Construction of weighted crystallographic orientations capturing a given orientation density function

To be useful in numerical simulations of e.g. deformation processes, EBSD datasets of crystallographic orientations have to be downsized by several orders of magnitude yet preserving the orientation density function approximately. The objective is either to preserve the overall shape of the initiall...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science Jg. 52; H. 4; S. 2077 - 2090
Hauptverfasser: Schaeben, Helmut, Bachmann, Florian, Fundenberger, Jean-Jacques
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.02.2017
Springer
Springer Nature B.V
Schlagworte:
ISSN:0022-2461, 1573-4803
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract To be useful in numerical simulations of e.g. deformation processes, EBSD datasets of crystallographic orientations have to be downsized by several orders of magnitude yet preserving the orientation density function approximately. The objective is either to preserve the overall shape of the initially kernel estimated orientation density function and in particular its non-negativity, or to preserve the unbiased estimates of the first Fourier coefficients up to a given finite order. Methods are presented how to construct a much smaller set of weighted orientations such that their kernel density estimate approximates the initial estimate. To preserve its overall shape the de la Vallée Poussin kernel is applied as it is the only known non-negative kernel with a finite Fourier series expansion avoiding truncation errors. If the first Fourier coefficients are to be preserved the Dirichlet kernel applies as it is the only kernel providing unbiased estimates of the Fourier coefficients up to any given finite order. The weights are determined numerically by resolving a least squares or a maximum likelihood problem. Due to the linearity of kernel density estimation and the Fourier transform the approaches in spatial and spectral domain are related to each other in a unique complementary way. For an exemplary practical application we use a large EBSD dataset of about 80.000 orientations from a recrystallized low alloyed Zirconium sheet. Our methods reduce the size of the dataset by about 99.75 % to the order of 200 weighted orientations supporting a secondary approximate distribution with a volume portion of crystallites oriented differently than initially of less than 10 % .
AbstractList To be useful in numerical simulations of e.g. deformation processes, EBSD datasets of crystallographic orientations have to be downsized by several orders of magnitude yet preserving the orientation density function approximately. The objective is either to preserve the overall shape of the initially kernel estimated orientation density function and in particular its non-negativity, or to preserve the unbiased estimates of the first Fourier coefficients up to a given finite order. Methods are presented how to construct a much smaller set of weighted orientations such that their kernel density estimate approximates the initial estimate. To preserve its overall shape the de la Vallée Poussin kernel is applied as it is the only known non-negative kernel with a finite Fourier series expansion avoiding truncation errors. If the first Fourier coefficients are to be preserved the Dirichlet kernel applies as it is the only kernel providing unbiased estimates of the Fourier coefficients up to any given finite order. The weights are determined numerically by resolving a least squares or a maximum likelihood problem. Due to the linearity of kernel density estimation and the Fourier transform the approaches in spatial and spectral domain are related to each other in a unique complementary way. For an exemplary practical application we use a large EBSD dataset of about 80.000 orientations from a recrystallized low alloyed Zirconium sheet. Our methods reduce the size of the dataset by about [Formula omitted] to the order of 200 weighted orientations supporting a secondary approximate distribution with a volume portion of crystallites oriented differently than initially of less than [Formula omitted].
To be useful in numerical simulations of e.g. deformation processes, EBSD datasets of crystallographic orientations have to be downsized by several orders of magnitude yet preserving the orientation density function approximately. The objective is either to preserve the overall shape of the initially kernel estimated orientation density function and in particular its non-negativity, or to preserve the unbiased estimates of the first Fourier coefficients up to a given finite order. Methods are presented how to construct a much smaller set of weighted orientations such that their kernel density estimate approximates the initial estimate. To preserve its overall shape the de la Vallée Poussin kernel is applied as it is the only known non-negative kernel with a finite Fourier series expansion avoiding truncation errors. If the first Fourier coefficients are to be preserved the Dirichlet kernel applies as it is the only kernel providing unbiased estimates of the Fourier coefficients up to any given finite order. The weights are determined numerically by resolving a least squares or a maximum likelihood problem. Due to the linearity of kernel density estimation and the Fourier transform the approaches in spatial and spectral domain are related to each other in a unique complementary way. For an exemplary practical application we use a large EBSD dataset of about 80.000 orientations from a recrystallized low alloyed Zirconium sheet. Our methods reduce the size of the dataset by about [Formula: see text] to the order of 200 weighted orientations supporting a secondary approximate distribution with a volume portion of crystallites oriented differently than initially of less than [Formula: see text].
