Designing and optimising anaerobic digestion systems: A multi-objective non-linear goal programming approach
This paper presents a method for optimising the design parameters of an anaerobic digestion (AD) system by using first-order kinetics and multi-objective non-linear goal programming. A model is outlined that determines the ideal operating tank temperature and hydraulic retention time, based on objec...
Saved in:
| Published in: | Energy (Oxford) Vol. 114; pp. 814 - 822 |
|---|---|
| Main Author: | |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
01.11.2016
|
| Subjects: | |
| ISSN: | 0360-5442 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | This paper presents a method for optimising the design parameters of an anaerobic digestion (AD) system by using first-order kinetics and multi-objective non-linear goal programming. A model is outlined that determines the ideal operating tank temperature and hydraulic retention time, based on objectives for minimising levelised cost of electricity, and maximising energy potential and feedstock mass reduction. The model is demonstrated for a continuously stirred tank reactor processing food waste in two case study locations. These locations are used to investigate the influence of different environmental and economic climates on optimal conditions. A sensitivity analysis is performed to further examine the variation in optimal results for different financial assumptions and objective weightings. The results identify the conditions for the preferred tank temperature to be in the psychrophilic, mesophilic or thermophilic range. For a tank temperature of 35 °C, ideal hydraulic retention times, in terms of achieving a minimum levelised electricity cost, were found to range from 29.9 to 33 days. Whilst there is a need for more detailed information on rate constants for use in first-order models, multi-objective optimisation modelling is considered to be a promising option for AD design.
•Nonlinear goal programming is used to optimise anaerobic digestion systems.•Multiple objectives are set including minimising the levelised cost of electricity.•A model is developed and applied to case studies for the UK and India.•Optimal decisions are made for tank temperature and retention time.•A sensitivity analysis is carried out to investigate different model objectives. |
|---|---|
| AbstractList | This paper presents a method for optimising the design parameters of an anaerobic digestion (AD) system by using first-order kinetics and multi-objective non-linear goal programming. A model is outlined that determines the ideal operating tank temperature and hydraulic retention time, based on objectives for minimising levelised cost of electricity, and maximising energy potential and feedstock mass reduction. The model is demonstrated for a continuously stirred tank reactor processing food waste in two case study locations. These locations are used to investigate the influence of different environmental and economic climates on optimal conditions. A sensitivity analysis is performed to further examine the variation in optimal results for different financial assumptions and objective weightings. The results identify the conditions for the preferred tank temperature to be in the psychrophilic, mesophilic or thermophilic range. For a tank temperature of 35 °C, ideal hydraulic retention times, in terms of achieving a minimum levelised electricity cost, were found to range from 29.9 to 33 days. Whilst there is a need for more detailed information on rate constants for use in first-order models, multi-objective optimisation modelling is considered to be a promising option for AD design.
•Nonlinear goal programming is used to optimise anaerobic digestion systems.•Multiple objectives are set including minimising the levelised cost of electricity.•A model is developed and applied to case studies for the UK and India.•Optimal decisions are made for tank temperature and retention time.•A sensitivity analysis is carried out to investigate different model objectives. This paper presents a method for optimising the design parameters of an anaerobic digestion (AD) system by using first-order kinetics and multi-objective non-linear goal programming. A model is outlined that determines the ideal operating tank temperature and hydraulic retention time, based on objectives for minimising levelised cost of electricity, and maximising energy potential and feedstock mass reduction. The model is demonstrated for a continuously stirred tank reactor processing food waste in two case study locations. These locations are used to investigate the influence of different environmental and economic climates on optimal conditions. A sensitivity analysis is performed to further examine the variation in optimal results for different financial assumptions and objective weightings. The results identify the conditions for the preferred tank temperature to be in the psychrophilic, mesophilic or thermophilic range. For a tank temperature of 35 °C, ideal hydraulic retention times, in terms of achieving a minimum levelised electricity cost, were found to range from 29.9 to 33 days. Whilst there is a need for more detailed information on rate constants for use in first-order models, multi-objective optimisation modelling is considered to be a promising option for AD design. |
| Author | Nixon, J.D. |
| Author_xml | – sequence: 1 givenname: J.D. surname: Nixon fullname: Nixon, J.D. email: jonathan.nixon@coventry.ac.uk organization: Coventry University, Faculty of Engineering, Environment and Computing, Coventry, CV1 2JH, UK |
