Reconstruction of Missing Data Completely at Random for Trains Based on Improved GAN
Reconstruction of missing data for heavy-haul trains is critical to ensuring safe train operation. However, existing generative model training methods require a complete dataset, making it difficult for them to address the issue of missing data completely at random. To address this issue, this study...
Saved in:
| Published in: | Journal of advanced computational intelligence and intelligent informatics Vol. 29; no. 5; pp. 1068 - 1076 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Tokyo
Fuji Technology Press Co. Ltd
20.09.2025
|
| Subjects: | |
| ISSN: | 1343-0130, 1883-8014 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Reconstruction of missing data for heavy-haul trains is critical to ensuring safe train operation. However, existing generative model training methods require a complete dataset, making it difficult for them to address the issue of missing data completely at random. To address this issue, this study proposes a new attention-generative adversarial network to reconstruct missing data. First, a mask matrix is designed to locate the missing data, and the gradient descent algorithm is applied in combination with the output probability matrix of the discriminator so that the mask matrix can still fill up the data well in the case of an incomplete data set. Subsequently, the prompt matrix is derived based on the mask matrix to solve the problem of model overfitting and accelerate the convergence. Finally, an attention mechanism is introduced into the entire generative adversarial network to improve the expression of data features using the feature extraction network. The experimental results show that the mean square error and mean absolute error percentage indexes of reconstruction accuracy can be maintained below 1.5 for measurement data at different missing rates, and the reconstructed data can also well conform to the distribution law of measurement data. |
|---|---|
| AbstractList | Reconstruction of missing data for heavy-haul trains is critical to ensuring safe train operation. However, existing generative model training methods require a complete dataset, making it difficult for them to address the issue of missing data completely at random. To address this issue, this study proposes a new attention-generative adversarial network to reconstruct missing data. First, a mask matrix is designed to locate the missing data, and the gradient descent algorithm is applied in combination with the output probability matrix of the discriminator so that the mask matrix can still fill up the data well in the case of an incomplete data set. Subsequently, the prompt matrix is derived based on the mask matrix to solve the problem of model overfitting and accelerate the convergence. Finally, an attention mechanism is introduced into the entire generative adversarial network to improve the expression of data features using the feature extraction network. The experimental results show that the mean square error and mean absolute error percentage indexes of reconstruction accuracy can be maintained below 1.5 for measurement data at different missing rates, and the reconstructed data can also well conform to the distribution law of measurement data. |
| Author | He, Jing Chen, Xin Zhang, Changfan |
| Author_xml | – sequence: 1 givenname: Jing orcidid: 0000-0002-3650-3270 surname: He fullname: He, Jing organization: College of Electrical and Information Engineering, Hunan University of Technology, Taishan West Road, Tianyuan District, Zhuzhou, Hunan 412007, China – sequence: 2 givenname: Xin surname: Chen fullname: Chen, Xin organization: College of Railway Transportation, Hunan University of Technology, Taishan West Road, Tianyuan District, Zhuzhou, Hunan 412007, China – sequence: 3 givenname: Changfan orcidid: 0000-0002-7439-1775 surname: Zhang fullname: Zhang, Changfan organization: College of Railway Transportation, Hunan University of Technology, Taishan West Road, Tianyuan District, Zhuzhou, Hunan 412007, China |
| BookMark | eNotkE9PAjEQxRuDiYh8AU9NPC-203bpHhH_kaAmBM9N6bamBNq1XUz49lbwNG9e3sxLftdoEGKwCN1SMgHS1OJ-q433viwgJh0ltbxAQyolqyShfFA046wilJErNM55S0jRUBNOh2i9siaG3KeD6X0MODr85nP24Qs_6l7jedx3O9vb3RHrHq90aOMeu5jwOmkfMn7Q2ba4HC72XYo_Rb_M3m_QpdO7bMf_c4Q-n5_W89dq-fGymM-WleEAfWWBawnctbUFV0tmG-OAaLOp-cZRmDJhNLUNUDHVpHgtUGMlFUwLKaZOsxG6O_8t1d8Hm3u1jYcUSqViIICyhnJSUnBOmRRzTtapLvm9TkdFiToBVGeA6g-gOgFkv7KtZik |
| Cites_doi | 10.1109/ICNISC.2018.00088 10.1109/SEGE.2019.8859963 10.1016/j.knosys.2022.110188 10.1109/TIM.2023.3316214 10.1109/SIML61815.2024.10578273 10.1109/AMC58169.2024.10505675 10.1016/j.knosys.2023.111270 10.1109/ACCESS.2023.3306721 10.1109/TPWRS.2023.3288005 10.1175/2008JCLI2182.1 10.20965/jaciii.2021.p0195 10.1109/JSEN.2021.3061109 10.1016/j.knosys.2024.112114 10.1016/j.eswa.2023.119619 |
| ContentType | Journal Article |
| Copyright | Copyright © 2025 Fuji Technology Press Ltd. |
| Copyright_xml | – notice: Copyright © 2025 Fuji Technology Press Ltd. |
| DBID | AAYXX CITATION 7SC 7SP 8FD 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
| DOI | 10.20965/jaciii.2025.p1068 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Database (1962 - current) ProQuest Central Essentials - QC ProQuest Central Technology collection ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database (ProQuest) Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China |
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Computer Science Database |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1883-8014 |
| EndPage | 1076 |
| ExternalDocumentID | 10_20965_jaciii_2025_p1068 |
| GroupedDBID | AAYXX AFFHD AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS BENPR BGLVJ CCPQU CITATION GROUPED_DOAJ HCIFZ ISHAI JSI JSP K7- P2P PHGZM PHGZT PQGLB RJT RZJ TUS 7SC 7SP 8FD 8FE 8FG AZQEC DWQXO GNUQQ JQ2 L7M L~C L~D P62 PKEHL PQEST PQQKQ PQUKI PRINS PUEGO |
| ID | FETCH-LOGICAL-c422t-e24a824fd6e2f683e9cf20acb64bf12735ca1e92157a064bd21ce8153a5857fa3 |
| IEDL.DBID | K7- |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001576722900004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1343-0130 |
| IngestDate | Fri Sep 19 21:03:59 EDT 2025 Sat Nov 29 07:30:39 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c422t-e24a824fd6e2f683e9cf20acb64bf12735ca1e92157a064bd21ce8153a5857fa3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-7439-1775 0000-0002-3650-3270 |
| OpenAccessLink | https://doi.org/10.20965/jaciii.2025.p1068 |
| PQID | 3252139140 |
| PQPubID | 4911628 |
| PageCount | 9 |
| ParticipantIDs | proquest_journals_3252139140 crossref_primary_10_20965_jaciii_2025_p1068 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-09-20 |
| PublicationDateYYYYMMDD | 2025-09-20 |
| PublicationDate_xml | – month: 09 year: 2025 text: 2025-09-20 day: 20 |
| PublicationDecade | 2020 |
| PublicationPlace | Tokyo |
| PublicationPlace_xml | – name: Tokyo |
| PublicationTitle | Journal of advanced computational intelligence and intelligent informatics |
| PublicationYear | 2025 |
| Publisher | Fuji Technology Press Co. Ltd |
| Publisher_xml | – name: Fuji Technology Press Co. Ltd |
| References | key-10.20965/jaciii.2025.p1068-1 key-10.20965/jaciii.2025.p1068-11 key-10.20965/jaciii.2025.p1068-12 key-10.20965/jaciii.2025.p1068-10 key-10.20965/jaciii.2025.p1068-5 key-10.20965/jaciii.2025.p1068-4 key-10.20965/jaciii.2025.p1068-3 key-10.20965/jaciii.2025.p1068-2 key-10.20965/jaciii.2025.p1068-9 key-10.20965/jaciii.2025.p1068-8 key-10.20965/jaciii.2025.p1068-7 key-10.20965/jaciii.2025.p1068-6 key-10.20965/jaciii.2025.p1068-13 key-10.20965/jaciii.2025.p1068-14 |
| References_xml | – ident: key-10.20965/jaciii.2025.p1068-4 doi: 10.1109/ICNISC.2018.00088 – ident: key-10.20965/jaciii.2025.p1068-6 doi: 10.1109/SEGE.2019.8859963 – ident: key-10.20965/jaciii.2025.p1068-8 doi: 10.1016/j.knosys.2022.110188 – ident: key-10.20965/jaciii.2025.p1068-7 doi: 10.1109/TIM.2023.3316214 – ident: key-10.20965/jaciii.2025.p1068-3 doi: 10.1109/SIML61815.2024.10578273 – ident: key-10.20965/jaciii.2025.p1068-2 doi: 10.1109/AMC58169.2024.10505675 – ident: key-10.20965/jaciii.2025.p1068-11 doi: 10.1016/j.knosys.2023.111270 – ident: key-10.20965/jaciii.2025.p1068-13 doi: 10.1109/ACCESS.2023.3306721 – ident: key-10.20965/jaciii.2025.p1068-1 doi: 10.1109/TPWRS.2023.3288005 – ident: key-10.20965/jaciii.2025.p1068-5 doi: 10.1175/2008JCLI2182.1 – ident: key-10.20965/jaciii.2025.p1068-14 doi: 10.20965/jaciii.2021.p0195 – ident: key-10.20965/jaciii.2025.p1068-9 doi: 10.1109/JSEN.2021.3061109 – ident: key-10.20965/jaciii.2025.p1068-10 doi: 10.1016/j.knosys.2024.112114 – ident: key-10.20965/jaciii.2025.p1068-12 doi: 10.1016/j.eswa.2023.119619 |
| SSID | ssj0001326041 ssib051641541 |
| Score | 2.342166 |
| Snippet | Reconstruction of missing data for heavy-haul trains is critical to ensuring safe train operation. However, existing generative model training methods require... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Index Database |
| StartPage | 1068 |
| SubjectTerms | Feature extraction Generative adversarial networks Missing data Reconstruction |
| Title | Reconstruction of Missing Data Completely at Random for Trains Based on Improved GAN |
| URI | https://www.proquest.com/docview/3252139140 |
| Volume | 29 |
| WOSCitedRecordID | wos001576722900004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1883-8014 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001326041 issn: 1343-0130 databaseCode: DOA dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1883-8014 dateEnd: 99991231 omitProxy: false ssIdentifier: ssib051641541 issn: 1343-0130 databaseCode: M~E dateStart: 19970101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1883-8014 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001326041 issn: 1343-0130 databaseCode: P5Z dateStart: 20200101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1883-8014 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001326041 issn: 1343-0130 databaseCode: K7- dateStart: 20200101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1883-8014 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001326041 issn: 1343-0130 databaseCode: BENPR dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA-6efDi_MTpHDl4k7o2SZv0JJtuerGMMWF4KWmagKLttEXwv_elHwwvXryUQkgp7yXv_X4vL-8hdKl5aERKgaYy4zrMA10InlKHSqVdohJPGlk1m-BRJFarcN4E3IomrbK1iZWhTnNlY-QjSsDR0BD4wM36w7Fdo-zpatNCYxt1PQLD9lCWO-168oEKAELwNjEXwCouqzkYs2lE1K3v0RBbA2X0KpUt6EAABlyvgSqJ377qt6mu_M-s998_30d7DfLE43qpHKAtnR2iXtvVATeb_AgtLSPd1JXFucGPoB1wcfhOlhLbGaBs_faNZYkXMkvzdwzQFy9tt4kCT8Avphgm1vEKeL8fR8foaTZd3j44Te8FRzFCSkcTJgVhJg00MYGgOlSGuFIlAUuMB5jHV9LTIQAGLgHVJCnxlBZgPiXwD24kPUGdLM_0KcJgNQJ7pdW4PGGBJyShHCxHAp7QBxPn99FVK-V4XZfYiIGaVDqJa53EVidxpZM-GrRSjpvtVsQbEZ_9PXyOdu2nbMIHcQeoA7LUF2hHfZUvxecQdSfTaL4YVsR8WK0leM795x-LCsz9 |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1dS8MwFL3MD9AX5ydOp-ZBn6SuTbImfRCZ32NziEzwraZpAopu0w3FP-Vv9KZdGb74tgffCqWB5p6ec0-a3Auwb0RkZcrQpnLrezzAWEiRMo8pbXyqk0BZlTWbEJ2OfHiIbkvwXZyFcdsqC07MiDrta7dGXmMUhYZF6AdOBm-e6xrl_q4WLTRyWLTM1ydatuFx8xzje0Dp5UX37NobdxXwNKd05BnKlaTcpqGhNpTMRNpSX-kk5IkNUM3rWgUmQikUCvU6SWmgjURiUJhZC6sYjjsDc5xJ4Wr1t4RX4LeO1gMzkmCyxoO5kc9zz8fdtiXm5-d2qKu5UntW2hWQoJh2HA3Qmsnf2vhbGjK9uyz_t5lahqVxZk0a-aewAiXTW4Vy0bWCjElsDbrOcU_q5pK-JTeIPpRwcq5GirgnEMzm5YuoEblTvbT_SjC1J13XTWNITlH3U4IP5usxeH3V6KzD_VTebQNme_2e2QSCrBi6I7vWFwkPA6koE8iMCSp9HSm8XoHDIqrxIC8hEqP1yjAQ5xiIHQbiDAMVqBZRjcd0MownId36-_YeLFx3b9pxu9lpbcOiG9ZtbqF-FWZxXs0OzOuP0dPwfTdDLoHHaQPgByLqJo0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reconstruction+of+Missing+Data+Completely+at+Random+for+Trains+Based+on+Improved+GAN&rft.jtitle=Journal+of+advanced+computational+intelligence+and+intelligent+informatics&rft.au=He%2C+Jing&rft.au=Chen%2C+Xin&rft.au=Zhang%2C+Changfan&rft.date=2025-09-20&rft.issn=1343-0130&rft.eissn=1883-8014&rft.volume=29&rft.issue=5&rft.spage=1068&rft.epage=1076&rft_id=info:doi/10.20965%2Fjaciii.2025.p1068&rft.externalDBID=n%2Fa&rft.externalDocID=10_20965_jaciii_2025_p1068 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1343-0130&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1343-0130&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1343-0130&client=summon |