Reconstruction of Missing Data Completely at Random for Trains Based on Improved GAN
Reconstruction of missing data for heavy-haul trains is critical to ensuring safe train operation. However, existing generative model training methods require a complete dataset, making it difficult for them to address the issue of missing data completely at random. To address this issue, this study...
Gespeichert in:
| Veröffentlicht in: | Journal of advanced computational intelligence and intelligent informatics Jg. 29; H. 5; S. 1068 - 1076 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Tokyo
Fuji Technology Press Co. Ltd
20.09.2025
|
| Schlagworte: | |
| ISSN: | 1343-0130, 1883-8014 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!