Energy flux measurements during magnetron sputter deposition processes
The influence of energetic species on thin film growth mechanism is a long-term issue in the field of low-pressure plasma-based magnetron sputtering technology. Several species may contribute to the energy flux such a plasma ions, electrons and neutrals, film-forming species, photons, etc. Several r...
Uloženo v:
| Vydáno v: | Surface & coatings technology Ročník 377; s. 124887 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Lausanne
Elsevier B.V
15.11.2019
Elsevier BV Elsevier |
| Témata: | |
| ISSN: | 0257-8972, 1879-3347 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The influence of energetic species on thin film growth mechanism is a long-term issue in the field of low-pressure plasma-based magnetron sputtering technology. Several species may contribute to the energy flux such a plasma ions, electrons and neutrals, film-forming species, photons, etc. Several research groups have designed probes capable of quantifying energy fluxes in these particular working conditions and experimental strategies to get a better insight on the relationship between the plasma working parameters, the energy flux, the film growth mechanism and the coating properties. In this paper we aim at showing how the thermopile-based probe developed at GREMI laboratory can contribute to this field thanks to its time resolved capability (~ms) and sensitivity (~mW/cm2). We show how such a probe can be used to identify and quantify energetic contributions such as gas conduction, chemical reactions on surfaces such as oxidation, but also radiations emitted from a (hot) sputter target during DC, pulsed-DC and High-power Impulse Magnetron Sputtering (HiPIMS) processes. Both non-reactive and reactive sputtering discharges are studied. Ultimately, we present data on the relationship between the phase composition and the energy deposited during the synthesis of two technologically important thin film materials, namely Titania and Zirconia. Through the reported examples, the advantage and limitations of energy flux measurements and the interest to couple the obtained data to those derived from conventional plasma diagnostics are discussed. The relative importance of various energetic contributions is investigated in a purpose to identify the key parameters driving the film properties.
•Energy transferred to the film during deposition can be quantified.•The deposited energy at the substrate is the sum of elementary contributions.•Direct energy flux measurements allow investigating the sputter/deposition process.•IR radiations emitted by the heated target play a role on thin film final properties.•Energy deposited during deposition may hinder thermodynamic stabilization of phases. |
|---|---|
| AbstractList | The influence of energetic species on thin film growth mechanism is a long-term issue in the field of low-pressure plasma-based magnetron sputtering technology. Several species may contribute to the energy flux such a plasma ions, electrons and neutrals, film-forming species, photons, etc. Several research groups have designed probes capable of quantifying energy fluxes in these particular working conditions and experimental strategies to get a better insight on the relationship between the plasma working parameters, the energy flux, the film growth mechanism and the coating properties. In this paper we aim at showing how the thermopile-based probe developed at GREMI laboratory can contribute to this field thanks to its time resolved capability (~ms) and sensitivity (~mW/cm2). We show how such a probe can be used to identify and quantify energetic contributions such as gas conduction, chemical reactions on surfaces such as oxidation, but also radiations emitted from a (hot) sputter target during DC, pulsed-DC and High-power Impulse Magnetron Sputtering (HiPIMS) processes. Both