Reconstruction of Missing Data Completely at Random for Trains Based on Improved GAN

Reconstruction of missing data for heavy-haul trains is critical to ensuring safe train operation. However, existing generative model training methods require a complete dataset, making it difficult for them to address the issue of missing data completely at random. To address this issue, this study...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of advanced computational intelligence and intelligent informatics Ročník 29; číslo 5; s. 1068 - 1076
Hlavní autori: He, Jing, Chen, Xin, Zhang, Changfan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Tokyo Fuji Technology Press Co. Ltd 20.09.2025
Predmet:
ISSN:1343-0130, 1883-8014
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Reconstruction of missing data for heavy-haul trains is critical to ensuring safe train operation. However, existing generative model training methods require a complete dataset, making it difficult for them to address the issue of missing data completely at random. To address this issue, this study proposes a new attention-generative adversarial network to reconstruct missing data. First, a mask matrix is designed to locate the missing data, and the gradient descent algorithm is applied in combination with the output probability matrix of the discriminator so that the mask matrix can still fill up the data well in the case of an incomplete data set. Subsequently, the prompt matrix is derived based on the mask matrix to solve the problem of model overfitting and accelerate the convergence. Finally, an attention mechanism is introduced into the entire generative adversarial network to improve the expression of data features using the feature extraction network. The experimental results show that the mean square error and mean absolute error percentage indexes of reconstruction accuracy can be maintained below 1.5 for measurement data at different missing rates, and the reconstructed data can also well conform to the distribution law of measurement data.
AbstractList Reconstruction of missing data for heavy-haul trains is critical to ensuring safe train operation. However, existing generative model training methods require a complete dataset, making it difficult for them to address the issue of missing data completely at random. To address this issue, this study proposes a new attention-generative adversarial network to reconstruct missing data. First, a mask matrix is designed to locate the missing data, and the gradient descent algorithm is applied in combination with the output probability matrix of the discriminator so that the mask matrix can still fill up the data well in the case of an incomplete data set. Subsequently, the prompt matrix is derived based on the mask matrix to solve the problem of model overfitting and accelerate the convergence. Finally, an attention mechanism is introduced into the entire generative adversarial network to improve the expression of data features using the feature extraction network. The experimental results show that the mean square error and mean absolute error percentage indexes of reconstruction accuracy can be maintained below 1.5 for measurement data at different missing rates, and the reconstructed data can also well conform to the distribution law of measurement data.
Author He, Jing
Chen, Xin
Zhang, Changfan
Author_xml – sequence: 1
  givenname: Jing
  orcidid: 0000-0002-3650-3270
  surname: He
  fullname: He, Jing
  organization: College of Electrical and Information Engineering, Hunan University of Technology, Taishan West Road, Tianyuan District, Zhuzhou, Hunan 412007, China
– sequence: 2
  givenname: Xin
  surname: Chen
  fullname: Chen, Xin
  organization: College of Railway Transportation, Hunan University of Technology, Taishan West Road, Tianyuan District, Zhuzhou, Hunan 412007, China
– sequence: 3
  givenname: Changfan
  orcidid: 0000-0002-7439-1775
  surname: Zhang
  fullname: Zhang, Changfan
  organization: College of Railway Transportation, Hunan University of Technology, Taishan West Road, Tianyuan District, Zhuzhou, Hunan 412007, China
BookMark eNotkE9PAjEQxRuDiYh8AU9NPC-203bpHhH_kaAmBM9N6bamBNq1XUz49lbwNG9e3sxLftdoEGKwCN1SMgHS1OJ-q433viwgJh0ltbxAQyolqyShfFA046wilJErNM55S0jRUBNOh2i9siaG3KeD6X0MODr85nP24Qs_6l7jedx3O9vb3RHrHq90aOMeu5jwOmkfMn7Q2ba4HC72XYo_Rb_M3m_QpdO7bMf_c4Q-n5_W89dq-fGymM-WleEAfWWBawnctbUFV0tmG-OAaLOp-cZRmDJhNLUNUDHVpHgtUGMlFUwLKaZOsxG6O_8t1d8Hm3u1jYcUSqViIICyhnJSUnBOmRRzTtapLvm9TkdFiToBVGeA6g-gOgFkv7KtZik
Cites_doi 10.1109/ICNISC.2018.00088
10.1109/SEGE.2019.8859963
10.1016/j.knosys.2022.110188
10.1109/TIM.2023.3316214
10.1109/SIML61815.2024.10578273
10.1109/AMC58169.2024.10505675
10.1016/j.knosys.2023.111270
10.1109/ACCESS.2023.3306721
10.1109/TPWRS.2023.3288005
10.1175/2008JCLI2182.1
10.20965/jaciii.2021.p0195
10.1109/JSEN.2021.3061109
10.1016/j.knosys.2024.112114
10.1016/j.eswa.2023.119619
ContentType Journal Article
Copyright Copyright © 2025 Fuji Technology Press Ltd.