| BookMark | eNqFkDtP5TAQhV2AxGP3H1C4pEnwIw-HYiUEC6yERMPWluOMw1wl9l07F-n-e3wJFcVSjY50zpmZ74wc-eCBkAvOSs54c7UpwUMc96XIqmSqZLU8IqdMNqyoq0qckLOUNoyxWnXdKZnuIOHo0Y_U-IGG7YIzplUaiKFHSwccIS0YPE37tMCcrukNnXfTgkXoN2AXfAOazygm9GAiHYOZ6DaGMZp5_qjaZmXs6w9y7MyU4OfnPCd_73-_3D4WT88Pf25vngpbCbEUVvRSDqJqHTeq6lQ1sIE7XjVOCdGzrh2UVLbu-rpXrHWt65pWtrxRrapd0zh5Ti7X3rz23y7frvNPFqbJeAi7pAWXXKmm62S2VqvVxpBSBKe3EWcT95ozfQCqN3oFqg9ANVM6A82x6y8xi4s5MFqiwem78K81DJnBG0LUySJ4CwPGTFMPAf9f8A5oVJnO |
| CitedBy_id | crossref_primary_10_1016_j_jenvman_2023_119378 crossref_primary_10_1016_j_renene_2019_08_085 crossref_primary_10_1038_s41598_024_69321_7 crossref_primary_10_1016_j_engappai_2017_04_014 crossref_primary_10_1080_15567036_2023_2298702 crossref_primary_10_1007_s13399_022_02654_3 crossref_primary_10_1007_s41742_018_0166_z crossref_primary_10_1016_j_wasman_2021_07_002 crossref_primary_10_1016_j_jclepro_2022_131559 crossref_primary_10_1016_j_chemosphere_2022_134523 crossref_primary_10_1016_j_energy_2017_11_110 crossref_primary_10_1016_j_renene_2020_06_029 crossref_primary_10_3390_pr7070437 crossref_primary_10_1080_21693277_2022_2067261 crossref_primary_10_1016_j_heliyon_2022_e11174 crossref_primary_10_1016_j_rser_2018_12_034 |
| Cites_doi | 10.1016/j.biortech.2010.01.027 10.1016/j.biombioe.2006.02.001 10.1016/j.wasman.2012.03.003 10.1016/j.biortech.2004.02.013 10.1016/j.pecs.2013.03.003 10.1016/j.renene.2014.05.055 10.1016/j.energy.2016.01.011 10.1016/S0960-8524(00)00023-7 10.1021/ie048937m 10.1016/j.watres.2011.08.059 10.1016/j.energy.2014.02.058 10.1016/S0960-8524(98)00188-6 10.1016/j.ibiod.2014.06.008 10.1097/00000542-200203000-00031 10.1016/j.wasman.2007.03.028 10.1016/j.rser.2009.01.010 10.2166/wst.2005.0548 10.1016/j.energy.2012.07.058 10.1016/j.apenergy.2014.05.043 10.1016/j.wasman.2014.11.016 10.1016/j.biortech.2009.09.061 10.1016/S0043-1354(99)00068-8 10.1016/j.cej.2007.08.017 10.1016/j.biombioe.2003.08.006 10.1016/j.rser.2014.04.039 10.1263/jbb.102.328 10.1016/S0032-9592(01)00310-7 10.1016/j.biortech.2008.02.044 10.1016/S0960-1481(03)00134-4 10.1016/j.biortech.2007.01.057 10.1023/A:1011687230823 10.1016/j.wasman.2012.10.018 10.1080/09593330802246640 10.1016/j.enpol.2013.06.109 10.1177/0734242X0302100604 10.1016/j.cej.2013.07.066 10.1016/j.wasman.2014.09.024 10.1016/j.biortech.2010.03.046 10.1016/j.btre.2014.10.005 10.1016/j.rser.2010.01.013 10.2166/wst.1996.0574 10.1016/S0304-3800(99)00008-3 10.1016/j.rser.2003.12.007 10.1016/j.chemosphere.2014.01.018 10.1016/j.biortech.2006.02.039 10.2514/2.4943 10.1016/j.biortech.2010.07.124 |
| ContentType | Journal Article |
| Copyright | 2016 Elsevier Ltd |
| Copyright_xml | – notice: 2016 Elsevier Ltd |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.energy.2016.08.053 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Environmental Sciences |
| EndPage | 822 |
| ExternalDocumentID | 10_1016_j_energy_2016_08_053 S0360544216311665 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SES SPC SPCBC SSR SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 6TJ 9DU AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABFNM ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AGQPQ AHHHB AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SEW WUQ ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c422t-c2b33d247f1a84984d0d1f146f822b097d838c59b5b807f7f96737168785f66f3 |
| ISICitedReferencesCount | 17 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000387194800064&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0360-5442 |
| IngestDate | Sat Sep 27 16:58:48 EDT 2025 Sat Nov 29 02:05:15 EST 2025 Tue Nov 18 22:22:49 EST 2025 Fri Feb 23 02:32:44 EST 2024 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Levelised cost of electricity (LCOE) Levelised energy cost (LEC) Bioenergy Multi-objective optimization Kinetics Nonlinear programming (NLP) |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c422t-c2b33d247f1a84984d0d1f146f822b097d838c59b5b807f7f96737168785f66f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://pureportal.coventry.ac.uk/en/publications/designing-and-optimising-anaerobic-digestion-systems-a-multiobjective-nonlinear-goal-programming-approach(fe596d57-777c-4900-ba75-8a142d8765ff).html |
| PQID | 2131886993 |
| PQPubID | 24069 |
| PageCount | 9 |
| ParticipantIDs | proquest_miscellaneous_2131886993 crossref_primary_10_1016_j_energy_2016_08_053 crossref_citationtrail_10_1016_j_energy_2016_08_053 elsevier_sciencedirect_doi_10_1016_j_energy_2016_08_053 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-11-01 |
| PublicationDateYYYYMMDD | 2016-11-01 |
| PublicationDate_xml | – month: 11 year: 2016 text: 2016-11-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Energy (Oxford) |
| PublicationYear | 2016 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Chen, Cheng, Creamer (bib23) 2008; 99 Moser-Engeler, Kühni, Bernhard, Siegrist (bib47) 1999; 33 DECC (bib65) 2012 Nixon, Dey, Davies (bib21) 2012; 46 Mähnert, Linke (bib48) 2009; 30 MNRE (bib57) 2014 Álvarez, Otero, Lema (bib14) 2010; 101 IRENA (bib64) 2012 Dexter, Blake, Penning, Sloan, Chung, Lubarsky (bib11) 2002; 96 Zhang, El-Mashad, Hartman, Wang, Liu, Choate (bib63) 2007; 98 El-Mashad, Zhang (bib52) 2010; 101 Veeken, Hamelers (bib44) 1999; 69 Aceves-Lara, Aguilar-Garnica, Alcaraz-Gonzlez, Gonzlez-Reynoso, Steyer, Dominguez-Beltran (bib13) 2005; 52 Banks, Zhang (bib29) 2010 Balaman ŞY (bib16) 2014; 130 IEA (bib18) 2010 Aslanzadeh, Rajendran, Taherzadeh (bib49) 2014; 95 Sen (bib61) 2015 Kim, Han, Shin (bib43) 2003; 21 Kafle, Bhattarai, Kim, Chen (bib41) 2014; 133 Greenelephant (bib2) 2015 Kost, Mayer, Thomsen, Hartmann, Senkpiel, Philipps (bib19) 2013 Bolzonella, Fatone, Pavan, Cecchi (bib34) 2005; 44 Gunaseelan (bib39) 