To be useful in numerical simulations of e.g. deformation processes, EBSD datasets of crystallographic orientations have to be downsized by several orders of magnitude yet preserving the orientation density function approximately. The objective is either to preserve the overall shape of the initially kernel estimated orientation density function and in particular its non-negativity, or to preserve the unbiased estimates of the first Fourier coefficients up to a given finite order. Methods are presented how to construct a much smaller set of weighted orientations such that their kernel density estimate approximates the initial estimate. To preserve its overall shape the de la Vallée Poussin kernel is applied as it is the only known non-negative kernel with a finite Fourier series expansion avoiding truncation errors. If the first Fourier coefficients are to be preserved the Dirichlet kernel applies as it is the only kernel providing unbiased estimates of the Fourier coefficients up to any given finite order. The weights are determined numerically by resolving a least squares or a maximum likelihood problem. Due to the linearity of kernel density estimation and the Fourier transform the approaches in spatial and spectral domain are related to each other in a unique complementary way. For an exemplary practical application we use a large EBSD dataset of about 80.000 orientations from a recrystallized low alloyed Zirconium sheet. Our methods reduce the size of the dataset by about \[99.75\,\%\] to the order of 200 weighted orientations supporting a secondary approximate distribution with a volume portion of crystallites oriented differently than initially of less than \[10\,\%\].
To be useful in numerical simulations of e.g. deformation processes, EBSD datasets of crystallographic orientations have to be downsized by several orders of magnitude yet preserving the orientation density function approximately. The objective is either to preserve the overall shape of the initially kernel estimated orientation density function and in particular its non-negativity, or to preserve the unbiased estimates of the first Fourier coefficients up to a given finite order. Methods are presented how to construct a much smaller set of weighted orientations such that their kernel density estimate approximates the initial estimate. To preserve its overall shape the de la Vallée Poussin kernel is applied as it is the only known non-negative kernel with a finite Fourier series expansion avoiding truncation errors. If the first Fourier coefficients are to be preserved the Dirichlet kernel applies as it is the only kernel providing unbiased estimates of the Fourier coefficients up to any given finite order. The weights are determined numerically by resolving a least squares or a maximum likelihood problem. Due to the linearity of kernel density estimation and the Fourier transform the approaches in spatial and spectral domain are related to each other in a unique complementary way. For an exemplary practical application we use a large EBSD dataset of about 80.000 orientations from a recrystallized low alloyed Zirconium sheet. Our methods reduce the size of the dataset by about 99.75 % to the order of 200 weighted orientations supporting a secondary approximate distribution with a volume portion of crystallites oriented differently than initially of less than 10 % .
Audience Academic
Author Fundenberger, Jean-Jacques
Schaeben, Helmut
Bachmann, Florian
Author_xml – sequence: 1
  givenname: Helmut
  orcidid: 0000-0002-0237-9857
  surname: Schaeben
  fullname: Schaeben, Helmut
  email: schaeben@tu-freiberg.de
  organization: TU Bergakademie Freiberg
– sequence: 2
  givenname: Florian
  surname: Bachmann
  fullname: Bachmann, Florian
  organization: Xnovo Technology ApS
– sequence: 3
  givenname: Jean-Jacques
  surname: Fundenberger
  fullname: Fundenberger, Jean-Jacques
  organization: Université de Lorraine
BookMark eNp9kU1rHSEUhqWk0Js0PyA7oZtmMYl6dWZchkvaBgKBfqzFcY4Tw1ydqtP2_vs6mUKaQIsLQZ_n6DnvMTrywQNCZ5RcUEKay0RJK7YVoXVFuKwr-gptqGi2FW_J9ghtCGGsYrymb9BxSg-EENEwukGwCz7lOJvsgsfB4p_ghvsMPTbxkLIexzBEPd07g0N04LNewISNnvIcnR-wxoP7Af7va9yDTy4fsJ39Y-G36LXVY4LTP_sJ-vbh-uvuU3V79_Fmd3VbGc5YrjrOLLe2sUAt9MKYGjpmLe01GAktbaklsrGSt7aBvtc10E63kvVgOym6dnuC3q91pxi-z5Cy2rtkYBy1hzAnxUrfvOaS1wV99wJ9CHP05XeKMSFrJkizFLxYqUGPoJy3IUdtyuph70yJwLpyfsXLLFtBhSzC-TOhMBl-5UHPKambL5-fs83KmhhSimCVcesAyyNuVJSoJVu1ZqtKtmrJVtFi0hfmFN1ex8N_HbY6aVpyg_jU8L-l34AGuvI
CitedBy_id crossref_primary_10_1107_S1600576719017138
crossref_primary_10_1007_s00161_023_01215_x
crossref_primary_10_1038_s41524_025_01557_x
crossref_primary_10_3390_cryst11091021
crossref_primary_10_1016_j_spasta_2023_100747
Cites_doi 10.1093/biomet/74.4.751
10.1107/S0021889892009270
10.1109/TC.1976.1674577
10.1214/aoms/1177697523
10.1007/978-3-0348-7448-9
10.1016/S0022-5096(01)00016-3
10.1111/j.1365-2818.2007.01811.x
10.1214/aos/1176347628
10.2748/tmj/1178241489
10.1080/01621459.1996.10476701
10.1007/978-1-4899-3324-9
10.1007/978-1-4899-4493-1
10.1016/j.jmva.2013.03.014
10.2977/prims/1195194875
10.1016/j.commatsci.2007.09.015
10.1155/TSM.33.365
10.1016/j.jmatprotec.2006.10.006
10.4028/www.scientific.net/SSP.160.63
10.1007/b13794
10.1016/j.jmva.2005.03.009
10.1007/BF01972448
10.1002/1521-3951(199704)200:2<367::AID-PSSB367>3.0.CO;2-I
10.1093/biomet/71.2.353
10.1016/j.mechmat.2015.04.014
10.1016/j.spl.2005.04.004
10.1093/oso/9780198536826.001.0001
10.1002/9781118575574
10.2307/2291420
ContentType Journal Article
Copyright Springer Science+Business Media New York 2016
COPYRIGHT 2017 Springer
Journal of Materials Science is a copyright of Springer, (2016). All Rights Reserved.
