Energy flux measurements during magnetron sputter deposition processes

The influence of energetic species on thin film growth mechanism is a long-term issue in the field of low-pressure plasma-based magnetron sputtering technology. Several species may contribute to the energy flux such a plasma ions, electrons and neutrals, film-forming species, photons, etc. Several r...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Surface & coatings technology Ročník 377; s. 124887
Hlavní autoři: Thomann, A.-L., Caillard, A., Raza, M., El Mokh, M., Cormier, P.A., Konstantinidis, S.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Lausanne Elsevier B.V 15.11.2019
Elsevier BV
Elsevier
Témata:
ISSN:0257-8972, 1879-3347
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The influence of energetic species on thin film growth mechanism is a long-term issue in the field of low-pressure plasma-based magnetron sputtering technology. Several species may contribute to the energy flux such a plasma ions, electrons and neutrals, film-forming species, photons, etc. Several research groups have designed probes capable of quantifying energy fluxes in these particular working conditions and experimental strategies to get a better insight on the relationship between the plasma working parameters, the energy flux, the film growth mechanism and the coating properties. In this paper we aim at showing how the thermopile-based probe developed at GREMI laboratory can contribute to this field thanks to its time resolved capability (~ms) and sensitivity (~mW/cm2). We show how such a probe can be used to identify and quantify energetic contributions such as gas conduction, chemical reactions on surfaces such as oxidation, but also radiations emitted from a (hot) sputter target during DC, pulsed-DC and High-power Impulse Magnetron Sputtering (HiPIMS) processes. Both non-reactive and reactive sputtering discharges are studied. Ultimately, we present data on the relationship between the phase composition and the energy deposited during the synthesis of two technologically important thin film materials, namely Titania and Zirconia. Through the reported examples, the advantage and limitations of energy flux measurements and the interest to couple the obtained data to those derived from conventional plasma diagnostics are discussed. The relative importance of various energetic contributions is investigated in a purpose to identify the key parameters driving the film properties. •Energy transferred to the film during deposition can be quantified.•The deposited energy at the substrate is the sum of elementary contributions.•Direct energy flux measurements allow investigating the sputter/deposition process.•IR radiations emitted by the heated target play a role on thin film final properties.•Energy deposited during deposition may hinder thermodynamic stabilization of phases.
AbstractList The influence of energetic species on thin film growth mechanism is a long-term issue in the field of low-pressure plasma-based magnetron sputtering technology. Several species may contribute to the energy flux such a plasma ions, electrons and neutrals, film-forming species, photons, etc. Several research groups have designed probes capable of quantifying energy fluxes in these particular working conditions and experimental strategies to get a better insight on the relationship between the plasma working parameters, the energy flux, the film growth mechanism and the coating properties. In this paper we aim at showing how the thermopile-based probe developed at GREMI laboratory can contribute to this field thanks to its time resolved capability (~ms) and sensitivity (~mW/cm2). We show how such a probe can be used to identify and quantify energetic contributions such as gas conduction, chemical reactions on surfaces such as oxidation, but also radiations emitted from a (hot) sputter target during DC, pulsed-DC and High-power Impulse Magnetron Sputtering (HiPIMS) processes. Both non-reactive and reactive sputtering discharges are studied. Ultimately, we present data on the relationship between the phase composition and the energy deposited during the synthesis of two technologically important thin film materials, namely Titania and Zirconia. Through the reported examples, the advantage and limitations of energy flux measurements and the interest to couple the obtained data to those derived from conventional plasma diagnostics are discussed. The relative importance of various energetic contributions is investigated in a purpose to identify the key parameters driving the film properties.
The influence of energetic species on thin film growth mechanism is a long-term issue in the field of low-pressure plasma-based magnetron sputtering technology. Several species may contribute to the energy flux such a plasma ions, electrons and neutrals, film-forming species, photons, etc. Several research groups have designed probes capable of quantifying energy fluxes in these particular working conditions and experimental strategies to get a better insight on the relationship between the plasma working parameters, the energy flux, the film growth mechanism and the coating properties. In this paper we aim at showing how the thermopile-based probe developed at GREMI laboratory can contribute to this field thanks to its time resolved capability (~ms) and sensitivity (~mW/cm2). We show how such a probe can be used to identify and quantify energetic contributions such as gas conduction, chemical reactions on surfaces such as oxidation, but also radiations emitted from a (hot) sputter target during DC, pulsed-DC and High-power Impulse Magnetron Sputtering (HiPIMS) processes. Both non-reactive and reactive sputtering discharges are studied. Ultimately, we present data on the relationship between the phase composition and the energy deposited during the synthesis of two technologically important thin film materials, namely Titania and Zirconia. Through the reported examples, the advantage and limitations of energy flux measurements and the interest to couple the obtained data to those derived from conventional plasma diagnostics are discussed. The relative importance of various energetic contributions is investigated in a purpose to identify the key parameters driving the film properties. •Energy transferred to the film during deposition can be quantified.•The deposited energy at the substrate is the sum of elementary contributions.•Direct energy flux measurements allow investigating the sputter/deposition process.•IR radiations emitted by the heated target play a role on thin film final properties.•Energy deposited during deposition may hinder thermodynamic stabilization of phases.
The influence of energetic species on thin film growth mechanism is a long-term issue in the field of low-pressure plasma-based magnetron sputtering technology. Several species may contribute to the energy flux such a plasma ions, electrons and neutrals, film-forming species, photons, etc. Several research groups have designed probes capable of quantifying energy fluxes in these particular working conditions and experimental strategies to get a better insight on the relationship between the plasma working parameters, the energy flux, the film growth mechanism and the coating properties. In this paper we aim at showing how the thermopilebased probe developed at GREMI laboratory can contribute to this field thanks to its time resolved capability (~ms) and sensitivity (~mW/cm 2). We show how such a probe can be used to identify and quantify energetic contributions such as gas conduction, chemical reactions on surfaces such as oxidation, but also radiations emitted from a (hot) sputter target during DC,
ArticleNumber 124887
Author Konstantinidis, S.
Thomann, A.-L.
Caillard, A.
Cormier, P.A.
Raza, M.
El Mokh, M.
Author_xml – sequence: 1
  givenname: A.-L.
  surname: Thomann
  fullname: Thomann, A.-L.
  email: anne-lise.thomann@univ-orleans.fr
  organization: Groupe de Recherches sur l'Energétique des Milieux Ionisés (GREMI), UMR7344 Université d'Orléans – CNRS BP6744, F-45067 Orléans Cedex 2, France
– sequence: 2
  givenname: A.
  surname: Caillard
  fullname: Caillard, A.
  organization: Groupe de Recherches sur l'Energétique des Milieux Ionisés (GREMI), UMR7344 Université d'Orléans – CNRS BP6744, F-45067 Orléans Cedex 2, France
– sequence: 3
  givenname: M.
  surname: Raza
  fullname: Raza, M.
  organization: Chimie des Interactions Plasma-Surface (ChIPS), Université de Mons, Avenue Copernic 3, 7000 Mons, Belgium
– sequence: 4
  givenname: M.
  surname: El Mokh
  fullname: El Mokh, M.
  organization: Groupe de Recherches sur l'Energétique des Milieux Ionisés (GREMI), UMR7344 Université d'Orléans – CNRS BP6744, F-45067 Orléans Cedex 2, France
– sequence: 5
  givenname: P.A.
  surname: Cormier
  fullname: Cormier, P.A.
  organization: Groupe de Recherches sur l'Energétique des Milieux Ionisés (GREMI), UMR7344 Université d'Orléans – CNRS BP6744, F-45067 Orléans Cedex 2, France
– sequence: 6
  givenname: S.
  surname: Konstantinidis
  fullname: Konstantinidis, S.