Copyright_xml – notice: Copyright © 2025 Fuji Technology Press Ltd.
DBID AAYXX
CITATION
7SC
7SP
8FD
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.20965/jaciii.2025.p1068
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Computer Science Database
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1883-8014
EndPage 1076
ExternalDocumentID 10_20965_jaciii_2025_p1068
GroupedDBID AAYXX
AFFHD
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
BENPR
BGLVJ
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
ISHAI
JSI
JSP
K7-
P2P
PHGZM
PHGZT
PQGLB
RJT
RZJ
TUS
7SC
7SP
8FD
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
L7M
L~C
L~D
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c422t-e24a824fd6e2f683e9cf20acb64bf12735ca1e92157a064bd21ce8153a5857fa3
IEDL.DBID K7-
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001576722900004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1343-0130
IngestDate Fri Sep 19 21:03:59 EDT 2025
Sat Nov 29 07:30:39 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c422t-e24a824fd6e2f683e9cf20acb64bf12735ca1e92157a064bd21ce8153a5857fa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7439-1775
0000-0002-3650-3270
OpenAccessLink https://doi.org/10.20965/jaciii.2025.p1068
PQID 3252139140
PQPubID 4911628
PageCount 9
ParticipantIDs proquest_journals_3252139140
crossref_primary_10_20965_jaciii_2025_p1068
PublicationCentury 2000
PublicationDate 2025-09-20
PublicationDateYYYYMMDD 2025-09-20
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-09-20
  day: 20
PublicationDecade 2020
PublicationPlace Tokyo
PublicationPlace_xml – name: Tokyo
PublicationTitle Journal of advanced computational intelligence and intelligent informatics
PublicationYear 2025
Publisher Fuji Technology Press Co. Ltd
Publisher_xml – name: Fuji Technology Press Co. Ltd
References key-10.20965/jaciii.2025.p1068-1
key-10.20965/jaciii.2025.p1068-11
key-10.20965/jaciii.2025.p1068-12
key-10.20965/jaciii.2025.p1068-10
key-10.20965/jaciii.2025.p1068-5
key-10.20965/jaciii.2025.p1068-4
key-10.20965/jaciii.2025.p1068-3
key-10.20965/jaciii.2025.p1068-2
key-10.20965/jaciii.2025.p1068-9
key-10.20965/jaciii.2025.p1068-8
key-10.20965/jaciii.2025.p1068-7
key-10.20965/jaciii.2025.p1068-6
key-10.20965/jaciii.2025.p1068-13
key-10.20965/jaciii.2025.p1068-14
References_xml – ident: key-10.20965/jaciii.2025.p1068-4
  doi: 10.1109/ICNISC.2018.00088
– ident: key-10.20965/jaciii.2025.p1068-6
  doi: 10.1109/SEGE.2019.8859963
– ident: key-10.20965/jaciii.2025.p1068-8
  doi: 10.1016/j.knosys.2022.110188
– ident: key-10.20965/jaciii.2025.p1068-7
  doi: 10.1109/TIM.2023.3316214
– ident: key-10.20965/jaciii.2025.p1068-3
  doi: 10.1109/SIML61815.2024.10578273
– ident: key-10.20965/jaciii.2025.p1068-2
  doi: 10.1109/AMC58169.2024.10505675
– ident: key-10.20965/jaciii.2025.p1068-11
  doi: 10.1016/j.knosys.2023.111270
– ident: key-10.20965/jaciii.2025.p1068-13
  doi: 10.1109/ACCESS.2023.3306721
– ident: key-10.20965/jaciii.2025.p1068-1
  doi: 10.1109/TPWRS.2023.3288005
– ident: key-10.20965/jaciii.2025.p1068-5
  doi: 10.1175/2008JCLI2182.1
– ident: key-10.20965/jaciii.2025.p1068-14
  doi: 10.20965/jaciii.2021.p0195
– ident: key-10.20965/jaciii.2025.p1068-9
  doi: 10.1109/JSEN.2021.3061109
– ident: key-10.20965/jaciii.2025.p1068-10
  doi: 10.1016/j.knosys.2024.112114
– ident: key-10.20965/jaciii.2025.p1068-12
  doi: 10.1016/j.eswa.2023.119619
SSID ssj0001326041
ssib051641541
Score 2.342166
Snippet Reconstruction of missing data for heavy-haul trains is critical to ensuring safe train operation. However, existing generative model training methods require...