2004; 26 Li, Qiao, Wang, Takayanagi, Shofie, Li (bib32) 2015; 36 Zhang, Banks, Heaven (bib28) 2012; 104 Linke (bib30) 2006; 30 Kvesitadze, Sadunishvili, Dudauri, Zakariashvili, Partskhaladze, Ugrekhelidze (bib55) 2012; 37 DECC (bib60) 2016 IRENA (bib66) 2015 Rao, Singh (bib8) 2004; 95 Yu, Wensel, Ma, Chen (bib27) 2013 Zupančič, Roš (bib26) 2003; 28 Bozinis, Alexiou, Pistikopoulos (bib15) 1996; 34 Sajeena Beevi, Madhu, Sahoo (bib35) 2015; 36 Baddeley, Ballinger, Cessford (bib62) 2014 Short, Packey, Holt (bib24) 2005 Fdez-Güelfo, Álvarez-Gallego, Sales Márquez, Romero García (bib33) 2011; 102 Fernández-Rodríguez, Pérez, Romero (bib36) 2013; 232 Nielfa, Cano, Fdz-Polanco (bib22) 2015; 5 Gou, Yang, Huang, Wang, Xu, Wang (bib50) 2014; 105 Nixon, Dey, Davies, Sagi, Berry (bib17) 2014; 68 Lokshina, Vavilin (bib45) 1999; 117 Pohekar, Ramachandran (bib12) 2004; 8 Kim, Oh, Chun, Kim (bib38) 2006; 102 MNRE (bib58) 2016 Singh, Gu (bib1) 2010; 14 Donoso-Bravo, Mailier, Martin, Rodríguez, Aceves-Lara, Wouwer (bib5) 2011; 45 Oxera (bib59) 2011 Mata-Alvarez, Macé, Llabrés (bib31) 2000; 74 Fernández, Pérez, Romero (bib37) 2010; 101 Hu, Thayanithy, Forster (bib9) 2002; 37 Dai, Duan, Dong, Dai (bib42) 2013; 33 Vavilin, Fernandez, Palatsi, Flotats (bib46) 2008; 28 Murphy (bib53) 2011 Mata-Alvarez, Dosta, Romero-Güiza, Fonoll, Peces, Astals (bib6) 2014; 36 Ward, Hobbs, Holliman, Jones (bib3) 2008; 99 Lauwers, Appels, Thompson, Degrève, Van Impe, Dewil (bib4) 2013; 39 Mei, Wang, Miao, Wu (bib7) 2016; 98 Petric, Selimbašić (bib25) 2008; 139 Jones, Salter (bib56) 2013; 62 Bernal-Agustín, Dufo-López (bib20) 2009; 13 Liu, Wang, Shi, Zheng, Gao, Qiao (bib51) 2012; 32 Richards, Schouwenaars, How, Feron (bib10) 2002; 25 Traverso, Pavan, Bolzonella, Innocenti, Cecchi, Mata-Alvarez (bib40) 2000; 11 (bib54) 2015 Kythreotou, Florides, Tassou (bib67) 2014; 71 Kim (10.1016/j.energy.2016.08.053_bib43) 2003; 21 Gou (10.1016/j.energy.2016.08.053_bib50) 2014; 105 Li (10.1016/j.energy.2016.08.053_bib32) 2015; 36 Bolzonella (10.1016/j.energy.2016.08.053_bib34) 2005; 44 Petric (10.1016/j.energy.2016.08.053_bib25) 2008; 139 Chen (10.1016/j.energy.2016.08.053_bib23) 2008; 99 Balaman ŞY (10.1016/j.energy.2016.08.053_bib16) 2014; 130 Vavilin (10.1016/j.energy.2016.08.053_bib46) 2008; 28 Aslanzadeh (10.1016/j.energy.2016.08.053_bib49) 2014; 95 Banks (10.1016/j.energy.2016.08.053_bib29) 2010 IRENA (10.1016/j.energy.2016.08.053_bib64) 2012 Kythreotou (10.1016/j.energy.2016.08.053_bib67) 2014; 71 Mähnert (10.1016/j.energy.2016.08.053_bib48) 2009; 30 Donoso-Bravo (10.1016/j.energy.2016.08.053_bib5) 2011; 45 IEA (10.1016/j.energy.2016.08.053_bib18) 2010 Zhang (10.1016/j.energy.2016.08.053_bib28) 2012; 104 Murphy (10.1016/j.energy.2016.08.053_bib53) 2011 Ward (10.1016/j.energy.2016.08.053_bib3) 2008; 99 Nixon (10.1016/j.energy.2016.08.053_bib21) 2012; 46 Mei (10.1016/j.energy.2016.08.053_bib7) 2016; 98 Short (10.1016/j.energy.2016.08.053_bib24) 2005 El-Mashad (10.1016/j.energy.2016.08.053_bib52) 2010; 101 Pohekar (10.1016/j.energy.2016.08.053_bib12) 2004; 8 Singh (10.1016/j.energy.2016.08.053_bib1) 2010; 14 Oxera (10.1016/j.energy.2016.08.053_bib59) 2011 Linke (10.1016/j.energy.2016.08.053_bib30) 2006; 30 Kvesitadze (10.1016/j.energy.2016.08.053_bib55) 2012; 37 Jones (10.1016/j.energy.2016.08.053_bib56) 2013; 62 Zupančič (10.1016/j.energy.2016.08.053_bib26) 2003; 28 DECC (10.1016/j.energy.2016.08.053_bib65) 2012 Traverso (10.1016/j.energy.2016.08.053_bib40) 2000; 11 Liu (10.1016/j.energy.2016.08.053_bib51) 2012; 32 IRENA (10.1016/j.energy.2016.08.053_bib66) 2015 MNRE (10.1016/j.energy.2016.08.053_bib57) 2014 Mata-Alvarez (10.1016/j.energy.2016.08.053_bib6) 2014; 36 Kim (10.1016/j.energy.2016.08.053_bib38) 2006; 102 Sajeena Beevi (10.1016/j.energy.2016.08.053_bib35) 2015; 36 Fdez-Güelfo (10.1016/j.energy.2016.08.053_bib33) 2011; 102 Lauwers (10.1016/j.energy.2016.08.053_bib4) 2013; 39 (10.1016/j.energy.2016.08.053_bib54) 2015 Nielfa (10.1016/j.energy.2016.08.053_bib22) 2015; 5 Bozinis (10.1016/j.energy.2016.08.053_bib15) 1996; 34 Bernal-Agustín (10.1016/j.energy.2016.08.053_bib20) 2009; 13 Kafle (10.1016/j.energy.2016.08.053_bib41) 2014; 133 Hu (10.1016/j.energy.2016.08.053_bib9) 2002; 37 Mata-Alvarez (10.1016/j.energy.2016.08.053_bib31) 2000; 74 Kost (10.1016/j.energy.2016.08.053_bib19) 2013 Moser-Engeler (10.1016/j.energy.2016.08.053_bib47) 1999; 33 Richards (10.1016/j.energy.2016.08.053_bib10) 2002; 25 Rao (10.1016/j.energy.2016.08.053_bib8) 2004; 95 Fernández (10.1016/j.energy.2016.08.053_bib37) 2010; 101 MNRE (10.1016/j.energy.2016.08.053_bib58) 2016 Nixon (10.1016/j.energy.2016.08.053_bib17) 2014; 68 Zhang (10.1016/j.energy.2016.08.053_bib63) 2007; 98 Veeken (10.1016/j.energy.2016.08.053_bib44) 1999; 69 Dexter (10.1016/j.energy.2016.08.053_bib11) 2002; 96 Yu (10.1016/j.energy.2016.08.053_bib27) 2013 Fernández-Rodríguez (10.1016/j.energy.2016.08.053_bib36) 2013; 232 Dai (10.1016/j.energy.2016.08.053_bib42) 2013; 33 Lokshina (10.1016/j.energy.2016.08.053_bib45) 1999; 117 Sen (10.1016/j.energy.2016.08.053_bib61) 2015 Aceves-Lara (10.1016/j.energy.2016.08.053_bib13) 2005; 52 Greenelephant (10.1016/j.energy.2016.08.053_bib2) 2015 Gunaseelan (10.1016/j.energy.2016.08.053_bib39) 2004; 26 DECC (10.1016/j.energy.2016.08.053_bib60) 2016 Baddeley (10.1016/j.energy.2016.08.053_bib62) 2014 Álvarez (10.1016/j.energy.2016.08.053_bib14) 2010; 101 |