  organization: Chimie des Interactions Plasma-Surface (ChIPS), Université de Mons, Avenue Copernic 3, 7000 Mons, Belgium
BackLink https://hal.science/hal-02381748$$DView record in HAL
BookMark eNqFkE9LAzEUxINUsFW_gix48rBr_mw3WfBgKa0VCl70HNLkbU1pk5pki357U6oXL54eDPMb5s0IDZx3gNANwRXBpLnfVLEPnfYqVRSTtsKiyvIZGhLB25Kxmg_QENMxL0XL6QUaxbjBGBPe1kM0nzkI66-i2_afxQ5UjoIduBQL0wfr1sVOrR2k4F0R931KEAoDex9tslnaB68hRohX6LxT2wjXP_cSvc1nr9NFuXx5ep5OlqWuKU3livIxxg2BVYcFqcemNYQaPOYNMMFa2rDWCFgZypqarbRSogZDNdcaGoGJYZfo7pT7rrZyH-xOhS_plZWLyVIeNUyZILwWB5K9tydvbvnRQ0xy4_vgcj1JGaGUCkZ4dj2cXDr4GAN0Utukjt-loOxWEiyPK8uN_F1ZHleWWMgsZ7z5g_-2-hd8PIGQ5zpYCDJqC06DsQF0ksbb_yK-AeZ9new
CitedBy_id crossref_primary_10_1016_j_colsurfa_2021_126286
crossref_primary_10_1016_j_vacuum_2020_109734
crossref_primary_10_1016_j_apsusc_2024_162037
crossref_primary_10_1088_1361_6528_ad113d
crossref_primary_10_1088_1361_6463_ac118e
crossref_primary_10_1016_j_vacuum_2021_110400
crossref_primary_10_1016_j_vacuum_2024_113184
crossref_primary_10_1038_s41699_024_00519_z
crossref_primary_10_1557_jmr_2020_89
crossref_primary_10_1557_s43580_024_00891_4
crossref_primary_10_1016_j_optlastec_2025_113296
crossref_primary_10_3390_batteries10120449
crossref_primary_10_1016_j_mtla_2023_101914
crossref_primary_10_3762_bjnano_13_2
crossref_primary_10_1016_j_vacuum_2023_111888
crossref_primary_10_1088_1361_6463_abd72a
crossref_primary_10_1016_j_apsusc_2023_158905
crossref_primary_10_1016_j_surfcoat_2021_127235
crossref_primary_10_1016_j_vacuum_2020_109892
crossref_primary_10_1109_TPS_2021_3092752
crossref_primary_10_1016_j_matdes_2023_112044
crossref_primary_10_1063_6_0003496
crossref_primary_10_1016_j_vacuum_2021_110716
crossref_primary_10_3390_ma16186303
crossref_primary_10_1002_ces2_70018
crossref_primary_10_1016_j_tsf_2020_138212
crossref_primary_10_1088_1361_6463_acaff4
crossref_primary_10_1016_j_surfcoat_2022_129209
crossref_primary_10_1063_5_0179553
crossref_primary_10_1080_10426914_2021_2006223
crossref_primary_10_4028_p_1EQ0hR
crossref_primary_10_1016_j_vacuum_2025_114629
crossref_primary_10_1039_D3MH00677H
crossref_primary_10_1063_5_0089214
crossref_primary_10_1116_6_0001476
crossref_primary_10_3390_coatings13050922
Cites_doi 10.1063/1.2216354
10.1063/1.2166467
10.1016/j.tsf.2018.10.021
10.1016/j.scriptamat.2016.06.025
10.1088/0022-3727/46/4/045204
10.1016/0040-6090(78)90273-0
10.1002/ppap.200931202
10.1016/j.tsf.2009.10.145
10.1016/0040-6090(94)90843-5
10.1016/S0065-2717(08)70263-6
10.1116/1.581957
10.1016/0040-6090(94)90166-X
10.1016/S0040-6090(96)09510-7
10.1016/j.surfcoat.2009.11.013
10.1116/1.1554971
10.1140/epjd/e2013-40148-8
10.1088/0022-3727/43/6/065202
10.1016/j.tsf.2004.07.041
10.1063/1.1770712
10.1016/S0042-207X(99)00189-X
10.1088/0963-0252/24/4/045016
10.1088/0022-3727/43/46/465201
10.1016/j.surfcoat.2011.08.005
10.1016/0040-6090(84)90160-3
10.1088/0022-3727/44/11/115201
10.1557/S0883769400063697
10.1016/S0040-6090(96)08559-8
10.1016/j.vacuum.2017.10.016
10.1016/S0257-8972(01)01691-7
10.1063/1.366092
10.1063/1.109742
10.1016/j.tsf.2006.06.027
10.1016/j.tsf.2012.06.053
10.1016/j.surfcoat.2014.06.037
10.1088/1361-6595/aa6f9e
10.1109/TPS.2014.2338742
10.1063/1.4773103
10.1016/S0040-6090(02)00339-5
10.1063/1.1730942
10.1063/1.4995278
10.1116/1.576223
10.1088/0022-3727/44/9/095201
10.1016/j.surfcoat.2018.07.047
10.1088/0022-3727/47/22/224001
10.1016/j.tsf.2013.05.075
10.1016/0039-6028(75)90417-3
10.1063/1.2219163
10.1016/S0042-207X(01)00350-5
10.1016/0022-5088(77)90040-6
10.1016/S0257-8972(99)00125-5
10.1016/j.tsf.2013.07.025
10.1088/0022-3727/41/20/205307
10.1016/j.tsf.2004.10.051
10.1016/j.surfcoat.2016.06.096
10.1364/AO.13.002142
10.1016/j.surfcoat.2013.02.012
10.1088/0022-3727/45/35/355202
10.1016/j.mineng.2013.06.001
10.1063/1.3536635
10.1088/0963-0252/7/4/016
10.1063/1.2266888
10.1063/1.4795763
10.1016/j.tsf.2006.07.183
10.1088/1361-6463/aa5ab6
10.1063/1.1661657
10.1116/1.1601610
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright Elsevier BV Nov 15, 2019
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2019 Elsevier B.V.
– notice: Copyright Elsevier BV Nov 15, 2019
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
7QQ
7SR
8BQ
8FD
JG9
1XC
VOOES
DOI 10.1016/j.surfcoat.2019.08.016
DatabaseName CrossRef
Ceramic Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Ceramic Abstracts
Technology Research Database
METADEX
DatabaseTitleList Materials Research Database


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1879-3347
ExternalDocumentID oai:HAL:hal-02381748v1
10_1016_j_surfcoat_2019_08_016
S025789721930859X
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFRF
ABMAC
ABNEU
ABXRA
ABYKQ
ACDAQ
ACFVG
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M24
M38
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSM
SSQ
SSZ
T5K
XPP
ZMT
~02
~G-
29Q
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGHFR
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
CITATION
EFKBS
FEDTE
FGOYB
G-2
HMV
HVGLF
HX~
HZ~
NDZJH
R2-
SEW
SMS
SPG
WUQ
~HD
7QQ
7SR
8BQ
8FD
AFXIZ
AGCQF
AGRNS
JG9
SSH
1XC
VOOES
ID FETCH-LOGICAL-c422t-b2750061ebf08145d9d12d0576e38392639d8ebd23643bcaa84ed2c7cce6801d3
ISICitedReferencesCount 41
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000488417800034&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0257-8972
IngestDate Tue Oct 14 21:00:55 EDT 2025
Fri Jul 25 05:16:21 EDT 2025
Sat Nov 29 07:18:39 EST 2025
Tue Nov 18 19:39:42 EST 2025
Fri Feb 23 02:30:26 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Magnetron sputtering
Sputtering process
Energy flux
Thin film deposition
Crystalline phase formation
sputtering process
crystalline phase formation
thin film deposition
energy flux
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c422t-b2750061ebf08145d9d12d0576e38392639d8ebd23643bcaa84ed2c7cce6801d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0701-3571
0000-0001-9540-1381
OpenAccessLink https://hal.science/hal-02381748
PQID 2312228317
PQPubID 2045394
ParticipantIDs hal_primary_oai_HAL_hal_02381748v1