Copyright_xml – notice: Springer Science+Business Media New York 2016
– notice: COPYRIGHT 2017 Springer
– notice: Journal of Materials Science is a copyright of Springer, (2016). All Rights Reserved.
DBID AAYXX
CITATION
ISR
8FE
8FG
ABJCF
AFKRA
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
KB.
L6V
M7S
PDBOC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7S9
L.6
DOI 10.1007/s10853-016-0496-1
DatabaseName CrossRef
Gale In Context: Science
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
SciTech Premium Collection
Materials Science Database
ProQuest Engineering Collection
Engineering Database
Materials Science Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
ProQuest Materials Science Collection
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
Materials Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
Materials Science Database
ProQuest One Academic
ProQuest Central (New)
ProQuest One Academic (New)
Engineering Collection
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
ProQuest Materials Science Collection

Database_xml – sequence: 1
  dbid: KB.
  name: Materials Science Database
  url: http://search.proquest.com/materialsscijournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1573-4803
EndPage 2090
ExternalDocumentID A472185159
10_1007_s10853_016_0496_1
GroupedDBID -4Y
-58
-5G
-BR
-EM
-XW
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06C
06D
0R~
0VY
199
1N0
1SB
2.D
203
29K
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67Z
6NX
6TJ
78A
8FE
8FG
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAIKT
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDEX
ABDPE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEGXH
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAGR
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D-I
D1I
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EAS
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAO
IFM
IGS
IHE
IJ-
IKXTQ
ISR
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KB.
KDC
KOV
KOW
L6V
LAK
LLZTM
M4Y
M7S
MA-
MK~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P0-
P19
P2P
P9N
PDBOC
PF-
PKN
PT4
PT5
PTHSS
QF4
QM1
QN7
QO4
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCG
SCLPG
SCM
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
T9H
TAE
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
W4F
WH7
WJK
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z87
Z88
Z8M
Z8N
Z8O
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8W
Z8Z
Z91
Z92
ZE2
ZMTXR
ZY4
~02
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c422t-b42f4ff7fe1fed5cc6eb2ff1daec9e8181f097f948f7edda6e1ba892defb95b83
IEDL.DBID M7S
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000389409400024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0022-2461
IngestDate Thu Sep 04 20:28:04 EDT 2025
Tue Nov 04 22:21:41 EST 2025
Sun Nov 23 09:01:14 EST 2025
Wed Nov 26 09:44:19 EST 2025
Tue Nov 18 22:11:57 EST 2025
Sat Nov 29 02:40:55 EST 2025
Fri Feb 21 02:37:35 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Orientation Density Function (ODF)
Poussin Kernel
Kernel Density Estimate
Dirichlet Kernel
Electron Back Scatter Diffraction (EBSD)
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c422t-b42f4ff7fe1fed5cc6eb2ff1daec9e8181f097f948f7edda6e1ba892defb95b83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0237-9857
PQID 2259625078
PQPubID 2043599
PageCount 14
ParticipantIDs proquest_miscellaneous_2000464946
proquest_journals_2259625078
gale_infotracacademiconefile_A472185159
gale_incontextgauss_ISR_A472185159
crossref_citationtrail_10_1007_s10853_016_0496_1
crossref_primary_10_1007_s10853_016_0496_1
springer_journals_10_1007_s10853_016_0496_1
PublicationCentury 2000
PublicationDate 20170200
2017-2-00
20170201
PublicationDateYYYYMMDD 2017-02-01
PublicationDate_xml – month: 2
  year: 2017
  text: 20170200
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle Full Set - Includes `Journal of Materials Science Letters