SourceID proquest
crossref
SourceType Aggregation Database
Index Database
StartPage 1068
SubjectTerms Feature extraction
Generative adversarial networks
Missing data
Reconstruction
Title Reconstruction of Missing Data Completely at Random for Trains Based on Improved GAN
URI https://www.proquest.com/docview/3252139140
Volume 29
WOSCitedRecordID wos001576722900004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1883-8014
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001326041
  issn: 1343-0130
  databaseCode: DOA
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center)
  customDbUrl:
  eissn: 1883-8014
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib051641541
  issn: 1343-0130
  databaseCode: M~E
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1883-8014
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001326041
  issn: 1343-0130
  databaseCode: K7-
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest advanced technologies & aerospace journals
  customDbUrl:
  eissn: 1883-8014
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001326041
  issn: 1343-0130
  databaseCode: P5Z
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1883-8014
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001326041
  issn: 1343-0130
  databaseCode: BENPR
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB609eDF-sRqLXvwJmuTzeZ1klZbPWgopULxEja7G1C0qSYI_ntn86D04sVLCCwbwszuzPfNzs4AXLqKB0q6AfVCU1RbaE4FGj0qE0Qfli91aJUXhR_9KAoWi3BaB9zyOq2ysYmloVaZNDHygcPQ0Tgh8oGb1Sc1XaPM6WrdQmMb2jbDYXMo69NmPblIBRAh2OuYC2IVi1ccjJs0Iseq7tEwUwNl8CakKejAEAZcr5AqBZu-atNUl_5n0vnvn-_DXo08ybBaKgewpZeH0Gm6OpB6kx_B3DDSdV1ZkqXkCbWDLo7ciUIQMwOVrd9_iCjITCxV9kEQ-pK56TaRkxH6RUVwYhWvwPf7YXQMz5Px_PaB1r0XqOSMFVQzLgLGU-VplnqBo0OZMkvIxONJaiPmcaWwdYiAwReIahLFbKkDNJ8C-YefCucEWstsqU-BaPSRWqJRtZTini0TjZZNckto6fiJw7pw1Ug5XlUlNmKkJqVO4konsdFJXOqkC71GynG93fJ4LeKzv4fPYdd8yiR8MKsHLZSlvoAd-V285l99aI_G0XTWL4l5v1xL-Jy6L7_Zsc5I
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NS8NAEB1qFfRi_cRq1T3oSWKTzTYfB5FqrS39QKRCb3GzuwFFm2qK0j_lb3Q2aSi9eOvBWyBkITsv773Z7M4AnNUk86SoeYbj66LaXDGDI-kZIkT3YbpC-WZ6ULjr9vvecOg_FOAnPwujt1XmnJgStYyFXiOv2hSFxvYxH7gefxi6a5T-u5q30Mhg0VHTb0zZkqt2A-N7TmnzbnDbMmZdBQzBKJ0YijLuURZJR9HI8Wzli4iaXIQOCyML1bwmuKV8lEKXo16HklpCeUgMHJ21G3Ebx12BVWZ7rq7V33GNHL81TD3QkVjzNR70RibLcj6mty3ZZnZuh-qaK9VXLnQBCYq243KMqZm3qI2L0pDqXbP032ZqCzZnzprUs09hGwpqtAOlvGsFmZHYLgx0xj2vm0viiPQQfSjhpMEnnOgnEMzqbUr4hDzykYzfCVp7MtDdNBJyg7ovCT6Yrcfg9X29vwdPS3m3fSiO4pE6AKLQAyiBomFKyRxLhAqZWzCTK2G7oU3LcJFHNRhnJUQCTL1SDAQZBgKNgSDFQBkqeVSDGZ0kwTykh3_fPoX11qDXDbrtfucINvSwenMLNStQxHlVx7AmviYvyedJilwCz8sGwC-i-ifY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reconstruction+of+Missing+Data+Completely+at+Random+for+Trains+Based+on+Improved+GAN&rft.jtitle=Journal+of+advanced+computational+intelligence+and+intelligent+informatics&rft.au=He%2C+Jing&rft.au=Chen%2C+Xin&rft.au=Zhang%2C+Changfan&rft.date=2025-09-20&rft.issn=1343-0130&rft.eissn=1883-8014&rft.volume=29&rft.issue=5&rft.spage=1068&rft.epage=1076&rft_id=info:doi/10.20965%2Fjaciii.2025.p1068&rft.externalDBID=n%2Fa&rft.externalDocID=10_20965_jaciii_2025_p1068
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1343-0130&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1343-0130&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1343-0130&client=summon