Research on Action Recognition Algorithm Based on SlowFast Network
As a major branch of video understanding, human action recognition has become a popular research topic in the field of computer vision and has a wide range of applications in many areas. To address the problems of high parameter consumption and weak spatiotemporal modeling capabilities in existing a...
Uložené v:
| Vydané v: | Journal of advanced computational intelligence and intelligent informatics Ročník 29; číslo 5; s. 1056 - 1061 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Tokyo
Fuji Technology Press Co. Ltd
20.09.2025
|
| Predmet: | |
| ISSN: | 1343-0130, 1883-8014 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | As a major branch of video understanding, human action recognition has become a popular research topic in the field of computer vision and has a wide range of applications in many areas. To address the problems of high parameter consumption and weak spatiotemporal modeling capabilities in existing action recognition methods, this study proposes a lightweight dual-branch convolutional network called SlowFast-Light Net. Inspired and influenced by the renowned two-branch SlowFast network proposed by the expert Kaiming He, this study adopts a lightweight two-branch network design, which is an improvement based on the SlowFast network. The network significantly reduces parameter consumption by introducing a lightweight feature extraction network and accelerating the model convergence speed. This study conducts experimental verification on the UCF101 and HMDB51 datasets, achieving an action recognition accuracy of 93.80% and 80.00%, respectively, on the two test sets. The experimental results showed that the model proposed in this study achieved a recognition accuracy comparable to that of the original model with a considerably lower number of parameters. |
|---|---|
| AbstractList | As a major branch of video understanding, human action recognition has become a popular research topic in the field of computer vision and has a wide range of applications in many areas. To address the problems of high parameter consumption and weak spatiotemporal modeling capabilities in existing action recognition methods, this study proposes a lightweight dual-branch convolutional network called SlowFast-Light Net. Inspired and influenced by the renowned two-branch SlowFast network proposed by the expert Kaiming He, this study adopts a lightweight two-branch network design, which is an improvement based on the SlowFast network. The network significantly reduces parameter consumption by introducing a lightweight feature extraction network and accelerating the model convergence speed. This study conducts experimental verification on the UCF101 and HMDB51 datasets, achieving an action recognition accuracy of 93.80% and 80.00%, respectively, on the two test sets. The experimental results showed that the model proposed in this study achieved a recognition accuracy comparable to that of the original model with a considerably lower number of parameters. |
| Author | Xu, Yinhao Lu, Yuanyao |
| Author_xml | – sequence: 1 givenname: Yinhao surname: Xu fullname: Xu, Yinhao organization: School of Information Science and Technology, North China University of Technology, No.5 Jinyuanzhuang Road, Shijingshan District, Beijing 100144, China – sequence: 2 givenname: Yuanyao orcidid: 0000-0003-0019-3028 surname: Lu fullname: Lu, Yuanyao organization: School of Information Science and Technology, North China University of Technology, No.5 Jinyuanzhuang Road, Shijingshan District, Beijing 100144, China |
| BookMark | eNotkE1PAjEURRuDiYj8AVeTuB5sX9v5WAIRNSGaoK6b8qaFIkyxHUL89xZwde9LTu5Lzi3ptb41hNwzOgJaF_Jxo9E5lw6Qoz2jsrgifVZVPK8oE73UueA5ZZzekGGMG0pTh4IK1ieThYlGB1xnvs3G2LkUC4N-1bpzH29XPrhuvcsmOprmRH1s_XGmY5e9me7ow_cdubZ6G83wPwfka_b0OX3J5-_Pr9PxPEcB0OWIpTYMsFqKJQAKiSVaw2nNKS9L2XAr0PKGFkWCGgDbaAONRLBaQ41LPiAPl9198D8HEzu18YfQppeKgwTG6yQjUXChMPgYg7FqH9xOh1_FqDrrUhdd6qRLnXXxP0LIYPM |