PublicationTitle Journal of materials science
PublicationTitleAbbrev J Mater Sci
PublicationYear 2017
Publisher Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
References León, Massé, Rivest (CR26) 2006; 97
Hielscher (CR1) 2013; 119
Adams, Henrie, Henrie, Lyon, Kalidindi, Garmestani (CR35) 2001; 49
Schaeben (CR24) 1997; 200
Hall, Watson, Cabrera (CR13) 1987; 74
Marron (CR29) 1988; 13
Butzer, Nessel (CR23) 1971
Rudin (CR28) 1964
CR37
CR36
Habbema, Hennans, Van den Broek, Bruckmann (CR31) 1974
Bozzolo, Gerspach, Sawina, Wagner (CR6) 2007; 227
Tsybakov (CR12) 2009
Wand, Jones (CR10) 1995
Bachmann, Hielscher, Schaeben (CR7) 2010; 160
Freeden, Gervens, Schreiner (CR22) 1998
Tikhovskiy, Raabe, Roters (CR2) 2007; 183
Silverman (CR8) 1986
Eisenlohr, Roters (CR4) 2008; 42
Schaeben (CR14) 1993; 26
Berens, Butzer, Pawelke (CR19) 1968; 4
Jones, Marron, Sheather (CR30) 1996; 91
Pawelke (CR20) 1972; 24
Rudin (CR16) 1991
Bowman (CR33) 1984; 71
Scott (CR9) 2015
Hendriks (CR18) 1990; 18
Fengler, Freeden, Gutting (CR27) 2005
Watson (CR17) 1969; 40
Bunge (CR5) 1982
Duin (CR32) 1976; 25
Press, Teukolsky, Vetterling, Flannery (CR34) 2007
Schaeben (CR25) 1999; 33
Knezevic, Landry (CR3) 2015; 88
Alexandre (CR11) 2009
Butzer, Stens, Wehrens, Prolla (CR21) 1979
Pelletier (CR15) 2005; 73
496_CR36
496_CR37
W Rudin (496_CR16) 1991
P Hall (496_CR13) 1987; 74
HJ Bunge (496_CR5) 1982
R Hielscher (496_CR1) 2013; 119
BW Silverman (496_CR8) 1986
PL Butzer (496_CR23) 1971
B Pelletier (496_CR15) 2005; 73
JDF Habbema (496_CR31) 1974
S Pawelke (496_CR20) 1972; 24
M Knezevic (496_CR3) 2015; 88
CA León (496_CR26) 2006; 97
H Schaeben (496_CR14) 1993; 26
I Tikhovskiy (496_CR2) 2007; 183
RPW Duin (496_CR32) 1976; 25
H Berens (496_CR19) 1968; 4
MP Wand (496_CR10) 1995
N Bozzolo (496_CR6) 2007; 227
GS Watson (496_CR17) 1969; 40
F Bachmann (496_CR7) 2010; 160
A Tsybakov (496_CR12) 2009
H Schaeben (496_CR25) 1999; 33
JS Marron (496_CR29) 1988; 13
BL Adams (496_CR35) 2001; 49
H Hendriks (496_CR18) 1990; 18
W Rudin (496_CR28) 1964
AW Bowman (496_CR33) 1984; 71
DW Scott (496_CR9) 2015
BT Alexandre (496_CR11) 2009
H Schaeben (496_CR24) 1997; 200
MC Jones (496_CR30) 1996; 91
P Eisenlohr (496_CR4) 2008; 42
W Freeden (496_CR22) 1998
PL Butzer (496_CR21) 1979
WH Press (496_CR34) 2007
MJ Fengler (496_CR27) 2005
References_xml – year: 2015
  ident: CR9
  publication-title: Multivariate density estimation: theory, practice, and visualization
– volume: 74
  start-page: 751
  year: 1987
  end-page: 762
  ident: CR13
  article-title: Kernel density estimation with spherical data
  publication-title: Biometrika
  doi: 10.1093/biomet/74.4.751
– start-page: 120
  year: 1979
  end-page: 171
  ident: CR21
  article-title: Approximation by algebraic convolution integrals
  publication-title: Approximation theory and functional analysis
– volume: 26
  start-page: 112
  year: 1993
  end-page: 121
  ident: CR14
  article-title: Towards statistics of crystal orientations in quantitative texture analysis
  publication-title: J Appl Cryst
  doi: 10.1107/S0021889892009270
– volume: 25
  start-page: 1175
  year: 1976
  end-page: 1179
  ident: CR32
  article-title: On the choice of smoothing parameters of Parzen estimators of probability density functions
  publication-title: IEEE Trans Comput
  doi: 10.1109/TC.1976.1674577
– volume: 40
  start-page: 1496
  year: 1969
  end-page: 1498
  ident: CR17
  article-title: Density estimation by orthogonal series
  publication-title: Ann Math Statist
  doi: 10.1214/aoms/1177697523
– year: 1971
  ident: CR23
  publication-title: Fourier analysis and approximaation
  doi: 10.1007/978-3-0348-7448-9
– ident: CR37
– year: 2005
  ident: CR27
  publication-title: The spherical Bernstein wavelet. Schriften zur funktionalanalysis und geomathematik 20
– year: 1964
  ident: CR28
  publication-title: Principles of mathematical analysis
– volume: 49