proquest_journals_2312228317
crossref_citationtrail_10_1016_j_surfcoat_2019_08_016
crossref_primary_10_1016_j_surfcoat_2019_08_016
elsevier_sciencedirect_doi_10_1016_j_surfcoat_2019_08_016
PublicationCentury 2000
PublicationDate 2019-11-15
PublicationDateYYYYMMDD 2019-11-15
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-11-15
  day: 15
PublicationDecade 2010
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
PublicationTitle Surface & coatings technology
PublicationYear 2019
Publisher Elsevier B.V
Elsevier BV
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
– name: Elsevier
References Ellmer, Mientus (bb0150) 1999; 116–119
West, Kelly, Barker, Mishra, Bradley (bb0270) 2009; 6
Westwood (bb0045) 1988; 13
Musil, Baroch, Vlcˇek, Nam, Han (bb0285) 2005; 475
Kinslow, Arney (bb0185) 1967; 119
Martin, Mader, Fromm (bb0195) 1994; 250
Bowes, Poolcharuansin, Bradley (bb0315) 2013; 46
Cormier, Balhamri, Thomann, Dussart, Semmar, Mathias, Snyders, Konstantinidis (bb0075) 2013; 113
Thomann, Cormier, Dolique, Semmar, Dussart, Lecas, Courtois, Brault (bb0290) 2013; 539
Cormier, Stahl, Thomann, Dussart, Wolter, Semmar, Mathias, Kersten (bb0050) 2010; 43
Mráz, Schneider (bb0305) 2006; 100
Blais, Mann (bb0175) 1960; 32
Drüsedau, Bock, John, Klabunde, Eckstein (bb0245) 1999; 17
Andersson, Wallin, Münger, Helmersson (bb0295) 2006; 100
Kelly, Arnell (bb0260) 2000; 56
Mráz, Schneider (bb0095) 2011; 109
Thomann, Semmar, Dussart, Mathias, Lang (bb0155) 2006; 77
Mahieu, Ghekiere, Depla, De Gryse (bb0015) 2006; 515
Cormier, Thomann, Dolique, Balhamri, Dussart, Semmar, Lecas, Brault, Snyders, Konstantinidis (bb0080) 2013; 545
Mráz, Schneider (bb0300) 2006; 89
Kersten, Deutsch, Steffen, Kroesen, Hippler (bb0005) 2001; 63
Gauter, Haase, Kersten (bb0250) 2018; 669
Chau, Ho, Wolfe, Licon (bb0235) 1996; 287
Britun, Minea, Konstantinidis, Snyders (bb0265) 2014; 47
Caillard, El'Mokh, Semmar, Dussart, Lecas, Thomann (bb0220) 2014; 42
Kersten, Rohdes, Berndt, Deutsch, Hippler (bb0025) 2000; 585
Martin, Rousselot, Rondot, Palmino, Mercier (bb0090) 1997; 300
Roth, Oberbossel, Rohr (bb0135) 2012; 45
Roth, Bornholdt, Zuber, Sonnenfeld, Kersten, Rudolf von Rohr (bb0140) 2011; 44
Tesař, Martan, Rezek (bb0210) 2011; 206
Cormier, Balhamri, Thomann, Dussart, Semmar, Lecas, Snyders, Konstantinidis (bb0070) 2014; 254
Bornholdt, Kersten (bb0130) 2013; 67
Chandos, Chandos (bb0165) 1974; 13
Rossnagel (bb0065) 1989; 7
Moens, Kalvas, Van Steenberge, Depla (bb0330) 2017; 50
Harbauer, Welzel, Ellmer (bb0345) 2012; 520
Petrov, Adibi, Greene, Hultman, Sundgren (bb0110) 1993; 63
Lemons, Rosenblatt (bb0190) 1975; 48
Sidelev, Bleykher, Krivobokov, Koishybayeva (bb0230) 2016; 308
Gauter, Fröhlich, Garkas, Polak, Kersten (bb0125) 2017; 26
Berg, Nyberg (bb0280) 2005; 476
Devienne (bb0180) 1965; volume 2
Leroy, Konstantinidis, Mahieu, Snyders, Depla (bb0275) 2011; 44
Löbl, Huppertz, Mergel (bb0085) 1994; 251
Van Aeken, Mahieu, Depla (bb0120) 2008; 41
Porte, Demosthenous, Duc (bb0200) 1977; 56
Ho, Mohanchandra, Carman (bb0240) 2002; 413
Caillard, El'Mokh, Lecas, Thomann (bb0205) 2018; 147
Ekpe, Dew (bb0255) 2003; 21
Wendt, Ellmer, Wiesemann (bb0020) 1997; 82
Alami, Stranak, Herrendorf, Hubicka, Hippler (bb0325) 2015; 24
Ball (bb0030) 1972; 43
Weise, Seeger, Harbauer, Welzel, Ellmer (bb0340) 2017; 122
Petrov, Barna, Hultman, Greene (bb0105) 2003; 21
Gardon (bb0035) 1953; 24
Thornton (bb0040) 1978; 54
Sarakinos, Alami, Konstantinidis (bb0310) 2010; 204
Raza, Cornil, Cornil, Lucas, Snyders, Konstantinidis (bb0335) 2016; 124
Anders (bb0010) 2010; 518
May, Hamann, Quade, Brüser (bb0145) 2013; 50-51
Yang, Liu, Wu, Hong, Wang, Lee, Gong (bb0215) 2013; 102
Bedra, Thomann, Semmar, Dussart, Mathias (bb0160) 2010; 43
Bohlmark, Östbye, Lattemann, Ljungcrantz, Rosell, Helmersson (bb0320) 2006; 515
Mahieu, Van Aeken, Depla (bb0115) 2008
Thornton, Lamb (bb0055) 1984; 119
Drüsedau, Koppenhagen (bb0060) 2002; 153
Piejak, Godyak, Alexandrovich, Tishchenko (bb0170) 1998; 7
Sidelev, Bestetti, Bleykher, Krivobokov, Grudinin, Franz, Vicenzo, Shanenkov (bb0225) 2018; 350
Stranak, Herrendorf, Wulff, Drache, Cada, Hubicka, Tichy, Hippler (bb0100) 2013; 222
Kersten (10.1016/j.surfcoat.2019.08.016_bb0005) 2001; 63
Mráz (10.1016/j.surfcoat.2019.08.016_bb0305) 2006; 100
Porte (10.1016/j.surfcoat.2019.08.016_bb0200) 1977; 56
Drüsedau (10.1016/j.surfcoat.2019.08.016_bb0245) 1999; 17
Kinslow (10.1016/j.surfcoat.2019.08.016_bb0185) 1967; 119
Roth (10.1016/j.surfcoat.2019.08.016_bb0135) 2012; 45
May (10.1016/j.surfcoat.2019.08.016_bb0145) 2013; 50-51
Mráz (10.1016/j.surfcoat.2019.08.016_bb0095) 2011; 109
Yang (10.1016/j.surfcoat.2019.08.016_bb0215) 2013; 102
West (10.1016/j.surfcoat.2019.08.016_bb0270) 2009; 6
Martin (10.1016/j.surfcoat.2019.08.016_bb0090) 1997; 300
Kersten (10.1016/j.surfcoat.2019.08.016_bb0025) 2000; 585
Berg (10.1016/j.surfcoat.2019.08.016_bb0280) 2005; 476
Bedra (10.1016/j.surfcoat.2019.08.016_bb0160) 2010; 43
Caillard (10.1016/j.surfcoat.2019.08.016_bb0220) 2014; 42
Thomann (10.1016/j.surfcoat.2019.08.016_bb0290) 2013; 539
Sidelev (10.1016/j.surfcoat.2019.08.016_bb0230) 2016; 308
Bohlmark (10.1016/j.surfcoat.2019.08.016_bb0320) 2006; 515
Musil (10.1016/j.surfcoat.2019.08.016_bb0285) 2005; 475
Petrov (10.1016/j.surfcoat.2019.08.016_bb0105) 2003; 21
Britun (10.1016/j.surfcoat.2019.08.016_bb0265) 2014; 47
Thornton (10.1016/j.surfcoat.2019.08.016_bb0040) 1978; 54
Rossnagel (10.1016/j.surfcoat.2019.08.016_bb0065) 1989; 7
Ellmer (10.1016/j.surfcoat.2019.08.016_bb0150) 1999; 116–119
Leroy (10.1016/j.surfcoat.2019.08.016_bb0275) 2011; 44
Raza (10.1016/j.surfcoat.2019.08.016_bb0335) 2016; 124
Kelly (10.1016/j.surfcoat.2019.08.016_bb0260) 2000; 56
Cormier (10.1016/j.surfcoat.2019.08.016_bb0050) 2010; 43
Petrov (10.1016/j.surfcoat.2019.08.016_bb0110) 1993; 63
Gauter (10.1016/j.surfcoat.2019.08.016_bb0250) 2018; 669
Mráz (10.1016/j.surfcoat.2019.08.016_bb0300) 2006; 89
Mahieu (10.1016/j.surfcoat.2019.08.016_bb0115) 2008
Wendt (10.1016/j.surfcoat.2019.08.016_bb0020) 1997; 82