| References_xml | – volume: 44 start-page: 3412 year: 2005 end-page: 3418 ident: bib34 article-title: Anaerobic fermentation of organic municipal solid wastes for the production of soluble organic compounds publication-title: Ind Eng Chem Res – volume: 36 start-page: 93 year: 2015 end-page: 97 ident: bib35 article-title: Performance and kinetic study of semi-dry thermophilic anaerobic digestion of organic fraction of municipal solid waste publication-title: Waste Manage – volume: 95 start-page: 173 year: 2004 end-page: 185 ident: bib8 article-title: Bioenergy conversion studies of organic fraction of MSW: kinetic studies and gas yield–organic loading relationships for process optimisation publication-title: Bioresour Technol – volume: 46 start-page: 541 year: 2012 end-page: 554 ident: bib21 article-title: The feasibility of hybrid solar-biomass power plants in India publication-title: Energy – volume: 36 start-page: 412 year: 2014 end-page: 427 ident: bib6 article-title: A critical review on anaerobic co-digestion achievements between 2010 and 2013 publication-title: Renew Sustain Energy Rev – year: 2015 ident: bib61 article-title: Gas pricing reform in India: implications for the Indian gas landscape – year: 2014 ident: bib57 article-title: Ministry of new and renewable energy: biogas power (Off-grid) programme – volume: 69 start-page: 249 year: 1999 end-page: 254 ident: bib44 article-title: Effect of temperature on hydrolysis rates of selected biowaste components publication-title: Bioresour Technol – volume: 28 start-page: 939 year: 2008 end-page: 951 ident: bib46 article-title: Hydrolysis kinetics in anaerobic degradation of particulate organic material: an overview publication-title: Waste Manage – volume: 133 start-page: 293 year: 2014 end-page: 301 ident: bib41 article-title: Effect of feed to microbe ratios on anaerobic digestion of Chinese cabbage waste under mesophilic and thermophilic conditions: biogas potential and kinetic study publication-title: J Environ Manage – year: 2011 ident: bib59 article-title: Discount rates for low-carbon and renewable generation technologies – volume: 130 start-page: 289 year: 2014 end-page: 304 ident: bib16 article-title: A network design model for biomass to energy supply chains with anaerobic digestion systems publication-title: Appl Energy – year: 2016 ident: bib58 article-title: Ministry of new and renewable energy: R&D projects (biogas) – volume: 98 start-page: 146 year: 2016 end-page: 154 ident: bib7 article-title: Recover energy from domestic wastewater using anaerobic membrane bioreactor: operating parameters optimization and energy balance analysis publication-title: Energy – year: 2011 ident: bib53 article-title: Biogas from energy crop digestion – volume: 105 start-page: 146 year: 2014 end-page: 151 ident: bib50 article-title: Effects of temperature and organic loading rate on the performance and microbial community of anaerobic co-digestion of waste activated sludge and food waste publication-title: Chemosphere – volume: 117 start-page: 285 year: 1999 end-page: 303 ident: bib45 article-title: Kinetic analysis of the key stages of low temperature methanogenesis publication-title: Ecol Model – volume: 68 start-page: 262 year: 2014 end-page: 271 ident: bib17 article-title: Supply chain optimisation of pyrolysis plant deployment using goal programming publication-title: Energy – volume: 102 start-page: 606 year: 2011 end-page: 611 ident: bib33 article-title: Dry-thermophilic anaerobic digestion of simulated organic fraction of Municipal Solid Waste: process modeling publication-title: Bioresour Technol – volume: 25 start-page: 755 year: 2002 end-page: 764 ident: bib10 article-title: Spacecraft trajectory planning with avoidance constraints using mixed-integer linear programming publication-title: J Guid Control Dyn – volume: 104 start-page: 166 year: 2012 end-page: 174 ident: bib28 article-title: Anaerobic digestion of two biodegradable municipal waste streams publication-title: J Environ Manage – volume: 14 start-page: 1367 year: 2010 end-page: 1378 ident: bib1 article-title: Biomass conversion to energy in India-A critique publication-title: Renew Sustain Energy Rev – volume: 8 start-page: 365 year: 2004 end-page: 381 ident: bib12 article-title: Application of multi-criteria decision making to sustainable energy planning–A review publication-title: Renew Sustain Energy Rev – volume: 52 start-page: 419 year: 2005 end-page: 426 ident: bib13 article-title: Kinetic parameters estimation in an anaerobic digestion process using successive quadratic programming publication-title: Water Sci Technol – volume: 101 start-page: 1153 year: 2010 end-page: 1158 ident: bib14 article-title: A methodology for optimising feed composition for anaerobic co-digestion of agro-industrial wastes publication-title: Bioresour Technol – volume: 30 start-page: 892 year: 2006 end-page: 896 ident: bib30 article-title: Kinetic study of thermophilic anaerobic digestion of solid wastes from potato processing publication-title: Biomass Bioenergy – volume: 37 start-page: 94 year: 2012 end-page: 102 ident: bib55 article-title: Two-stage anaerobic process for bio-hydrogen and bio-methane combined production from biodegradable solid wastes publication-title: Energy – volume: 139 start-page: 304 year: 2008 end-page: 317 ident: bib25 article-title: Development and validation of mathematical model for aerobic composting process publication-title: Chem Eng J – volume: 11 start-page: 407 year: 2000 end-page: 414 ident: bib40 article-title: Acidogenic fermentation of source separated mixtures of vegetables and fruits wasted from supermarkets publication-title: Biodegradation – year: 2016 ident: bib60 article-title: Quarterly energy prices March 2016 – volume: 30 start-page: 93 year: 2009 end-page: 99 ident: bib48 article-title: Kinetic study of biogas production from energy crops and animal waste slurry: effect of organic loading rate and reactor size