  start-page: 1639
  year: 2001
  end-page: 1663
  ident: CR35
  article-title: Microstructure-sensitive design of a compliant beam
  publication-title: J Mech Phys Solids
  doi: 10.1016/S0022-5096(01)00016-3
– volume: 227
  start-page: 275
  year: 2007
  end-page: 283
  ident: CR6
  article-title: Accuracy of orientation distribution function determination based on EBSD data: a case study of a recrystallized low alloyed Zr sheet
  publication-title: J Microsc
  doi: 10.1111/j.1365-2818.2007.01811.x
– year: 2007
  ident: CR34
  publication-title: Numerical recipes: the art of scientific computing
– volume: 18
  start-page: 832
  year: 1990
  end-page: 849
  ident: CR18
  article-title: Nonparametric estimation of a probability density on a Riemannian manifold using Fourier expansion
  publication-title: Ann Statist
  doi: 10.1214/aos/1176347628
– year: 2009
  ident: CR11
  publication-title: Introduction to nonparametric estimation
– volume: 24
  start-page: 473
  year: 1972
  end-page: 486
  ident: CR20
  article-title: Über die Approximationsordnung bei Kugelfunktionen und algebraischen Polynomen
  publication-title: Tohoku Math Journ
  doi: 10.2748/tmj/1178241489
– year: 1991
  ident: CR16
  publication-title: Functional analysis
– volume: 91
  start-page: 401
  year: 1996
  end-page: 407
  ident: CR30
  article-title: A brief survey of bandwidth selection for density estimation
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1996.10476701
– year: 1998
  ident: CR22
  publication-title: Constructive approximation on the sphere
– year: 1986
  ident: CR8
  publication-title: Density estimation for statistics and data analysis
  doi: 10.1007/978-1-4899-3324-9
– year: 1995
  ident: CR10
  publication-title: Kernel smoothing
  doi: 10.1007/978-1-4899-4493-1
– volume: 119
  start-page: 119
  year: 2013
  end-page: 143
  ident: CR1
  article-title: Kernel density estimation on the rotation group and its application to crystallographic texture analysis
  publication-title: J Multivariate Anal
  doi: 10.1016/j.jmva.2013.03.014
– volume: 4
  start-page: 201
  year: 1968
  end-page: 268
  ident: CR19
  article-title: Limitierungsverfahren von Reihen mehrdimensionaler Kugelfunktionen und deren Saturationsverhalten
  publication-title: Publ RIMS, Kyoto Univ Ser A
  doi: 10.2977/prims/1195194875
– volume: 42
  start-page: 670
  year: 2008
  end-page: 678
  ident: CR4
  article-title: Selecting sets of discrete orientations for accurate texture reconstruction
  publication-title: Comp Mater Sci
  doi: 10.1016/j.commatsci.2007.09.015
– volume: 33
  start-page: 365
  year: 1999
  end-page: 373
  ident: CR25
  article-title: The de la Vallée Poussin standard orientation density function
  publication-title: Textures Microstruct
  doi: 10.1155/TSM.33.365
– start-page: 101
  year: 1974
  end-page: 110
  ident: CR31
  article-title: A stepwise discrimination analysis program using density estimation
  publication-title: COMPSTAT 1974, Proceedings in computational staristics
– volume: 183
  start-page: 169
  year: 2007
  end-page: 175
  ident: CR2
  article-title: Simulation of earing during deep drawing of an Al-3% Mg alloy (AA 5754) using a texture component crystal plasticity FEM
  publication-title: J Mater Process Technol
  doi: 10.1016/j.jmatprotec.2006.10.006
– year: 1982
  ident: CR5
  publication-title: Texture analysis in materials science: mathematical methods
– volume: 160
  start-page: 63
  year: 2010
  end-page: 68
  ident: CR7
  article-title: Texture analysis with -free and open source software toolbox
  publication-title: Solid State Phenom
  doi: 10.4028/www.scientific.net/SSP.160.63
– year: 2009
  ident: CR12
  publication-title: Introduction to nonparametric estimation
  doi: 10.1007/b13794
– ident: CR36
– volume: 97
  start-page: 412
  year: 2006
  end-page: 430
  ident: CR26
  article-title: A statistical model for random rotations
