2
crossref_primary_10_1186_s12967_025_06406_5
crossref_primary_10_3389_fcvm_2024_1410477
crossref_primary_10_1186_s12872_024_03729_x
crossref_primary_10_1016_j_metabol_2024_156058
crossref_primary_10_1016_j_yexmp_2024_104895
crossref_primary_10_1292_jvms_23_0085
crossref_primary_10_1007_s12035_024_04541_6
crossref_primary_10_3389_fnmol_2022_894298
crossref_primary_10_1007_s10787_025_01926_4
crossref_primary_10_3389_fimmu_2024_1367053
crossref_primary_10_1097_CM9_0000000000003634
crossref_primary_10_1002_ptr_8034
crossref_primary_10_1055_a_2517_9234
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1089/ars.2020.8257
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Medicine
Chemistry
EISSN 1557-7716
ExternalDocumentID 34538111
Genre Journal Article
Review
GroupedDBID ---
0R~
0VX
23M
34G
39C
4.4
53G
5GY
5RE
ABBKN
ABJNI
ACGFS
ACPRK
ADBBV
AENEX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BNQNF
CAG
CGR
COF
CS3
CUY
CVF
EBS
ECM
EIF
EJD
F5P
IAO
IER
IHR
IM4
ITC
MV1
NPM
NQHIM
O9-
P2P
RIG
RML
RMSOB
UE5
Z0Y
7X8
SCNPE
ID FETCH-LOGICAL-c422t-ed3ac08ff7162ce5ae40635c0e7b239c709dac34aa64acf1c6da6594e765edfd2
IEDL.DBID 7X8
ISICitedReferencesCount 138
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000745157400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1557-7716
IngestDate Thu Sep 04 18:17:45 EDT 2025
Thu Apr 03 07:09:17 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10-12
Keywords pyroptosis
macrophages
cytokines
inflammation
mitochondria
interleukins
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c422t-ed3ac08ff7162ce5ae40635c0e7b239c709dac34aa64acf1c6da6594e765edfd2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0003-2716-7532
PMID 34538111
PQID 2574738270
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2574738270
pubmed_primary_34538111
PublicationCentury 2000
PublicationDate 2022-Apr
20220401
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-Apr
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Antioxidants & redox signaling
PublicationTitleAlternate Antioxid Redox Signal
PublicationYear 2022
SSID ssj0002110
Score 2.6579957
SecondaryResourceType review_article
Snippet Inflammasomes are cytosolic multiprotein complexes that mediate innate immune pathways. Inflammasomes activate inflammatory caspases and regulate inflammatory...
Significance: Inflammasomes are cytosolic multiprotein complexes that mediate innate immune pathways. Inflammasomes activate inflammatory caspases and regulate...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 784
SubjectTerms Inflammasomes - metabolism
Interleukin-1beta - metabolism
Macrophages - metabolism
NLR Family, Pyrin Domain-Containing 3 Protein - metabolism
Pyroptosis
Reactive Oxygen Species - metabolism
Title Loop Between NLRP3 Inflammasome and Reactive Oxygen Species
URI https://www.ncbi.nlm.nih.gov/pubmed/34538111
https://www.proquest.com/docview/2574738270
Volume 36
WOSCitedRecordID wos000745157400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF7UinrxUV_1xQpeo-k-EzyIFotCW0tR6K1sZnfBQ5Nqqui_d5Km9CQIXnLaQDL75ZuZncl8hFwkUVMZ9DuB8gkPhJcsiEFCYDQY45SH2JY73dG9XjQcxv3qwC2v2irnnFgStc2gOCO_QmgJzSOmw5vJW1CoRhXV1UpCY5nUOIYyBar1cDEtvEhuynmpUmMU2VTVjM0wiq8wa8TkkIWXmCHp36PL0su0t_77fNtks4ov6e0MEDtkyaV1st6ay7rVyVq3qqbvkutOlk3o3axTi_Y6gz6nj6lHjIxNno0dNamlA2dKSqRPX98INloK1rt8j7y0759bD0ElphCAYGwaOMsNhJH3xcgocNI4dOVcQuh0wngMOoytAS6MUcKAb4KyRslYOK2ks96yfbKSZqk7JBQUOnrGLQutFC7EdSKRIJAaksgLBg1yPjfRCF-uqECY1GUf-WhhpAY5mNl5NJlN1RhxgdyLzHv0h7uPyQYrfkMoO2hOSM3jp-pOySp8Tl_z97MSBXjt9bs_FVq7xw
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Loop+Between+NLRP3+Inflammasome+and+Reactive+Oxygen+Species&rft.jtitle=Antioxidants+%26+redox+signaling&rft.au=Dominic%2C+Abishai&rft.au=Le%2C+Nhat-Tu&rft.au=Takahashi%2C+Masafumi&rft.date=2022-04-01&rft.eissn=1557-7716&rft.volume=36&rft.issue=10-12&rft.spage=784&rft_id=info:doi/10.1089%2Fars.2020.8257&rft_id=info%3Apmid%2F34538111&rft_id=info%3Apmid%2F34538111&rft.externalDocID=34538111
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1557-7716&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1557-7716&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1557-7716&client=summon