publication-title: Environ Technol – volume: 21 start-page: 515 year: 2003 end-page: 526 ident: bib43 article-title: The optimisation of food waste addition as a co-substrate in anaerobic digestion of sewage sludge publication-title: Waste Manag Res – year: 2015 ident: bib2 article-title: From organic waste to clean gas – volume: 101 start-page: 4021 year: 2010 end-page: 4028 ident: bib52 article-title: Biogas production from co-digestion of dairy manure and food waste publication-title: Bioresour Technol – volume: 34 start-page: 383 year: 1996 end-page: 391 ident: bib15 article-title: A mathematical model for the optimal design and operation of an anaerobic co-digestion plant publication-title: Water Sci Technol – volume: 33 start-page: 3503 year: 1999 end-page: 3511 ident: bib47 article-title: Fermentation of raw sludge on an industrial scale and applications for elutriating its dissolved products and non-sedimentable solids publication-title: Water Res – volume: 45 start-page: 5347 year: 2011 end-page: 5364 ident: bib5 article-title: Model selection, identification and validation in anaerobic digestion: a review publication-title: Water Res – volume: 96 start-page: 718 year: 2002 end-page: 724 ident: bib11 article-title: Use of linear programming to estimate impact of changes in a hospital's operating room time allocation on perioperative variable costs publication-title: Anesthesiology – year: 2012 ident: bib64 article-title: Renewable energy technologies: cost analysis series: biomass for power generation – year: 2005 ident: bib24 article-title: A manual for the economic evaluation of energy efficiency and renewable energy technologies – volume: 74 start-page: 3 year: 2000 end-page: 16 ident: bib31 article-title: Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives publication-title: Bioresour Technol – volume: 33 start-page: 308 year: 2013 end-page: 316 ident: bib42 article-title: High-solids anaerobic co-digestion of sewage sludge and food waste in comparison with mono digestions: stability and performance publication-title: Waste Manage – year: 2014 ident: bib62 article-title: Assessing the costs and benefits for production and beneficial application of anaerobic digestate to agricultural land in wales – year: 2013 ident: bib19 article-title: Levelized cost of electricity renewable energy technologies – volume: 13 start-page: 2111 year: 2009 end-page: 2118 ident: bib20 article-title: Simulation and optimization of stand-alone hybrid renewable energy systems publication-title: Renew Sustain Energy Rev – volume: 39 start-page: 383 year: 2013 end-page: 402 ident: bib4 article-title: Mathematical modelling of anaerobic digestion of biomass and waste: power and limitations publication-title: Prog Energy Combust Sci – volume: 32 start-page: 2056 year: 2012 end-page: 2060 ident: bib51 article-title: Pilot-scale anaerobic co-digestion of municipal biomass waste and waste activated sludge in China: effect of organic loading rate publication-title: Waste Manage – volume: 98 start-page: 929 year: 2007 end-page: 935 ident: bib63 article-title: Characterization of food waste as feedstock for anaerobic digestion publication-title: Bioresour Technol – volume: 37 start-page: 965 year: 2002 end-page: 971 ident: bib9 article-title: A kinetic study of the anaerobic digestion of ice-cream wastewater publication-title: Process Biochem – volume: 26 start-page: 389 year: 2004 end-page: 399 ident: bib39 article-title: Biochemical methane potential of fruits and vegetable solid waste feedstocks publication-title: Biomass Bioenergy – year: 2012 ident: bib65 article-title: Electricity generation costs – year: 2015 ident: bib54 publication-title: Biogas-info. Biogas yields – volume: 101 start-page: 6322 year: 2010 end-page: 6328 ident: bib37 article-title: Kinetics of mesophilic anaerobic digestion of the organic fraction of municipal solid waste: influence of initial total solid concentration publication-title: Bioresour Technol – volume: 95 start-page: 181 year: 2014 end-page: 188 ident: bib49 article-title: A comparative study between single-and two-stage anaerobic digestion processes: effects of organic loading rate and hydraulic retention time publication-title: Int Biodeterior Biodegr – volume: 71 start-page: 701 year: 2014 end-page: 714 ident: bib67 article-title: A review of simple to scientific models for anaerobic digestion publication-title: Renew Energy – volume: 99 start-page: 7928 year: 2008 end-page: 7940 ident: bib3 article-title: Optimisation of the anaerobic digestion of agricultural resources publication-title: Bioresour Technol – year: 2010 ident: bib29 article-title: Optimising inputs and outputs from anaerobic digestion processes – volume: 5 start-page: 14 year: 2015 end-page: 21 ident: bib22 article-title: Theoretical methane production generated by the co-digestion of organic fraction municipal solid waste and biological sludge publication-title: Biotechnol Rep – year: 2010 ident: bib18 article-title: Projected costs of generating electricity – volume: 99 start-page: 4044 year: 2008 end-page: 4064 ident: bib23 article-title: Inhibition of anaerobic digestion process: a review publication-title: Bioresour Technol – volume: 62 start-page: 215 year: 2013 end-page: 225 ident: bib56 article-title: Modelling the economics of farm-based anaerobic digestion in a UK whole-farm context publication-title: Energy Policy – start-page: 4 year: 2013 ident: bib27 article-title: Mathematical modeling in anaerobic digestion (AD) publication-title: J Bioremediation Biodegrad – volume: 36 start-page: 77 year: 2015 end-page: 85 ident: bib32 article-title: Kinetic characterization of