  publication-title: J Multivariate Anal
  doi: 10.1016/j.jmva.2005.03.009
– volume: 13
  start-page: 187
  year: 1988
  end-page: 208
  ident: CR29
  article-title: Automatic smoothing parameter selection: a survey
  publication-title: Empir Econ
  doi: 10.1007/BF01972448
– volume: 200
  start-page: 367
  year: 1997
  end-page: 376
  ident: CR24
  article-title: A simple standard orientation density function: the hyperspherical de la Vallée Poussin kernel
  publication-title: Phys Stat Sol (B)
  doi: 10.1002/1521-3951(199704)200:2<367::AID-PSSB367>3.0.CO;2-I
– volume: 71
  start-page: 353
  year: 1984
  end-page: 360
  ident: CR33
  article-title: An alternative method of cross-validation for the smoothing of density estimates
  publication-title: Biometrika
  doi: 10.1093/biomet/71.2.353
– volume: 88
  start-page: 73
  year: 2015
  end-page: 86
  ident: CR3
  article-title: Procedures for reducing large datasets of crystal orientations using generalized spherical harmonics
  publication-title: Mech Mater
  doi: 10.1016/j.mechmat.2015.04.014
– volume: 73
  start-page: 297
  year: 2005
  end-page: 304
  ident: CR15
  article-title: Kernel density estimation on Riemannian manifolds
  publication-title: Statist Probab Lett
  doi: 10.1016/j.spl.2005.04.004
– volume-title: Fourier analysis and approximaation
  year: 1971
  ident: 496_CR23
  doi: 10.1007/978-3-0348-7448-9
– volume: 40
  start-page: 1496
  year: 1969
  ident: 496_CR17
  publication-title: Ann Math Statist
  doi: 10.1214/aoms/1177697523
– ident: 496_CR36
– volume-title: Constructive approximation on the sphere
  year: 1998
  ident: 496_CR22
  doi: 10.1093/oso/9780198536826.001.0001
– volume: 49
  start-page: 1639
  year: 2001
  ident: 496_CR35
  publication-title: J Mech Phys Solids
  doi: 10.1016/S0022-5096(01)00016-3
– volume: 200
  start-page: 367
  year: 1997
  ident: 496_CR24
  publication-title: Phys Stat Sol (B)
  doi: 10.1002/1521-3951(199704)200:2<367::AID-PSSB367>3.0.CO;2-I
– volume: 24
  start-page: 473
  year: 1972
  ident: 496_CR20
  publication-title: Tohoku Math Journ
  doi: 10.2748/tmj/1178241489
– volume-title: Multivariate density estimation: theory, practice, and visualization
  year: 2015
  ident: 496_CR9
  doi: 10.1002/9781118575574
– volume: 88
  start-page: 73
  year: 2015
  ident: 496_CR3
  publication-title: Mech Mater
  doi: 10.1016/j.mechmat.2015.04.014
– volume-title: Kernel smoothing
  year: 1995
  ident: 496_CR10
  doi: 10.1007/978-1-4899-4493-1
– volume-title: Introduction to nonparametric estimation
  year: 2009
  ident: 496_CR12
  doi: 10.1007/b13794
– volume: 74
  start-page: 751
  year: 1987
  ident: 496_CR13
  publication-title: Biometrika
  doi: 10.1093/biomet/74.4.751
– volume: 227
  start-page: 275
  year: 2007
  ident: 496_CR6
  publication-title: J Microsc
  doi: 10.1111/j.1365-2818.2007.01811.x
– volume-title: Principles of mathematical analysis
  year: 1964
  ident: 496_CR28
– volume: 13
  start-page: 187
  year: 1988
  ident: 496_CR29
  publication-title: Empir Econ
  doi: 10.1007/BF01972448
– volume-title: The spherical Bernstein wavelet. Schriften zur funktionalanalysis und geomathematik 20
  year: 2005
  ident: 496_CR27
– volume: 26
  start-page: 112
  year: 1993
  ident: 496_CR14
  publication-title: J Appl Cryst
  doi: 10.1107/S0021889892009270
– start-page: 120
  volume-title: Approximation theory and functional analysis
  year: 1979
  ident: 496_CR21
– volume: 119
  start-page: 119
  year: 2013
  ident: 496_CR1
  publication-title: J Multivariate Anal
  doi: 10.1016/j.jmva.2013.03.014
– volume-title: Numerical recipes: the art of scientific computing
  year: 2007
  ident: 496_CR34
– ident: 496_CR37
– volume: 42
  start-page: 670
  year: 2008
  ident: 496_CR4
  publication-title: Comp Mater Sci
  doi: 10.1016/j.commatsci.2007.09.015
– volume: 4
  start-page: 201
  year: 1968
  ident: 496_CR19
  publication-title: Publ RIMS, Kyoto Univ Ser A