| Cites_doi | 10.20965/jaciii.2023.p0673 10.1109/ICCVW.2019.00240 10.1109/ICCV.2019.00630 10.1109/ICCV.2015.510 10.1109/CVPR.2018.00633 10.3389/fnbot.2024.1457843 10.1007/978-3-030-01264-9_8 10.1016/j.cviu.2022.103484 10.1109/CVPR.2018.00474 10.1109/CVPR42600.2020.00099 10.1109/CVPR.2017.502 10.1109/CVPR.2018.00716 10.1109/CVPR.2016.213 10.20965/jaciii.2023.p1086 10.20965/jaciii.2020.p0346 10.1109/ICCV.2017.590 |
| ContentType | Journal Article |
| Copyright | Copyright © 2025 Fuji Technology Press Ltd. |
| Copyright_xml | – notice: Copyright © 2025 Fuji Technology Press Ltd. |
| DBID | AAYXX CITATION 7SC 7SP 8FD 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
| DOI | 10.20965/jaciii.2025.p1056 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central - New (Subscription) Technology collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China |
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Computer Science Database CrossRef |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1883-8014 |
| EndPage | 1061 |
| ExternalDocumentID | 10_20965_jaciii_2025_p1056 |
| GroupedDBID | AAYXX AFFHD AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS BENPR BGLVJ CCPQU CITATION GROUPED_DOAJ HCIFZ ISHAI JSI JSP K7- P2P PHGZM PHGZT PQGLB RJT RZJ TUS 7SC 7SP 8FD 8FE 8FG AZQEC DWQXO GNUQQ JQ2 L7M L~C L~D P62 PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c422t-cc7ae12c8b4b22c45c7cfe309303775d3f4cf3d06612cd22fdae2d5c2faa29cb3 |
| IEDL.DBID | P5Z |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001576722900023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1343-0130 |
| IngestDate | Tue Oct 07 11:14:01 EDT 2025 Sat Nov 29 07:30:39 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c422t-cc7ae12c8b4b22c45c7cfe309303775d3f4cf3d06612cd22fdae2d5c2faa29cb3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-0019-3028 |
| OpenAccessLink | https://doi.org/10.20965/jaciii.2025.p1056 |
| PQID | 3252139096 |
| PQPubID | 4911628 |
| PageCount | 6 |
| ParticipantIDs | proquest_journals_3252139096 crossref_primary_10_20965_jaciii_2025_p1056 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-09-20 |
| PublicationDateYYYYMMDD | 2025-09-20 |
| PublicationDate_xml | – month: 09 year: 2025 text: 2025-09-20 day: 20 |
| PublicationDecade | 2020 |
| PublicationPlace | Tokyo |
| PublicationPlace_xml | – name: Tokyo |
| PublicationTitle | Journal of advanced computational intelligence and intelligent informatics |
| PublicationYear | 2025 |
| Publisher | Fuji Technology Press Co. Ltd |
| Publisher_xml | – name: Fuji Technology Press Co. Ltd |
| References | key-10.20965/jaciii.2025.p1056-2 key-10.20965/jaciii.2025.p1056-1 key-10.20965/jaciii.2025.p1056-6 key-10.20965/jaciii.2025.p1056-5 key-10.20965/jaciii.2025.p1056-4 key-10.20965/jaciii.2025.p1056-3 key-10.20965/jaciii.2025.p1056-19 key-10.20965/jaciii.2025.p1056-9 key-10.20965/jaciii.2025.p1056-18 key-10.20965/jaciii.2025.p1056-8 key-10.20965/jaciii.2025.p1056-17 key-10.20965/jaciii.2025.p1056-7 key-10.20965/jaciii.2025.p1056-16 key-10.20965/jaciii.2025.p1056-15 key-10.20965/jaciii.2025.p1056-14 key-10.20965/jaciii.2025.p1056-13 key-10.20965/jaciii.2025.p1056-12 key-10.20965/jaciii.2025.p1056-23 key-10.20965/jaciii.2025.p1056-11 key-10.20965/jaciii.2025.p1056-22 key-10.20965/jaciii.2025.p1056-10 key-10.20965/jaciii.2025.p1056-21 key-10.20965/jaciii.2025.p1056-20 |
| References_xml | – ident: key-10.20965/jaciii.2025.p1056-14 doi: 10.20965/jaciii.2023.p0673 – ident: key-10.20965/jaciii.2025.p1056-4 – ident: key-10.20965/jaciii.2025.p1056-19 – ident: key-10.20965/jaciii.2025.p1056-18 – ident: key-10.20965/jaciii.2025.p1056-22 doi: 10.1109/ICCVW.2019.00240 – ident: key-10.20965/jaciii.2025.p1056-2 doi: 10.1109/ICCV.2019.00630 – ident: key-10.20965/jaciii.2025.p1056-8 doi: 10.1109/ICCV.2015.510 – ident: key-10.20965/jaciii.2025.p1056-17 doi: 10.1109/CVPR.2018.00633 – ident: key-10.20965/jaciii.2025.p1056-21 doi: 10.3389/fnbot.2024.1457843 – ident: key-10.20965/jaciii.2025.p1056-6 – ident: key-10.20965/jaciii.2025.p1056-12 doi: 10.1007/978-3-030-01264-9_8 – ident: key-10.20965/jaciii.2025.p1056-5 – ident: key-10.20965/jaciii.2025.p1056-20 – ident: key-10.20965/jaciii.2025.p1056-11 – ident: key-10.20965/jaciii.2025.p1056-23 doi: 10.1016/j.cviu.2022.103484 – ident: key-10.20965/jaciii.2025.p1056-13 doi: 10.1109/CVPR.2018.00474 – ident: key-10.20965/jaciii.2025.p1056-16 doi: 10.1109/CVPR42600.2020.00099 – ident: key-10.20965/jaciii.2025.p1056-10 doi: 10.1109/CVPR.2017.502 – ident: key-10.20965/jaciii.2025.p1056-3 doi: 10.1109/CVPR.2018.00716 – ident: key-10.20965/jaciii.2025.p1056-7 doi: 10.1109/CVPR.2016.213 – ident: key-10.20965/jaciii.2025.p1056-15 doi: 10.20965/jaciii.2023.p1086 – ident: key-10.20965/jaciii.2025.p1056-1 doi: 10.20965/jaciii.2020.p0346 – ident: key-10.20965/jaciii.2025.p1056-9 doi: 10.1109/ICCV.2017.590 |
| SSID | ssj0001326041 ssib051641541 |
| Score | 2.3350496 |
| Snippet | As a major branch of video understanding, human action recognition has become a popular research topic in the field of computer vision and has a wide range of... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Index Database |
| StartPage | 1056 |
| SubjectTerms | Accuracy Algorithms Computer vision Consumption Design Human activity recognition Informatics Network design Neural networks Parameters Semantics |
| Title | Research on Action Recognition Algorithm Based on SlowFast Network |
| URI | https://www.proquest.com/docview/3252139096 |
| Volume | 29 |
| WOSCitedRecordID | wos001576722900023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1883-8014 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001326041 issn: 1343-0130 databaseCode: DOA dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1883-8014 dateEnd: 99991231 omitProxy: false ssIdentifier: ssib051641541 issn: 1343-0130 databaseCode: M~E dateStart: 19970101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1883-8014 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001326041 issn: 1343-0130 databaseCode: P5Z dateStart: 20200101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1883-8014 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001326041 issn: 1343-0130 databaseCode: K7- dateStart: 20200101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1883-8014 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001326041 issn: 1343-0130 databaseCode: BENPR dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagZWChPEWhVBnYUCB17DiZUItaIYGiqoBUsUSOHzxU0tIE-Pv4nERVFxaWDMnJiu7O9_L5PoTOU0ailPRSlwfUJCiShi6nkXQ9bbyJokFItB2Zf8_iOJxOo3FVcMurtsraJlpDLecCauRXPjaOxiToUXC9-HQBNQpOVysIjU3UhCkJAN0wps-1PlGTCpgIobequZhYxSNlDkagjcj3yns0GGagXL1zAQMdsAkDLheASL_uq9ZNtfU_o9Z__3wX7VSRp9MvVWUPbahsH7VqVAen2uQHaFA34znzzOnbaw_OpG4zglezF7N68frhDIwHlED1MJv_jHheOHHZVH6InkbDx5tbt0JacAXBuHCFYFz1sAhTkmIsCBVMaAWHpJ7PGJW-JkL70oQnhkhirCVXWFKBNec4Eql_hBrZPFPHyFGUaRWFjMFc_QAwC5khopGvcSplxNvoouZpsigHaiQmEbESSEoJJCCBxEqgjTo1T5Nqc-XJiqEnf38-RduwFLR3YK-DGsXyS52hLfFdvOXLLmoOhvF40rVpuHneMbdr9ecXww7JBg |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB5RQCoXoNCKd30opyolO7Hj5IAQrxVol1XVgsQtdfwoINhd2ADiT_EbGSdrIS69ceg1tiw533i-GXseAN9KyfOSt8pIpYIcFCOySIncRLEjNrEizbirS-Z3Za-XnZ_nPyfgOeTC-LDKoBNrRW0G2t-RbyVIREMOep7uDG8j3zXKv66GFhqNWHTs0yO5bKPt4wPCdxOxfXi6fxSNuwpEmiNWkdZS2RbqrOQlouZCS-2sfxCMEymFSRzXLjFExTTJIDqjLBqh0SmFuS4TWvcDTPEkk_5cdWQU5FeQ60EWSev1jodso5g3Ph_3YUtJ3OTtoK-5snWltC8ggWR2_BiSnZO-5ca31FDzXXvuf_tT8zA7tqzZbnMUPsGE7S_AXOhawcZKbBH2QrAhG_TZbp3WwX6FMCr_6fov7aa6uGF7xPDGz_p9PXhsq1HFek3Q_Gc4e5edfIHJ_qBvl4BZIZ3NMyl934DU92SUNEnkicPSmFwtw_eAYTFsCoYU5GjViBcN4oVHvKgRX4a1gGExVh6j4hXAlX8Pf4WPR6cn3aJ73Ouswoxf1oeyYLwGk9XdvV2Haf1QXY7uNmo5ZfDnveF-AREbJP8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+on+Action+Recognition+Algorithm+Based+on+SlowFast+Network&rft.jtitle=Journal+of+advanced+computational+intelligence+and+intelligent+informatics&rft.au=Xu%2C+Yinhao&rft.au=Lu%2C+Yuanyao&rft.date=2025-09-20&rft.issn=1343-0130&rft.eissn=1883-8014&rft.volume=29&rft.issue=5&rft.spage=1056&rft.epage=1061&rft_id=info:doi/10.20965%2Fjaciii.2025.p1056&rft.externalDBID=n%2Fa&rft.externalDocID=10_20965_jaciii_2025_p1056 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1343-0130&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1343-0130&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1343-0130&client=summon |