thermophilic and mesophilic anaerobic digestion for coffee grounds and waste activated sludge publication-title: Waste Manage – year: 2015 ident: bib66 article-title: Renewable power generation costs in 2014 – volume: 28 start-page: 2255 year: 2003 end-page: 2267 ident: bib26 article-title: Heat and energy requirements in thermophilic anaerobic sludge digestion publication-title: Renew Energy – volume: 232 start-page: 59 year: 2013 end-page: 64 ident: bib36 article-title: Comparison of mesophilic and thermophilic dry anaerobic digestion of OFMSW: kinetic analysis publication-title: Chem Eng J – volume: 102 start-page: 328 year: 2006 end-page: 332 ident: bib38 article-title: Effects of temperature and hydraulic retention time on anaerobic digestion of food waste publication-title: J Biosci Bioeng – volume: 101 start-page: 4021 year: 2010 ident: 10.1016/j.energy.2016.08.053_bib52 article-title: Biogas production from co-digestion of dairy manure and food waste publication-title: Bioresour Technol doi: 10.1016/j.biortech.2010.01.027 – volume: 30 start-page: 892 year: 2006 ident: 10.1016/j.energy.2016.08.053_bib30 article-title: Kinetic study of thermophilic anaerobic digestion of solid wastes from potato processing publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2006.02.001 – volume: 32 start-page: 2056 year: 2012 ident: 10.1016/j.energy.2016.08.053_bib51 article-title: Pilot-scale anaerobic co-digestion of municipal biomass waste and waste activated sludge in China: effect of organic loading rate publication-title: Waste Manage doi: 10.1016/j.wasman.2012.03.003 – year: 2015 ident: 10.1016/j.energy.2016.08.053_bib2 – start-page: 4 year: 2013 ident: 10.1016/j.energy.2016.08.053_bib27 article-title: Mathematical modeling in anaerobic digestion (AD) publication-title: J Bioremediation Biodegrad – year: 2011 ident: 10.1016/j.energy.2016.08.053_bib53 – volume: 95 start-page: 173 year: 2004 ident: 10.1016/j.energy.2016.08.053_bib8 article-title: Bioenergy conversion studies of organic fraction of MSW: kinetic studies and gas yield–organic loading relationships for process optimisation publication-title: Bioresour Technol doi: 10.1016/j.biortech.2004.02.013 – volume: 39 start-page: 383 year: 2013 ident: 10.1016/j.energy.2016.08.053_bib4 article-title: Mathematical modelling of anaerobic digestion of biomass and waste: power and limitations publication-title: Prog Energy Combust Sci doi: 10.1016/j.pecs.2013.03.003 – volume: 71 start-page: 701 year: 2014 ident: 10.1016/j.energy.2016.08.053_bib67 article-title: A review of simple to scientific models for anaerobic digestion publication-title: Renew Energy doi: 10.1016/j.renene.2014.05.055 – year: 2016 ident: 10.1016/j.energy.2016.08.053_bib58 – volume: 98 start-page: 146 year: 2016 ident: 10.1016/j.energy.2016.08.053_bib7 article-title: Recover energy from domestic wastewater using anaerobic membrane bioreactor: operating parameters optimization and energy balance analysis publication-title: Energy doi: 10.1016/j.energy.2016.01.011 – year: 2014 ident: 10.1016/j.energy.2016.08.053_bib62 – volume: 74 start-page: 3 year: 2000 ident: 10.1016/j.energy.2016.08.053_bib31 article-title: Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives publication-title: Bioresour Technol doi: 10.1016/S0960-8524(00)00023-7 – volume: 44 start-page: 3412 year: 2005 ident: 10.1016/j.energy.2016.08.053_bib34 article-title: Anaerobic fermentation of organic municipal solid wastes for the production of soluble organic compounds publication-title: Ind Eng Chem Res doi: 10.1021/ie048937m – volume: 133 start-page: 293 year: 2014 ident: 10.1016/j.energy.2016.08.053_bib41 article-title: Effect of feed to microbe ratios on anaerobic digestion of Chinese cabbage waste under mesophilic and thermophilic conditions: biogas potential and kinetic study publication-title: J Environ Manage – volume: 45 start-page: 5347 year: 2011 ident: 10.1016/j.energy.2016.08.053_bib5 article-title: Model selection, identification and validation in anaerobic digestion: a review publication-title: Water Res doi: 10.1016/j.watres.2011.08.059 – volume: 68 start-page: 262 year: 2014 ident: 10.1016/j.energy.2016.08.053_bib17 article-title: Supply chain optimisation of pyrolysis plant deployment using goal programming publication-title: Energy doi: 10.1016/j.energy.2014.02.058 – volume: 69 start-page: 249 year: 1999 ident: 10.1016/j.energy.2016.08.053_bib44 article-title: Effect of temperature on hydrolysis rates of selected biowaste components publication-title: Bioresour Technol doi: 10.1016/S0960-8524(98)00188-6 – volume: 95 start-page: 181 year: 2014 ident: 10.1016/j.energy.2016.08.053_bib49 article-title: A comparative study between single-and two-stage anaerobic digestion processes: effects of organic loading rate and hydraulic retention time publication-title: Int Biodeterior Biodegr doi: 10.1016/j.ibiod.2014.06.008 – volume: 96 start-page: 718 year: 2002 ident: 10.1016/j.energy.2016.08.053_bib11 article-title: Use of linear programming to estimate impact of changes in a hospital's operating room time allocation on perioperative variable costs publication-title: Anesthesiology doi: 10.1097/00000542-200203000-00031 – volume: 104 start-page: 166 year: 2012 ident: 10.1016/j.energy.2016.08.053_bib28 article-title: Anaerobic digestion of two biodegradable municipal waste streams publication-title: J Environ Manage – volume: 28 start-page: 939 year: 2008 ident: 10.1016/j.energy.2016.08.053_bib46 article-title: Hydrolysis kinetics in anaerobic degradation of particulate organic material: an overview publication-title: Waste Manage doi: 10.1016/j.wasman.2007.03.028 – volume: 13 start-page: 