  doi: 10.2977/prims/1195194875
– volume: 33
  start-page: 365
  year: 1999
  ident: 496_CR25
  publication-title: Textures Microstruct
  doi: 10.1155/TSM.33.365
– volume: 18
  start-page: 832
  year: 1990
  ident: 496_CR18
  publication-title: Ann Statist
  doi: 10.1214/aos/1176347628
– volume: 97
  start-page: 412
  year: 2006
  ident: 496_CR26
  publication-title: J Multivariate Anal
  doi: 10.1016/j.jmva.2005.03.009
– volume: 25
  start-page: 1175
  year: 1976
  ident: 496_CR32
  publication-title: IEEE Trans Comput
  doi: 10.1109/TC.1976.1674577
– volume-title: Density estimation for statistics and data analysis
  year: 1986
  ident: 496_CR8
  doi: 10.1007/978-1-4899-3324-9
– volume-title: Introduction to nonparametric estimation
  year: 2009
  ident: 496_CR11
– volume-title: Texture analysis in materials science: mathematical methods
  year: 1982
  ident: 496_CR5
– volume: 73
  start-page: 297
  year: 2005
  ident: 496_CR15
  publication-title: Statist Probab Lett
  doi: 10.1016/j.spl.2005.04.004
– volume: 71
  start-page: 353
  year: 1984
  ident: 496_CR33
  publication-title: Biometrika
  doi: 10.1093/biomet/71.2.353
– volume: 183
  start-page: 169
  year: 2007
  ident: 496_CR2
  publication-title: J Mater Process Technol
  doi: 10.1016/j.jmatprotec.2006.10.006
– volume-title: Functional analysis
  year: 1991
  ident: 496_CR16
– start-page: 101
  volume-title: COMPSTAT 1974, Proceedings in computational staristics
  year: 1974
  ident: 496_CR31
– volume: 91
  start-page: 401
  year: 1996
  ident: 496_CR30
  publication-title: J Am Stat Assoc
  doi: 10.2307/2291420
– volume: 160
  start-page: 63
  year: 2010
  ident: 496_CR7
  publication-title: Solid State Phenom
  doi: 10.4028/www.scientific.net/SSP.160.63
SSID ssj0005721
Score 2.2230206
Snippet To be useful in numerical simulations of e.g. deformation processes, EBSD datasets of crystallographic orientations have to be downsized by several orders of...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2077
SubjectTerms Characterization and Evaluation of Materials
Chemistry and Materials Science
Classical Mechanics
Computer simulation
Crystallites
crystallization
Crystallography
Crystallography and Scattering Methods
data collection
Datasets
Deformation
Density
Dirichlet problem
Economic models
Fourier series
Fourier transforms
Kernels
least squares
Linearity
Materials Science
mathematical models
Numerical analysis
Orientation
Original Paper
Polymer Sciences
Recrystallization
Series expansion
Solid Mechanics
Specific gravity
Truncation errors
zirconium
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5V0AMcSstDBLaVQUhIoEgkcRL7uEKg9oKqQitulu3YaKVVgjZLEf-emeCwy6NI9Bo7jjMZzyMz8w3Ani5EUlQmi2WR6xj1sY-ll0dxbpyTZe4KK0zXbKI8OxOXl_JnqONu-2z3PiTZSeq5YjdULej6ogfMZRGjy7OYE9gMuejnf2Z5HWWa9BDhBJbWhzJfW-KJMnoukl_ERjuVc7ryX5v9DJ-ChcmGDyzxBT64ehWW53AH18BRm84eOJY1nt12P0hdxezkDs3FcQCyHlnWTEahOqlumdXX066skWl2RWJyfphVlAs_vWOkKunCOvw-Pbk4_h6Hfgux5Wk6jQ1PPfe-9C7xrsqtLdDt9j6ptLPSoWZPPNLbSy586apKFy4xWsi0ct7I3IhsAxbqpnabwFJ060yaldIINHkyYTJuM56jOsxRolgZwVFPeGUDGDn1xBirGYwyUVBRAhpRUCURHDzecv2AxPHW5F36mooQLmpKobnSN22rfpz_UkOODCLIjItgP0zyDT7c6lCRgK9AoFhPZg56rlDhjLcKJaFE7xFtrAh2HofxdFLIRdeuuWmpySfFjiUvIjjsOWW2xD_3v_Wu2duwlJK10SWTD2ABGch9hY_273TUTr51x-Me_eoLOA
  priority: 102
  providerName: Springer Nature
Title Construction of weighted crystallographic orientations capturing a given orientation density function
URI https://link.springer.com/article/10.1007/s10853-016-0496-1
https://www.proquest.com/docview/2259625078
https://www.proquest.com/docview/2000464946
Volume 52
WOSCitedRecordID wos000389409400024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1573-4803
  dateEnd: 20181231
  omitProxy: false
  ssIdentifier: ssj0005721
  issn: 0022-2461
  databaseCode: M7S
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 1573-4803
  dateEnd: 20181231
  omitProxy: false
  ssIdentifier: ssj0005721
  issn: 0022-2461
  databaseCode: KB.
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1573-4803
  dateEnd: 20181231
  omitProxy: false
  ssIdentifier: ssj0005721
  issn: 0022-2461
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-4803
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005721
  issn: 0022-2461
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEB9s64M--C1G67GKICirl2TzsU_SSosiHOVOpW_LfpaDkpyXq9L_3pncptcq9sWXPGQ3yYaZnY-dmd8AvNJlnZbO5FyWheaojwOXQY55YbyXVeFLW5u-2UQ1mdTHx_IoHrh1Ma1ykIm9oHatpTPy98h3Em111GgfFj84dY2i6GpsobEFO4SSkPape7NNikeVpQNaOOGmDVHNdekcKip0pNGfFrLk6RW99Kd0_itM2mufw7v_u-57cCfanWxvzSj34YZvHsDtS2iED8FT884BTpa1gf3qj029Y3Z5jkbkaYS3nlvWLuexZqnpmNWLVV_syDQ7IeF5eZg5ypBfnTNSoHTjEXw7PPj68ROPXRi4FVm24kZkQYRQBZ8G7wprS3TGQ0id9lZ61PdpGMsqSFGHyjunS58aXcvM-WBkYer8MWw3beOfAMvQ2TNZXklToyGU1yYXNhcFKskC5YyVCYwHGigbIcqpU8ap2oArE9kUpaUR2VSawJuLRxZrfI7rJr8kwirCvWgoseZEn3Wd-jybqj2BvFKTcZfA6zgptPhxq2OdAv4CQWVdmbk7kFzFnd-pDb0TeHExjHuWAjG68e1ZR60_KaIsRZnA24GxNq_45_qfXv_BZ3ArI6OjzynfhW3kGP8cbtqfq3m3HMHO_sHkaDqCrS_770b9RsHrdPb9N2lmGXE
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLRJwoDxFoIBBICRQxMZxHj5UqIVWXbWsqlKk3ozt2NVKVbJstlT7p_iNnckm3RZEbz1wTRzn4S_z8Mx8A_BGp3mUFiYOZZroEPWxD6WX_TAxzskscanNTdNsIhsO88NDubcEv7taGEqr7GRiI6iLytIe-UfEnURbHTXap_HPkLpGUXS1a6Exh8WOm52iy1avDb7g-r7lfGvz4PN22HYVCK3gfBoawb3wPvMu8q5IrE3RufQ-KrSz0qH-inxfZl6K3GeuKHTqIqNzyQvnjUxMHuO8N2BZxCJNerC8sTnc218klWQ86vjJiamti6POi_VQNaLrjh68kGkYXdKEf-qDvwKzjb7bWvnfvtQ9uNta1mx9_ivchyVXPoA7F_gWH4Kj9qQdYS6rPDttNoZdwexkhmbycUvgPbKsmozaqqyyZlaPp005J9PsiNTDxdOsoBqA6YyRiUAHHsH3a3nPx9Arq9I9AcbRnTU8zqTJ0dSLcxMLG4sEzYAEJamVAfS7NVe2JWGnXiDHakEfTTBRlHhHMFFRAO_PLxnPGUiuGvyagKSI2aOk1KEjfVLXavBtX60LxGZO5msA79pBvsKbW91WYuArEBnYpZGrHcRUK9tqtcBXAK_OT6NUolCTLl11UlNzU4qZS5EG8KED8mKKfz7_06tv-BJubR983VW7g-HOM7jNycRqMuhXoYfocc_hpv01HdWTF-2PyeDHdSP8DOGKel4
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3ra9RAEB-kiugH38Vo1VUEQQm9JJtk92NRD4tylFal35Z9loOSHJdU6X_vTG7Tu_oC8Wt2skl2Z-eRmfkNwEtdiaxypkhlVeoU9XFIZZCTtDTey7r0lRVmaDZRz2bi-FgexD6n3ZjtPoYkVzUNhNLU9LsLF3Y3Ct9QzaAbjN4wl1WK7s9Vjo4M5XQdHn1d53jUeTbChRNw2hjW_N0UlxTTz-L5lzjpoH6mt__7xe_ArWh5sr0Vq9yFK765Bzc38Ajvg6f2nSOgLGsD-z78OPWO2eU5mpGnEeB6blm7nMeqpaZjVi_6odyRaXZC4nNzmDnKke_PGalQuvAAvkzff377IY19GFLL87xPDc8DD6EOPgveldZW6I6HkDntrfSo8bMwkXWQXITaO6crnxktZO58MLI0otiGraZt_ENgObp7Ji9qaQSaQoUwBbcFL1FNlihprExgMm6CshGknHplnKo1vDKtoKLENFpBlSXw-uKWxQqh42_EL2hnFSFfNJRac6LPuk7tHx2qPY7MIsi8S-BVJAotPtzqWKmAn0BgWZcod0YOUfHsdwolpESvErkxgecXw3hqKRSjG9-eddT8k2LKklcJvBm5Zj3FH9__0T9RP4PrB--m6tP-7ONjuJGTQTLkm-_AFvKSfwLX7Ld-3i2fDqfmB3u1FwA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Construction+of+weighted+crystallographic+orientations+capturing+a+given+orientation+density+function&rft.jtitle=Journal+of+materials+science&rft.au=Schaeben%2C+Helmut&rft.au=Bachmann%2C+Florian&rft.au=Fundenberger%2C+Jean-Jacques&rft.date=2017-02-01&rft.issn=0022-2461&rft.eissn=1573-4803&rft.volume=52&rft.issue=4&rft.spage=2077&rft.epage=2090&rft_id=info:doi/10.1007%2Fs10853-016-0496-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10853_016_0496_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-2461&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-2461&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-2461&client=summon