Cormier (10.1016/j.surfcoat.2019.08.016_bb0070) 2014; 254
Mahieu (10.1016/j.surfcoat.2019.08.016_bb0015) 2006; 515
Bornholdt (10.1016/j.surfcoat.2019.08.016_bb0130) 2013; 67
Alami (10.1016/j.surfcoat.2019.08.016_bb0325) 2015; 24
Lemons (10.1016/j.surfcoat.2019.08.016_bb0190) 1975; 48
Devienne (10.1016/j.surfcoat.2019.08.016_bb0180) 1965; volume 2
Gardon (10.1016/j.surfcoat.2019.08.016_bb0035) 1953; 24
Ekpe (10.1016/j.surfcoat.2019.08.016_bb0255) 2003; 21
Piejak (10.1016/j.surfcoat.2019.08.016_bb0170) 1998; 7
Weise (10.1016/j.surfcoat.2019.08.016_bb0340) 2017; 122
Sidelev (10.1016/j.surfcoat.2019.08.016_bb0225) 2018; 350
Ball (10.1016/j.surfcoat.2019.08.016_bb0030) 1972; 43
Thomann (10.1016/j.surfcoat.2019.08.016_bb0155) 2006; 77
Löbl (10.1016/j.surfcoat.2019.08.016_bb0085) 1994; 251
Stranak (10.1016/j.surfcoat.2019.08.016_bb0100) 2013; 222
Thornton (10.1016/j.surfcoat.2019.08.016_bb0055) 1984; 119
Chau (10.1016/j.surfcoat.2019.08.016_bb0235) 1996; 287
Martin (10.1016/j.surfcoat.2019.08.016_bb0195) 1994; 250
Westwood (10.1016/j.surfcoat.2019.08.016_bb0045) 1988; 13
Sarakinos (10.1016/j.surfcoat.2019.08.016_bb0310) 2010; 204
Cormier (10.1016/j.surfcoat.2019.08.016_bb0075) 2013; 113
Andersson (10.1016/j.surfcoat.2019.08.016_bb0295) 2006; 100
Cormier (10.1016/j.surfcoat.2019.08.016_bb0080) 2013; 545
Tesař (10.1016/j.surfcoat.2019.08.016_bb0210) 2011; 206
Drüsedau (10.1016/j.surfcoat.2019.08.016_bb0060) 2002; 153
Anders (10.1016/j.surfcoat.2019.08.016_bb0010) 2010; 518
Ho (10.1016/j.surfcoat.2019.08.016_bb0240) 2002; 413
Roth (10.1016/j.surfcoat.2019.08.016_bb0140) 2011; 44
Caillard (10.1016/j.surfcoat.2019.08.016_bb0205) 2018; 147
Chandos (10.1016/j.surfcoat.2019.08.016_bb0165) 1974; 13
Harbauer (10.1016/j.surfcoat.2019.08.016_bb0345) 2012; 520
Van Aeken (10.1016/j.surfcoat.2019.08.016_bb0120) 2008; 41
Gauter (10.1016/j.surfcoat.2019.08.016_bb0125) 2017; 26
Blais (10.1016/j.surfcoat.2019.08.016_bb0175) 1960; 32
Bowes (10.1016/j.surfcoat.2019.08.016_bb0315) 2013; 46
Moens (10.1016/j.surfcoat.2019.08.016_bb0330) 2017; 50
References_xml – volume: 82
  start-page: 2115
  year: 1997
  ident: bb0020
  article-title: Thermal power at a substrate during ZnO:Al thin film deposition in a planar magnetron sputtering system
  publication-title: J. Appl. Phys.
– volume: 7
  start-page: 1025
  year: 1989
  ident: bb0065
  article-title: Energetic particle bombardment of films during magnetron sputtering
  publication-title: Journal of Vacuum Science & Technology
– volume: 124
  start-page: 26
  year: 2016
  ident: bb0335
  article-title: Oxygen vacancy stabilized zirconia (OVSZ); a joint experimental and theoretical study
  publication-title: Scr. Mater.
– volume: 206
  start-page: 1155
  year: 2011
  end-page: 1159
  ident: bb0210
  article-title: On surface temperatures during high power pulsed magnetron sputtering using a hot target
  publication-title: Surface & Coatings Technology
– volume: 222
  start-page: 112
  year: 2013
  end-page: 117
  ident: bb0100
  article-title: Deposition of rutile (TiO2) with preferred orientation by assisted high power impulse magnetron sputtering
  publication-title: Surface & Coatings Technology
– volume: 24
  year: 2015
  ident: bb0325
  article-title: Design of magnetic field configuration for controlled discharge properties in highly ionized plasma
  publication-title: Plasma Sources Sci. Technol.
– volume: 518
  start-page: 4087
  year: 2010
  ident: bb0010
  article-title: A structure zone diagram including plasma-based deposition and ion etching
  publication-title: Thin Solid Films
– volume: 26
  year: 2017
  ident: bb0125
  article-title: Calorimetric probe measurements for a high voltage pulsed substrate (PBII) in a HiPIMS process
  publication-title: Plasma Sources Sci. Technol.
– volume: 46
  year: 2013
  ident: bb0315
  article-title: Negative ion energy distributions in reactive HiPIMS
  publication-title: J. Phys. D. Appl. Phys.
– volume: 43
  start-page: 3047
  year: 1972
  ident: bb0030
  article-title: Plasma diagnostics and energy transport of a dc discharge used for sputtering
  publication-title: J. Appl. Phys.
– volume: 119
  year: 1967
  ident: bb0185
  article-title: Thermal Molecular Pressure Effects in Tubes and at Orifices
– volume: 515
  start-page: 1229
  year: 2006
  end-page: 1249
  ident: bb0015
  article-title: Biaxial alignment in sputter deposited thin films
  publication-title: Thin Solid Films
– volume: 32
  start-page: 1459
  year: 1960
  ident: bb0175
  article-title: Thermal conductivity of helium and hydrogen at high temperatures
  publication-title: J. Chem. Phys.
– volume: 54
  start-page: 23
  year: 1978
  ident: bb0040
  article-title: Substrate heating in cylindrical magnetron sputtering sources
  publication-title: Thin Solid Films
– volume: 42
  start-page: 2802
  year: 2014
  ident: bb0220
  article-title: Energy transferred from a hot nickel target during magnetron sputtering
  publication-title: IEEE Transition on Plasma Science
– volume: 43
  year: 2010
  ident: bb0050
  article-title: On the measurement of energy fluxes in plasmas using a calorimetric probe and a thermopile sensor
  publication-title: J. Phys. D. Appl. Phys.
– volume: 545
  start-page: 44
  year: 2013
  end-page: 49
  ident: bb0080
  article-title: IR emission from the target during plasma magnetron sputter deposition
  publication-title: Thin Solid Films
– volume: 24
  start-page: 366
  year: 1953
  ident: bb0035
  article-title: An instrument for the direct measurement of intense thermal radiation
  publication-title: Rev. Sci. Instrum.
– volume: 520
  start-page: 6429
  year: 2012
  ident: bb0345
  article-title: A combined sensor for the diagnostics of plasma and film properties in magnetron sputtering processes
  publication-title: Thin Solid Films
– volume: 100
  year: 2006
  ident: bb0305
  article-title: Influence of the negative oxygen ions on the structure evolution of transition metal oxide thin films
  publication-title: J. Appl. Phys.
– volume: 48
  start-page: 432
  year: 1975
  end-page: 448
  ident: bb0190
  article-title: Thermal accommodation coefficients by high speed vibration of solid samples
  publication-title: Surf. Sci.
– volume: 63
  start-page: 36
  year: 1993
  ident: bb0110
  article-title: Average energy deposited per atom: a universal parameter for describing ion-assisted film growth?
  publication-title: Appl. Phys. Lett.
– volume: 147
  start-page: 82
  year: 2018
  end-page: 91
  ident: bb0205
  article-title: Effect of the target temperature during magnetron sputtering of nickel
  publication-title: Vacuum
– volume: 515
  start-page: 1928
  year: 2006
  ident: bb0320
  article-title: Guiding the deposition flux in an ionized magnetron discharge
  publication-title: Thin Solid Films
– volume: 56
  start-page: 159
  year: 2000
  ident: bb0260
  article-title: Magnetron sputtering: a review of recent developments and applications
  publication-title: Vacuum
– volume: 89
  year: 2006
  ident: bb0300
  article-title: Energy distribution of O-ions during reactive magnetron sputtering
  publication-title: Appl. Phys. Lett.
– volume: 413
  start-page: 1
  year: 2002
  end-page: 7
  ident: bb0240
  article-title: Examination of the sputtering profile of NiTi under target heating conditions
  publication-title: Thin Solid Films
– volume: 475
  start-page: 208
  year: 2005
  end-page: 218
  ident: bb0285
  article-title: Reactive magnetron sputtering of thin films: present status and trends
  publication-title: Thin Solid Films
– volume: 44
  year: 2011
  ident: bb0275
  article-title: Angular-resolved energy flux measurements of a dc- and HIPIMS-powered rotating cylindrical magnetron in reactive and non-reactive atmosphere
  publication-title: J. Phys. D. Appl. Phys.
– volume: 77
  year: 2006
  ident: bb0155
  article-title: Diagnostic system for plasma/surface energy transfer characterization
  publication-title: Rev. Sci. Instrum.
– volume: 100
  start-page: 033305
  year: 2006
  ident: bb0295
  article-title: Energy distributions of positive and negative ions during magnetron sputtering of an Al target in Ar/O2 mixtures
  publication-title: J. Appl. Phys.
– volume: 63
  start-page: 385
  year: 2001
  ident: bb0005
  article-title: The energy balance at substrate surfaces during plasma processing
  publication-title: Vacuum
– volume: 50-51
  start-page: 48
  year: 2013
  end-page: 56
  ident: bb0145
  article-title: Study on Cu2S mineral surface modification by low temperature Ar/O2 plasmas
  publication-title: Miner. Eng.
– volume: 47
  year: 2014
  ident: bb0265
  article-title: Plasma diagnostics for understanding the plasma-surface interaction in HiPIMS discharges: a review
  publication-title: J. Phys. D. Appl. Phys.
– volume: 7
  start-page: 590
  year: 1998
  end-page: 598
  ident: bb0170
  article-title: Surface temperature and thermal balance of probes immersed in high density plasma
  publication-title: Plasma Sources Sci. Technol.
– volume: 308
  start-page: 168
  year: 2016
  end-page: 173
  ident: bb0230
  article-title: High-rate magnetron sputtering with hot target
  publication-title: Surface & Coatings Technology
– volume: 254
  start-page: 291
  year: 2014
  end-page: 297
  ident: bb0070
  article-title: Titanium oxide thin film growth by magnetron sputtering: total energy flux and its relationship with the phase constitution
  publication-title: Surf. Coatings Technol.
– year: 2008
  ident: bb0115
  publication-title: Reactive Sputter Deposition
– volume: volume 2
  year: 1965
  ident: bb0180
  article-title: Low density heat transfer
  publication-title: Advances in Heat Transfer
– volume: 287
  start-page: 57
  year: 1996
  end-page: 64
  ident: bb0235
  article-title: Effect of target temperature on the reactive d.c.-sputtering of silicon and niobium oxides
  publication-title: Thin Solid Films
– volume: 116–119
  start-page: 1102
  year: 1999
  end-page: 1106
  ident: bb0150
  article-title: Calorimetric measurements with a heat flux transducer of the total power influx onto a substrate during magnetron sputtering
  publication-title: Surf. Coat. Technol.
– volume: 250
  start-page: 61
  year: 1994
  end-page: 66
  ident: bb0195
  article-title: Oxidation of iron, aluminium and titanium films in the temperature range 50–200 °C
  publication-title: Thin Solid Films
– volume: 476
  start-page: 215
  year: 2005
  end-page: 230
  ident: bb0280
  article-title: Fundamental understanding and modeling of reactive sputtering processes
  publication-title: Thin Solid Films
– volume: 44
  year: 2011
  ident: bb0140
  article-title: Comparison of calorimetric plasma diagnostics in a plasma downstream reactor
  publication-title: J. Phys. D. Appl. Phys.
– volume: 350
  start-page: 560
  year: 2018
  end-page: 568
  ident: bb0225
  article-title: Deposition of Cr films by hot target magnetron sputtering on biased substrates
  publication-title: Surface & Coatings Technology
– volume: 539
  start-page: 88
  year: 2013
  end-page: 95
  ident: bb0290
  article-title: Energy transferred to the substrate surface during reactive magnetron sputtering of aluminum in Ar/O2 atmosphere
  publication-title: Thin Solid Films
– volume: 251
  start-page: 72
  year: 1994
  end-page: 79
  ident: bb0085
  article-title: Nucleation and growth in TiO2 films prepared by sputtering and evaporation
  publication-title: Thin Solid Films
– volume: 153
  start-page: 155
  year: 2002
  end-page: 159
  ident: bb0060
  article-title: Substrate heating by sputter-deposition of AlN: the effects of dc and rf discharges in nitrogen atmosphere
  publication-title: Surf. Coat. Technol.
– volume: 50
  year: 2017
  ident: bb0330
  article-title: Effect of space charge on the negative oxygen flux during reactive sputtering
  publication-title: J. Phys. D. Appl. Phys.
– volume: 122
  start-page: 044503
  year: 2017
  ident: bb0340
  article-title: A multifunctional plasma and deposition sensor for the characterization of plasma sources for film deposition and etching
  publication-title: J. Appl. Phys.
– volume: 21
  start-page: S117
  year: 2003
  ident: bb0105
  article-title: Microstructural evolution during film growth
  publication-title: J. Vac. Sci. Technol. A
– volume: 585
  start-page: 377
  year: 2000
  end-page: 378
  ident: bb0025
  article-title: Investigations on the energy influx at plasma processes by means of a simple thermal probe
  publication-title: Thin Solid Films
– volume: 56
  start-page: 183
  year: 1977
  end-page: 191
  ident: bb0200
  article-title: Etude ESCA de l'interacion oxygène-titane
  publication-title: J. of Less-Common Metals
– volume: 113
  year: 2013
  ident: bb0075
  article-title: Measuring the energy flux at the substrate position during magnetron sputter deposition processes
  publication-title: J. Appl. Phys.
– volume: 67
  start-page: 176
  year: 2013
  ident: bb0130
  article-title: Transient calorimetric diagnostics for plasma processing
  publication-title: Eur. Phys. J. D
– volume: 41
  year: 2008
  ident: bb0120
  article-title: The metal flux from a rotating cylindrical magnetron: a Monte Carlo simulation
  publication-title: J. Phys. D
– volume: 43
  year: 2010
  ident: bb0160
  article-title: Highly sensitive measurements of the energy transferred during plasma sputter deposition of metals
  publication-title: J. Phys. D. Appl. Phys.
– volume: 13
  start-page: 2142
  year: 1974
  end-page: 2152
  ident: bb0165
  article-title: Radiometric properties of isothermal, diffuse wall cavity sources
  publication-title: Appl. Opt.
– volume: 669
  start-page: 8
  year: 2018
  end-page: 18
  ident: bb0250
  article-title: Experimentally unraveling the energy flux originating from a DC magnetron sputtering source
  publication-title: Thin Solid Films
– volume: 204
  start-page: 1661
  year: 2010
  end-page: 1684
  ident: bb0310
  article-title: High power pulsed magnetron sputtering: a review on scientific and engineering state of the art
  publication-title: Surf. Coatings Technol.
– volume: 300
  start-page: 113
  year: 1997
  end-page: 121
  ident: bb0090
  article-title: Microstructure modification of amorphous titanium oxide thin films during annealing treatment
  publication-title: Thin Solid Films
– volume: 13
  start-page: 6
  year: 1988
  ident: bb0045
  article-title: Sputter deposition processes
  publication-title: MRS Bull.
– volume: 21
  start-page: 476
  year: 2003
  ident: bb0255
  article-title: Theoretical and experimental determination of the energy flux during magnetron sputter deposition onto an unbiased substrate
  publication-title: J. Vac. Sci. Technol. A Vacuum Surfaces Film.
– volume: 6
  start-page: S543
  year: 2009
  end-page: S547
  ident: bb0270
  article-title: Measurements of deposition rate and substrate heating in a HiPIMS discharge
  publication-title: Plasma Process. Polym.
– volume: 45
  year: 2012
  ident: bb0135
  article-title: Electron temperature, ion density and energy influx measurements in a tubular plasma reactor for powder surface modification
  publication-title: J. Phys. D. Appl. Phys.
– volume: 119
  start-page: 87
  year: 1984
  end-page: 95
  ident: bb0055
  article-title: Substrate heating rates for planar and cylindrical-post magnetron sputtering sources
  publication-title: Thin Solid Films
– volume: 109
  year: 2011
  ident: bb0095
  article-title: Structure evolution of magnetron sputtered TiO2 thin films
  publication-title: J. Appl. Phys.
– volume: 102
  year: 2013
  ident: bb0215
  article-title: Low substrate temperature fabrication of high-performance metal oxide thin-film by magnetron sputtering with target self-heating
  publication-title: Appl. Phys. Letters
– volume: 17
  start-page: 2896
  year: 1999
  ident: bb0245
  article-title: Energy transfer into the growing film during sputter deposition: an investigation by calorimetric measurements and Monte Carlo simulations
  publication-title: J. Vac. Sci. Technol. A Vacuum Surfaces Film.
– volume: 100
  year: 2006
  ident: 10.1016/j.surfcoat.2019.08.016_bb0305
  article-title: Influence of the negative oxygen ions on the structure evolution of transition metal oxide thin films
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2216354
– volume: 77
  year: 2006
  ident: 10.1016/j.surfcoat.2019.08.016_bb0155
  article-title: Diagnostic system for plasma/surface energy transfer characterization
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.2166467
– year: 2008
  ident: 10.1016/j.surfcoat.2019.08.016_bb0115
– volume: 669
  start-page: 8
  year: 2018
  ident: 10.1016/j.surfcoat.2019.08.016_bb0250
  article-title: Experimentally unraveling the energy flux originating from a DC magnetron sputtering source
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2018.10.021
– volume: 124
  start-page: 26
  year: 2016
  ident: 10.1016/j.surfcoat.2019.08.016_bb0335
  article-title: Oxygen vacancy stabilized zirconia (OVSZ); a joint experimental and theoretical study
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2016.06.025
– volume: 46
  year: 2013
  ident: 10.1016/j.surfcoat.2019.08.016_bb0315
  article-title: Negative ion energy distributions in reactive HiPIMS
  publication-title: J. Phys. D. Appl. Phys.
  doi: 10.1088/0022-3727/46/4/045204
– volume: 54
  start-page: 23
  issue: 1
  year: 1978
  ident: 10.1016/j.surfcoat.2019.08.016_bb0040
  article-title: Substrate heating in cylindrical magnetron sputtering sources
  publication-title: Thin Solid Films
  doi: 10.1016/0040-6090(78)90273-0
– volume: 6
  start-page: S543
  issue: S1
  year: 2009
  ident: 10.1016/j.surfcoat.2019.08.016_bb0270
  article-title: Measurements of deposition rate and substrate heating in a HiPIMS discharge
  publication-title: Plasma Process. Polym.
  doi: 10.1002/ppap.200931202
– volume: 518
  start-page: 4087
  issue: 15
  year: 2010
  ident: 10.1016/j.surfcoat.2019.08.016_bb0010
  article-title: A structure zone diagram including plasma-based deposition and ion etching
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2009.10.145
– volume: 251
  start-page: 72
  year: 1994
  ident: 10.1016/j.surfcoat.2019.08.016_bb0085
  article-title: Nucleation and growth in TiO2 films prepared by sputtering and evaporation
  publication-title: Thin Solid Films
  doi: 10.1016/0040-6090(94)90843-5
– volume: 119
  year: 1967
  ident: 10.1016/j.surfcoat.2019.08.016_bb0185
– volume: volume 2
  year: 1965
  ident: 10.1016/j.surfcoat.2019.08.016_bb0180
  article-title: Low density heat transfer
  doi: 10.1016/S0065-2717(08)70263-6
– volume: 17
  start-page: 2896
  issue: 5
  year: 1999
  ident: 10.1016/j.surfcoat.2019.08.016_bb0245
  article-title: Energy transfer into the growing film during sputter deposition: an investigation by calorimetric measurements and Monte Carlo simulations
  publication-title: J. Vac. Sci. Technol. A Vacuum Surfaces Film.
  doi: 10.1116/1.581957
– volume: 250
  start-page: 61
  year: 1994
  ident: 10.1016/j.surfcoat.2019.08.016_bb0195
  article-title: Oxidation of iron, aluminium and titanium films in the temperature range 50–200 °C
  publication-title: Thin Solid Films
  doi: 10.1016/0040-6090(94)90166-X
– volume: 300
  start-page: 113
  year: 1997
  ident: 10.1016/j.surfcoat.2019.08.016_bb0090
  article-title: Microstructure modification of amorphous titanium oxide thin films during annealing treatment
  publication-title: Thin Solid Films
  doi: 10.1016/S0040-6090(96)09510-7
– volume: 204
  start-page: 1661
  year: 2010
  ident: 10.1016/j.surfcoat.2019.08.016_bb0310
  article-title: High power pulsed magnetron sputtering: a review on scientific and engineering state of the art
  publication-title: Surf. Coatings Technol.
  doi: 10.1016/j.surfcoat.2009.11.013
– volume: 21
  start-page: 476
  issue: 2
  year: 2003
  ident: 10.1016/j.surfcoat.2019.08.016_bb0255
  article-title: Theoretical and experimental determination of the energy flux during magnetron sputter deposition onto an unbiased substrate
  publication-title: J. Vac. Sci. Technol. A Vacuum Surfaces Film.
  doi: 10.1116/1.1554971
– volume: 67
  start-page: 176
  year: 2013
  ident: 10.1016/j.surfcoat.2019.08.016_bb0130
  article-title: Transient calorimetric diagnostics for plasma processing
  publication-title: Eur. Phys. J. D
  doi: 10.1140/epjd/e2013-40148-8
– volume: 43
  year: 2010
  ident: 10.1016/j.surfcoat.2019.08.016_bb0160
  article-title: Highly sensitive measurements of the energy transferred during plasma sputter deposition of metals
  publication-title: J. Phys. D. Appl. Phys.
  doi: 10.1088/0022-3727/43/6/065202
– volume: 475
  start-page: 208
  year: 2005
  ident: 10.1016/j.surfcoat.2019.08.016_bb0285
  article-title: Reactive magnetron sputtering of thin films: present status and trends
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2004.07.041
– volume: 24
  start-page: 366
  year: 1953
  ident: 10.1016/j.surfcoat.2019.08.016_bb0035
  article-title: An instrument for the direct measurement of intense thermal radiation
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.1770712
– volume: 56
  start-page: 159
  year: 2000
  ident: 10.1016/j.surfcoat.2019.08.016_bb0260
  article-title: Magnetron sputtering: a review of recent developments and applications
  publication-title: Vacuum
  doi: 10.1016/S0042-207X(99)00189-X
– volume: 24
  year: 2015
  ident: 10.1016/j.surfcoat.2019.08.016_bb0325
  article-title: Design of magnetic field configuration for controlled discharge properties in highly ionized plasma
  publication-title: Plasma Sources Sci. Technol.
  doi: 10.1088/0963-0252/24/4/045016
– volume: 43
  year: 2010
  ident: 10.1016/j.surfcoat.2019.08.016_bb0050
  article-title: On the measurement of energy fluxes in plasmas using a calorimetric probe and a thermopile sensor
  publication-title: J. Phys. D. Appl. Phys.
  doi: 10.1088/0022-3727/43/46/465201
– volume: 206
  start-page: 1155
  year: 2011
  ident: 10.1016/j.surfcoat.2019.08.016_bb0210
  article-title: On surface temperatures during high power pulsed magnetron sputtering using a hot target
  publication-title: Surface & Coatings Technology
  doi: 10.1016/j.surfcoat.2011.08.005
– volume: 119
  start-page: 87
  year: 1984
  ident: 10.1016/j.surfcoat.2019.08.016_bb0055
  article-title: Substrate heating rates for planar and cylindrical-post magnetron sputtering sources
  publication-title: Thin Solid Films
  doi: 10.1016/0040-6090(84)90160-3
– volume: 44
  year: 2011
  ident: 10.1016/j.surfcoat.2019.08.016_bb0275
  article-title: Angular-resolved energy flux measurements of a dc- and HIPIMS-powered rotating cylindrical magnetron in reactive and non-reactive atmosphere
  publication-title: J. Phys. D. Appl. Phys.
  doi: 10.1088/0022-3727/44/11/115201
– volume: 13
  start-page: 6
  year: 1988
  ident: 10.1016/j.surfcoat.2019.08.016_bb0045
  article-title: Sputter deposition processes
  publication-title: MRS Bull.
  doi: 10.1557/S0883769400063697
– volume: 287
  start-page: 57
  year: 1996
  ident: 10.1016/j.surfcoat.2019.08.016_bb0235
  article-title: Effect of target temperature on the reactive d.c.-sputtering of silicon and niobium oxides
  publication-title: Thin Solid Films
  doi: 10.1016/S0040-6090(96)08559-8
– volume: 147
  start-page: 82
  year: 2018
  ident: 10.1016/j.surfcoat.2019.08.016_bb0205
  article-title: Effect of the target temperature during magnetron sputtering of nickel
  publication-title: Vacuum
  doi: 10.1016/j.vacuum.2017.10.016
– volume: 153
  start-page: 155
  year: 2002
  ident: 10.1016/j.surfcoat.2019.08.016_bb0060
  article-title: Substrate heating by sputter-deposition of AlN: the effects of dc and rf discharges in nitrogen atmosphere
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/S0257-8972(01)01691-7
– volume: 82
  start-page: 2115
  issue: 5
  year: 1997
  ident: 10.1016/j.surfcoat.2019.08.016_bb0020
  article-title: Thermal power at a substrate during ZnO:Al thin film deposition in a planar magnetron sputtering system
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.366092
– volume: 63
  start-page: 36
  year: 1993
  ident: 10.1016/j.surfcoat.2019.08.016_bb0110
  article-title: Average energy deposited per atom: a universal parameter for describing ion-assisted film growth?
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.109742
– volume: 515
  start-page: 1229
  year: 2006
  ident: 10.1016/j.surfcoat.2019.08.016_bb0015
  article-title: Biaxial alignment in sputter deposited thin films
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2006.06.027
– volume: 520
  start-page: 6429
  year: 2012
  ident: 10.1016/j.surfcoat.2019.08.016_bb0345
  article-title: A combined sensor for the diagnostics of plasma and film properties in magnetron sputtering processes
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2012.06.053
– volume: 254
  start-page: 291
  year: 2014
  ident: 10.1016/j.surfcoat.2019.08.016_bb0070
  article-title: Titanium oxide thin film growth by magnetron sputtering: total energy flux and its relationship with the phase constitution
  publication-title: Surf. Coatings Technol.
  doi: 10.1016/j.surfcoat.2014.06.037
– volume: 26
  year: 2017
  ident: 10.1016/j.surfcoat.2019.08.016_bb0125
  article-title: Calorimetric probe measurements for a high voltage pulsed substrate (PBII) in a HiPIMS process
  publication-title: Plasma Sources Sci. Technol.
  doi: 10.1088/1361-6595/aa6f9e
– volume: 42
  start-page: 2802
  issue: 10
  year: 2014
  ident: 10.1016/j.surfcoat.2019.08.016_bb0220
  article-title: Energy transferred from a hot nickel target during magnetron sputtering
  publication-title: IEEE Transition on Plasma Science
  doi: 10.1109/TPS.2014.2338742
– volume: 113
  year: 2013
  ident: 10.1016/j.surfcoat.2019.08.016_bb0075
  article-title: Measuring the energy flux at the substrate position during magnetron sputter deposition processes
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4773103
– volume: 413
  start-page: 1
  year: 2002
  ident: 10.1016/j.surfcoat.2019.08.016_bb0240
  article-title: Examination of the sputtering profile of NiTi under target heating conditions
  publication-title: Thin Solid Films
  doi: 10.1016/S0040-6090(02)00339-5
– volume: 585
  start-page: 377
  issue: 5
  year: 2000
  ident: 10.1016/j.surfcoat.2019.08.016_bb0025
  article-title: Investigations on the energy influx at plasma processes by means of a simple thermal probe
  publication-title: Thin Solid Films
– volume: 32
  start-page: 1459
  year: 1960
  ident: 10.1016/j.surfcoat.2019.08.016_bb0175
  article-title: Thermal conductivity of helium and hydrogen at high temperatures
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1730942
– volume: 122
  start-page: 044503
  year: 2017
  ident: 10.1016/j.surfcoat.2019.08.016_bb0340
  article-title: A multifunctional plasma and deposition sensor for the characterization of plasma sources for film deposition and etching
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4995278
– volume: 7
  start-page: 1025
  year: 1989
  ident: 10.1016/j.surfcoat.2019.08.016_bb0065
  article-title: Energetic particle bombardment of films during magnetron sputtering
  publication-title: Journal of Vacuum Science & Technology
  doi: 10.1116/1.576223
– volume: 44
  year: 2011
  ident: 10.1016/j.surfcoat.2019.08.016_bb0140
  article-title: Comparison of calorimetric plasma diagnostics in a plasma downstream reactor
  publication-title: J. Phys. D. Appl. Phys.
  doi: 10.1088/0022-3727/44/9/095201
– volume: 350
  start-page: 560
  year: 2018
  ident: 10.1016/j.surfcoat.2019.08.016_bb0225
  article-title: Deposition of Cr films by hot target magnetron sputtering on biased substrates
  publication-title: Surface & Coatings Technology
  doi: 10.1016/j.surfcoat.2018.07.047
– volume: 47
  year: 2014
  ident: 10.1016/j.surfcoat.2019.08.016_bb0265
  article-title: Plasma diagnostics for understanding the plasma-surface interaction in HiPIMS discharges: a review
  publication-title: J. Phys. D. Appl. Phys.
  doi: 10.1088/0022-3727/47/22/224001
– volume: 539
  start-page: 88
  year: 2013
  ident: 10.1016/j.surfcoat.2019.08.016_bb0290
  article-title: Energy transferred to the substrate surface during reactive magnetron sputtering of aluminum in Ar/O2 atmosphere
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2013.05.075
– volume: 48
  start-page: 432
  year: 1975
  ident: 10.1016/j.surfcoat.2019.08.016_bb0190
  article-title: Thermal accommodation coefficients by high speed vibration of solid samples
  publication-title: Surf. Sci.
  doi: 10.1016/0039-6028(75)90417-3
– volume: 100
  start-page: 033305
  year: 2006
  ident: 10.1016/j.surfcoat.2019.08.016_bb0295
  article-title: Energy distributions of positive and negative ions during magnetron sputtering of an Al target in Ar/O2 mixtures
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2219163
– volume: 63
  start-page: 385
  year: 2001
  ident: 10.1016/j.surfcoat.2019.08.016_bb0005
  article-title: The energy balance at substrate surfaces during plasma processing
  publication-title: Vacuum
  doi: 10.1016/S0042-207X(01)00350-5
– volume: 56
  start-page: 183
  year: 1977
  ident: 10.1016/j.surfcoat.2019.08.016_bb0200
  article-title: Etude ESCA de l'interacion oxygène-titane
  publication-title: J. of Less-Common Metals
  doi: 10.1016/0022-5088(77)90040-6
– volume: 116–119
  start-page: 1102
  year: 1999
  ident: 10.1016/j.surfcoat.2019.08.016_bb0150
  article-title: Calorimetric measurements with a heat flux transducer of the total power influx onto a substrate during magnetron sputtering
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/S0257-8972(99)00125-5
– volume: 545
  start-page: 44
  year: 2013
  ident: 10.1016/j.surfcoat.2019.08.016_bb0080
  article-title: IR emission from the target during plasma magnetron sputter deposition
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2013.07.025
– volume: 41
  year: 2008
  ident: 10.1016/j.surfcoat.2019.08.016_bb0120
  article-title: The metal flux from a rotating cylindrical magnetron: a Monte Carlo simulation
  publication-title: J. Phys. D
  doi: 10.1088/0022-3727/41/20/205307
– volume: 476
  start-page: 215
  year: 2005
  ident: 10.1016/j.surfcoat.2019.08.016_bb0280
  article-title: Fundamental understanding and modeling of reactive sputtering processes
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2004.10.051
– volume: 308
  start-page: 168
  year: 2016
  ident: 10.1016/j.surfcoat.2019.08.016_bb0230
  article-title: High-rate magnetron sputtering with hot target
  publication-title: Surface & Coatings Technology
  doi: 10.1016/j.surfcoat.2016.06.096
– volume: 13
  start-page: 2142
  year: 1974
  ident: 10.1016/j.surfcoat.2019.08.016_bb0165
  article-title: Radiometric properties of isothermal, diffuse wall cavity sources
  publication-title: Appl. Opt.
  doi: 10.1364/AO.13.002142
– volume: 222
  start-page: 112
  year: 2013
  ident: 10.1016/j.surfcoat.2019.08.016_bb0100
  article-title: Deposition of rutile (TiO2) with preferred orientation by assisted high power impulse magnetron sputtering
  publication-title: Surface & Coatings Technology
  doi: 10.1016/j.surfcoat.2013.02.012
– volume: 45
  year: 2012
  ident: 10.1016/j.surfcoat.2019.08.016_bb0135
  article-title: Electron temperature, ion density and energy influx measurements in a tubular plasma reactor for powder surface modification
  publication-title: J. Phys. D. Appl. Phys.
  doi: 10.1088/0022-3727/45/35/355202
– volume: 50-51
  start-page: 48
  year: 2013
  ident: 10.1016/j.surfcoat.2019.08.016_bb0145
  article-title: Study on Cu2S mineral surface modification by low temperature Ar/O2 plasmas
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2013.06.001
– volume: 109
  year: 2011
  ident: 10.1016/j.surfcoat.2019.08.016_bb0095
  article-title: Structure evolution of magnetron sputtered TiO2 thin films
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3536635
– volume: 7
  start-page: 590
  year: 1998
  ident: 10.1016/j.surfcoat.2019.08.016_bb0170
  article-title: Surface temperature and thermal balance of probes immersed in high density plasma
  publication-title: Plasma Sources Sci. Technol.
  doi: 10.1088/0963-0252/7/4/016
– volume: 89
  year: 2006
  ident: 10.1016/j.surfcoat.2019.08.016_bb0300
  article-title: Energy distribution of O-ions during reactive magnetron sputtering
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2266888
– volume: 102
  year: 2013
  ident: 10.1016/j.surfcoat.2019.08.016_bb0215
  article-title: Low substrate temperature fabrication of high-performance metal oxide thin-film by magnetron sputtering with target self-heating
  publication-title: Appl. Phys. Letters
  doi: 10.1063/1.4795763
– volume: 515
  start-page: 1928
  year: 2006
  ident: 10.1016/j.surfcoat.2019.08.016_bb0320
  article-title: Guiding the deposition flux in an ionized magnetron discharge
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2006.07.183
– volume: 50
  year: 2017
  ident: 10.1016/j.surfcoat.2019.08.016_bb0330
  article-title: Effect of space charge on the negative oxygen flux during reactive sputtering
  publication-title: J. Phys. D. Appl. Phys.
  doi: 10.1088/1361-6463/aa5ab6
– volume: 43
  start-page: 3047
  year: 1972
  ident: 10.1016/j.surfcoat.2019.08.016_bb0030
  article-title: Plasma diagnostics and energy transport of a dc discharge used for sputtering
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1661657
– volume: 21
  start-page: S117
  issue: 5
  year: 2003
  ident: 10.1016/j.surfcoat.2019.08.016_bb0105
  article-title: Microstructural evolution during film growth
  publication-title: J. Vac. Sci. Technol. A
  doi: 10.1116/1.1601610
SSID ssj0001794
Score 2.490812
SecondaryResourceType review_article
Snippet The influence of energetic species on thin film growth mechanism is a long-term issue in the field of low-pressure plasma-based magnetron sputtering...
SourceID hal
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 124887
SubjectTerms Chemical reactions
Crystalline phase formation
Energy
Energy flux
Engineering Sciences
Film growth
Fluxes
Low pressure
Magnetron sputtering
Materials
Organic chemistry
Oxidation
Parameter identification
Phase composition
Plasma diagnostics
Plasmas
Sputtering process
Thermopiles
Thin film deposition
Thin films
Zirconium dioxide
Title Energy flux measurements during magnetron sputter deposition processes
URI https://dx.doi.org/10.1016/j.surfcoat.2019.08.016
https://www.proquest.com/docview/2312228317
https://hal.science/hal-02381748
Volume 377
WOSCitedRecordID wos000488417800034&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-3347
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001794
  issn: 0257-8972
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfYhsR4QDBAKwxkId6qjOajcfwYTZ0GKhNCA_XNSmyHUbqsarKp4q_nznbcsg3GHniJqpPsJr1f7n6-3gchb2VcqKpUYP1UKIOExWnAWZUECntRgQeqKtOB7-uYHR9nkwn_5FKCGjNOgNV1tlzy-X9VNchA2Vg6ewd1-01BAJ9B6XAFtcP1nxQ_stV81exi2T9bRQCbriLxrPhWawyA95u5mVKN2bAudas_t3UDLrFw2lWLLKpCaoMSeV60ZtJney0mb3KNLB3O94Px_urvDZxsZFPocy_9XPw0vPWjl4xmYGF-nK4JXTQi5FiWZ-sxndECExBknP1mYWM3qcXaSGAUmXWy18y3jSRMwW8sKnweTL3jpsVqeEO_7Ct-zGcXdolrU9HtI3AfgfM2w3SDbEVsyMECbuXvR5MP3m-jaTIROfcEa_XkN9_Rn6jMxinm1F5x7YavnDwmj9xBg-YWIE_IPV3vkAcH3Xy_HfJwrRXlU3JoYUMRNnQdNtTChnrYUAcbuoIN9bB5Rr4cjk4OjgI3YyOQSRS1QYn9_YHT6bKCVzMZKq7CSAGJT3WM3BkIrMp0qXDOQFzKosgSrSLJpNQpkBsVPyeb9XmtdwkNdRZnSTjQ2MRNDnjJy5SxQQmL4RhXxD0y7H4uIV0DepyDMhN_V1iPvPPr5rYFy60reKcN4YikJYgCgHbr2jegPv9F2H39KB8LlBl6y5LsMuyRvU67wr36jYCTEoZTgZC_uPMdvyTbq7dpj2y2iwv9ityXl-33ZvHaIfUXWAiuAw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Energy+flux+measurements+during+magnetron+sputter+deposition+processes&rft.jtitle=Surface+%26+coatings+technology&rft.au=Thomann%2C+A.-L.&rft.au=Caillard%2C+A.&rft.au=Raza%2C+M.&rft.au=El+Mokh%2C+M.&rft.date=2019-11-15&rft.issn=0257-8972&rft.volume=377&rft.spage=124887&rft_id=info:doi/10.1016%2Fj.surfcoat.2019.08.016&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_surfcoat_2019_08_016
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0257-8972&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0257-8972&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0257-8972&client=summon