2111 year: 2009 ident: 10.1016/j.energy.2016.08.053_bib20 article-title: Simulation and optimization of stand-alone hybrid renewable energy systems publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2009.01.010 – year: 2011 ident: 10.1016/j.energy.2016.08.053_bib59 – year: 2015 ident: 10.1016/j.energy.2016.08.053_bib54 – volume: 52 start-page: 419 year: 2005 ident: 10.1016/j.energy.2016.08.053_bib13 article-title: Kinetic parameters estimation in an anaerobic digestion process using successive quadratic programming publication-title: Water Sci Technol doi: 10.2166/wst.2005.0548 – volume: 46 start-page: 541 year: 2012 ident: 10.1016/j.energy.2016.08.053_bib21 article-title: The feasibility of hybrid solar-biomass power plants in India publication-title: Energy doi: 10.1016/j.energy.2012.07.058 – volume: 130 start-page: 289 year: 2014 ident: 10.1016/j.energy.2016.08.053_bib16 article-title: A network design model for biomass to energy supply chains with anaerobic digestion systems publication-title: Appl Energy doi: 10.1016/j.apenergy.2014.05.043 – volume: 36 start-page: 77 year: 2015 ident: 10.1016/j.energy.2016.08.053_bib32 article-title: Kinetic characterization of thermophilic and mesophilic anaerobic digestion for coffee grounds and waste activated sludge publication-title: Waste Manage doi: 10.1016/j.wasman.2014.11.016 – volume: 101 start-page: 1153 year: 2010 ident: 10.1016/j.energy.2016.08.053_bib14 article-title: A methodology for optimising feed composition for anaerobic co-digestion of agro-industrial wastes publication-title: Bioresour Technol doi: 10.1016/j.biortech.2009.09.061 – year: 2015 ident: 10.1016/j.energy.2016.08.053_bib66 – year: 2012 ident: 10.1016/j.energy.2016.08.053_bib64 – volume: 33 start-page: 3503 year: 1999 ident: 10.1016/j.energy.2016.08.053_bib47 article-title: Fermentation of raw sludge on an industrial scale and applications for elutriating its dissolved products and non-sedimentable solids publication-title: Water Res doi: 10.1016/S0043-1354(99)00068-8 – volume: 139 start-page: 304 year: 2008 ident: 10.1016/j.energy.2016.08.053_bib25 article-title: Development and validation of mathematical model for aerobic composting process publication-title: Chem Eng J doi: 10.1016/j.cej.2007.08.017 – year: 2010 ident: 10.1016/j.energy.2016.08.053_bib29 – volume: 26 start-page: 389 year: 2004 ident: 10.1016/j.energy.2016.08.053_bib39 article-title: Biochemical methane potential of fruits and vegetable solid waste feedstocks publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2003.08.006 – volume: 36 start-page: 412 year: 2014 ident: 10.1016/j.energy.2016.08.053_bib6 article-title: A critical review on anaerobic co-digestion achievements between 2010 and 2013 publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2014.04.039 – volume: 102 start-page: 328 year: 2006 ident: 10.1016/j.energy.2016.08.053_bib38 article-title: Effects of temperature and hydraulic retention time on anaerobic digestion of food waste publication-title: J Biosci Bioeng doi: 10.1263/jbb.102.328 – year: 2016 ident: 10.1016/j.energy.2016.08.053_bib60 – volume: 37 start-page: 965 year: 2002 ident: 10.1016/j.energy.2016.08.053_bib9 article-title: A kinetic study of the anaerobic digestion of ice-cream wastewater publication-title: Process Biochem doi: 10.1016/S0032-9592(01)00310-7 – year: 2013 ident: 10.1016/j.energy.2016.08.053_bib19 – volume: 99 start-page: 7928 year: 2008 ident: 10.1016/j.energy.2016.08.053_bib3 article-title: Optimisation of the anaerobic digestion of agricultural resources publication-title: Bioresour Technol doi: 10.1016/j.biortech.2008.02.044 – volume: 37 start-page: 94 year: 2012 ident: 10.1016/j.energy.2016.08.053_bib55 article-title: Two-stage anaerobic process for bio-hydrogen and bio-methane combined production from biodegradable solid wastes publication-title: Energy – volume: 28 start-page: 2255 year: 2003 ident: 10.1016/j.energy.2016.08.053_bib26 article-title: Heat and energy requirements in thermophilic anaerobic sludge digestion publication-title: Renew Energy doi: 10.1016/S0960-1481(03)00134-4 – volume: 99 start-page: 4044 year: 2008 ident: 10.1016/j.energy.2016.08.053_bib23 article-title: Inhibition of anaerobic digestion process: a review publication-title: Bioresour Technol doi: 10.1016/j.biortech.2007.01.057 – volume: 11 start-page: 407 year: 2000 ident: 10.1016/j.energy.2016.08.053_bib40 article-title: Acidogenic fermentation of source separated mixtures of vegetables and fruits wasted from supermarkets publication-title: Biodegradation doi: 10.1023/A:1011687230823 – volume: 33 start-page: 308 year: 2013 ident: 10.1016/j.energy.2016.08.053_bib42 article-title: High-solids anaerobic co-digestion of sewage sludge and food waste in comparison with mono digestions: stability and performance publication-title: Waste Manage doi: 10.1016/j.wasman.2012.10.018 – volume: 30 start-page: 93 year: 2009 ident: 10.1016/j.energy.2016.08.053_bib48 article-title: Kinetic study of biogas production from energy crops and animal waste slurry: effect of organic loading rate and reactor size publication-title: Environ Technol doi: 10.1080/09593330802246640 – volume: 62 start-page: 215 year: 2013 ident: 10.1016/j.energy.2016.08.053_bib56 article-title: Modelling the economics of farm-based anaerobic digestion in a UK whole-farm context publication-title: Energy Policy doi: 10.1016/j.enpol.2013.06.109 – volume: 21 start-page: 515 year: 2003 ident: 10.1016/j.energy.2016.08.053_bib43 article-title: The optimisation of food waste addition as a co-substrate in anaerobic digestion of sewage sludge publication-title: Waste Manag Res doi: 10.1177/0734242X0302100604 – volume: 232 start-page: 59 year: 2013 ident: 10.1016/j.energy.2016.08.053_bib36 article-title: Comparison of mesophilic and thermophilic dry anaerobic digestion of OFMSW: kinetic analysis publication-title: Chem Eng J doi: 10.1016/j.cej.2013.07.066 – year: 2015 ident: 10.1016/j.energy.2016.08.053_bib61 – year: 2010 ident: 10.1016/j.energy.2016.08.053_bib18 – volume: 36 start-page: 93 year: 2015 ident: 10.1016/j.energy.2016.08.053_bib35 article-title: Performance and kinetic study of semi-dry thermophilic anaerobic digestion of organic fraction of municipal solid waste publication-title: Waste Manage doi: 10.1016/j.wasman.2014.09.024 – volume: 101 start-page: 6322 year: 2010 ident: 10.1016/j.energy.2016.08.053_bib37 article-title: Kinetics of mesophilic anaerobic digestion of the organic fraction of municipal solid waste: influence of initial total solid concentration publication-title: Bioresour Technol doi: 10.1016/j.biortech.2010.03.046 – volume: 5 start-page: 14 year: 2015 ident: 10.1016/j.energy.2016.08.053_bib22 article-title: Theoretical methane production generated by the co-digestion of organic fraction municipal solid waste and biological sludge publication-title: Biotechnol Rep doi: 10.1016/j.btre.2014.10.005 – volume: 14 start-page: 1367 year: 2010 ident: 10.1016/j.energy.2016.08.053_bib1 article-title: Biomass conversion to energy in India-A critique publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2010.01.013 – year: 2005 ident: 10.1016/j.energy.2016.08.053_bib24 – volume: 34 start-page: 383 year: 1996 ident: 10.1016/j.energy.2016.08.053_bib15 article-title: A mathematical model for the optimal design and operation of an anaerobic co-digestion plant publication-title: Water Sci Technol doi: 10.2166/wst.1996.0574 – volume: 117 start-page: 285 year: 1999 ident: 10.1016/j.energy.2016.08.053_bib45 article-title: Kinetic analysis of the key stages of low temperature methanogenesis publication-title: Ecol Model doi: 10.1016/S0304-3800(99)00008-3 – volume: 8 start-page: 365 year: 2004 ident: 10.1016/j.energy.2016.08.053_bib12 article-title: Application of multi-criteria decision making to sustainable energy planning–A review publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2003.12.007 – volume: 105 start-page: 146 year: 2014 ident: 10.1016/j.energy.2016.08.053_bib50 article-title: Effects of temperature and organic loading rate on the performance and microbial community of anaerobic co-digestion of waste activated sludge and food waste publication-title: Chemosphere doi: 10.1016/j.chemosphere.2014.01.018 – volume: 98 start-page: 929 year: 2007 ident: 10.1016/j.energy.2016.08.053_bib63 article-title: Characterization of food waste as feedstock for anaerobic digestion publication-title: Bioresour Technol doi: 10.1016/j.biortech.2006.02.039 – volume: 25 start-page: 755 year: 2002 ident: 10.1016/j.energy.2016.08.053_bib10 article-title: Spacecraft trajectory planning with avoidance constraints using mixed-integer linear programming publication-title: J Guid Control Dyn doi: 10.2514/2.4943 – volume: 102 start-page: 606 year: 2011 ident: 10.1016/j.energy.2016.08.053_bib33 article-title: Dry-thermophilic anaerobic digestion of simulated organic fraction of Municipal Solid Waste: process modeling publication-title: Bioresour Technol doi: 10.1016/j.biortech.2010.07.124 – year: 2014 ident: 10.1016/j.energy.2016.08.053_bib57 – year: 2012 ident: 10.1016/j.energy.2016.08.053_bib65 |
| SSID | ssj0005899 |
| Score | 2.2892947 |
| Snippet | This paper presents a method for optimising the design parameters of an anaerobic digestion (AD) system by using first-order kinetics and multi-objective... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 814 |
| SubjectTerms | anaerobic digestion Bioenergy case studies electricity electricity costs energy feedstocks Kinetics Levelised cost of electricity (LCOE) Levelised energy cost (LEC) Multi-objective optimization Nonlinear programming (NLP) temperature |
| Title | Designing and optimising anaerobic digestion systems: A multi-objective non-linear goal programming approach |
| URI | https://dx.doi.org/10.1016/j.energy.2016.08.053 https://www.proquest.com/docview/2131886993 |
| Volume | 114 |
| WOSCitedRecordID | wos000387194800064&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0360-5442 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0005899 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fa9RAEF7OVtAX0WqxVmUF344c2eyPbPp22BMtcghWubew2WSlxzUpd9dyf76zP5Jcr0hV8CVcQpIN932ZmczON4vQe0mF4gmHN03QKoLvLxEpbngUay7B_Vdx6VIDP76k06mczbKvg0Gn4r9ZpHUtN5vs6r9CDccAbCud_Qu4u5vCAfgNoMMWYIftHwF_6moyWu1hAyYBoPS7qrJdl_SwdLNKFnjfyHnl9emuuDBqirk3gsO6qSMbharl8GdjFVu-luvS3Sz0Ir-V2fc6QtvAdONr5rssw_Ri46f3z0ano-1MAxFBctelv1oJTF9v5GVXccQZu21SCdsyijLsBf_qdch3TLfPIsxHlXtWW3QnXHNV30t4pyn2NzusHRX4RIgQ_AHaT1KegWneH3-ezM76Mh_p1hDtHrOVT7oav7tj_S482XHULvo4f4qehM8GPPZwP0ODqj5Aj1pV-eoAHU56xSKcGEz26jladHzAwAfc8wF3fMAdH3Dgwwke4x024J4N2LIBb7EBt2x4gb5_nJx_-BSFJTYizZJkHemkoLRMWGqIkiyTrIxLYsB7GoCpiLO0lFRqnhW8kHFqUpPZdY2IkKnkRghDD9EeDF-9RLjQyhQ00YbJjBmmFDgDHZMqUVRVRKRHiLb_bK5D_3m7DMoibwsN57nHI7d45HZ1VE6PUNRddeX7r9xzftqClocY0seGOfDsnivftRjngIOdN1N11Vyv8oSA45MCIvlX_3z3Y_S4f6Veo7318rp6gx7qm_XFavk2kPYXquilkw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Designing+and+optimising+anaerobic+digestion+systems%3A+A+multi-objective+non-linear+goal+programming+approach&rft.jtitle=Energy+%28Oxford%29&rft.au=Nixon%2C+J.D.&rft.date=2016-11-01&rft.pub=Elsevier+Ltd&rft.issn=0360-5442&rft.volume=114&rft.spage=814&rft.epage=822&rft_id=info:doi/10.1016%2Fj.energy.2016.08.053&rft.externalDocID=S0360544216311665 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon |