Reconstruction of Missing Data Completely at Random for Trains Based on Improved GAN

Reconstruction of missing data for heavy-haul trains is critical to ensuring safe train operation. However, existing generative model training methods require a complete dataset, making it difficult for them to address the issue of missing data completely at random. To address this issue, this study...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of advanced computational intelligence and intelligent informatics Jg. 29; H. 5; S. 1068 - 1076
Hauptverfasser: He, Jing, Chen, Xin, Zhang, Changfan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Tokyo Fuji Technology Press Co. Ltd 20.09.2025
Schlagworte:
ISSN:1343-0130, 1883-8014
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!