non-reactive and reactive sputtering discharges are studied. Ultimately, we present data on the relationship between the phase composition and the energy deposited during the synthesis of two technologically important thin film materials, namely Titania and Zirconia. Through the reported examples, the advantage and limitations of energy flux measurements and the interest to couple the obtained data to those derived from conventional plasma diagnostics are discussed. The relative importance of various energetic contributions is investigated in a purpose to identify the key parameters driving the film properties. The influence of energetic species on thin film growth mechanism is a long-term issue in the field of low-pressure plasma-based magnetron sputtering technology. Several species may contribute to the energy flux such a plasma ions, electrons and neutrals, film-forming species, photons, etc. Several research groups have designed probes capable of quantifying energy fluxes in these particular working conditions and experimental strategies to get a better insight on the relationship between the plasma working parameters, the energy flux, the film growth mechanism and the coating properties. In this paper we aim at showing how the thermopile-based probe developed at GREMI laboratory can contribute to this field thanks to its time resolved capability (~ms) and sensitivity (~mW/cm2). We show how such a probe can be used to identify and quantify energetic contributions such as gas conduction, chemical reactions on surfaces such as oxidation, but also radiations emitted from a (hot) sputter target during DC, pulsed-DC and High-power Impulse Magnetron Sputtering (HiPIMS) processes. Both non-reactive and reactive sputtering discharges are studied. Ultimately, we present data on the relationship between the phase composition and the energy deposited during the synthesis of two technologically important thin film materials, namely Titania and Zirconia. Through the reported examples, the advantage and limitations of energy flux measurements and the interest to couple the obtained data to those derived from conventional plasma diagnostics are discussed. The relative importance of various energetic contributions is investigated in a purpose to identify the key parameters driving the film properties. •Energy transferred to the film during deposition can be quantified.•The deposited energy at the substrate is the sum of elementary contributions.•Direct energy flux measurements allow investigating the sputter/deposition process.•IR radiations emitted by the heated target play a role on thin film final properties.•Energy deposited during deposition may hinder thermodynamic stabilization of phases. The influence of energetic species on thin film growth mechanism is a long-term issue in the field of low-pressure plasma-based magnetron sputtering technology. Several species may contribute to the energy flux such a plasma ions, electrons and neutrals, film-forming species, photons, etc. Several research groups have designed probes capable of quantifying energy fluxes in these particular working conditions and experimental strategies to get a better insight on the relationship between the plasma working parameters, the energy flux, the film growth mechanism and the coating properties. In this paper we aim at showing how the thermopilebased probe developed at GREMI laboratory can contribute to this field thanks to its time resolved capability (~ms) and sensitivity (~mW/cm 2). We show how such a probe can be used to identify and quantify energetic contributions such as gas conduction, chemical reactions on surfaces such as oxidation, but also radiations emitted from a (hot) sputter target during DC, |
| ArticleNumber | 124887 |
| Author | Konstantinidis, S. Thomann, A.-L. Caillard, A. Cormier, P.A. Raza, M. El Mokh, M. |
| Author_xml | – sequence: 1 givenname: A.-L. surname: Thomann fullname: Thomann, A.-L. email: anne-lise.thomann@univ-orleans.fr organization: Groupe de Recherches sur l'Energétique des Milieux Ionisés (GREMI), UMR7344 Université d'Orléans – CNRS BP6744, F-45067 Orléans Cedex 2, France – sequence: 2 givenname: A. surname: Caillard fullname: Caillard, A. organization: Groupe de Recherches sur l'Energétique des Milieux Ionisés (GREMI), UMR7344 Université d'Orléans – CNRS BP6744, F-45067 Orléans Cedex 2, France – sequence: 3 givenname: M. surname: Raza fullname: Raza, M. organization: Chimie des Interactions Plasma-Surface (ChIPS), Université de Mons, Avenue Copernic 3, 7000 Mons, Belgium – sequence: 4 givenname: M. surname: El Mokh fullname: El Mokh, M. organization: Groupe de Recherches sur l'Energétique des Milieux Ionisés (GREMI), UMR7344 Université d'Orléans – CNRS BP6744, F-45067 Orléans Cedex 2, France – sequence: 5 givenname: P.A. surname: Cormier fullname: Cormier, P.A. organization: Groupe de Recherches sur l'Energétique des Milieux Ionisés (GREMI), UMR7344 Université d'Orléans – CNRS BP6744, F-45067 Orléans Cedex 2, France – sequence: 6 givenname: S. surname: Konstantinidis fullname: Konstantinidis, S. organization: Chimie des Interactions Plasma-Surface (ChIPS), Université de Mons, Avenue Copernic 3, 7000 Mons, Belgium |
| BackLink | https://hal.science/hal-02381748$$DView record in HAL |
| BookMark | eNqFkE9LAzEUxINUsFW_gix48rBr_mw3WfBgKa0VCl70HNLkbU1pk5pki357U6oXL54eDPMb5s0IDZx3gNANwRXBpLnfVLEPnfYqVRSTtsKiyvIZGhLB25Kxmg_QENMxL0XL6QUaxbjBGBPe1kM0nzkI66-i2_afxQ5UjoIduBQL0wfr1sVOrR2k4F0R931KEAoDex9tslnaB68hRohX6LxT2wjXP_cSvc1nr9NFuXx5ep5OlqWuKU3livIxxg2BVYcFqcemNYQaPOYNMMFa2rDWCFgZypqarbRSogZDNdcaGoGJYZfo7pT7rrZyH-xOhS_plZWLyVIeNUyZILwWB5K9tydvbvnRQ0xy4_vgcj1JGaGUCkZ4dj2cXDr4GAN0Utukjt-loOxWEiyPK8uN_F1ZHleWWMgsZ7z5g_-2-hd8PIGQ5zpYCDJqC06DsQF0ksbb_yK-AeZ9new |
| CitedBy_id | crossref_primary_10_1016_j_colsurfa_2021_126286 crossref_primary_10_1016_j_vacuum_2020_109734 crossref_primary_10_1016_j_apsusc_2024_162037 crossref_primary_10_1088_1361_6528_ad113d crossref_primary_10_1088_1361_6463_ac118e crossref_primary_10_1016_j_vacuum_2021_110400 crossref_primary_10_1016_j_vacuum_2024_113184 crossref_primary_10_1038_s41699_024_00519_z crossref_primary_10_1557_jmr_2020_89 crossref_primary_10_1557_s43580_024_00891_4 crossref_primary_10_1016_j_optlastec_2025_113296 crossref_primary_10_3390_batteries10120449 crossref_primary_10_1016_j_mtla_2023_101914 crossref_primary_10_3762_bjnano_13_2 crossref_primary_10_1016_j_vacuum_2023_111888 crossref_primary_10_1088_1361_6463_abd72a crossref_primary_10_1016_j_apsusc_2023_158905 crossref_primary_10_1016_j_surfcoat_2021_127235 crossref_primary_10_1016_j_vacuum_2020_109892 crossref_primary_10_1109_TPS_2021_3092752 crossref_primary_10_1016_j_matdes_2023_112044 crossref_primary_10_1063_6_0003496 crossref_primary_10_1016_j_vacuum_2021_110716 crossref_primary_10_3390_ma16186303 crossref_primary_10_1002_ces2_70018 crossref_primary_10_1016_j_tsf_2020_138212 crossref_primary_10_1088_1361_6463_acaff4 crossref_primary_10_1016_j_surfcoat_2022_129209 crossref_primary_10_1063_5_0179553 crossref_primary_10_1080_10426914_2021_2006223 crossref_primary_10_4028_p_1EQ0hR crossref_primary_10_1016_j_vacuum_2025_114629 crossref_primary_10_1039_D3MH00677H crossref_primary_10_1063_5_0089214 crossref_primary_10_1116_6_0001476 crossref_primary_10_3390_coatings13050922 |
| Cites_doi | 10.1063/1.2216354 10.1063/1.2166467 10.1016/j.tsf.2018.10.021 10.1016/j.scriptamat.2016.06.025 10.1088/0022-3727/46/4/045204 10.1016/0040-6090(78)90273-0 10.1002/ppap.200931202 10.1016/j.tsf.2009.10.145 10.1016/0040-6090(94)90843-5 10.1016/S0065-2717(08)70263-6 10.1116/1.581957 10.1016/0040-6090(94)90166-X 10.1016/S0040-6090(96)09510-7 10.1016/j.surfcoat.2009.11.013 10.1116/1.1554971 10.1140/epjd/e2013-40148-8 10.1088/0022-3727/43/6/065202 10.1016/j.tsf.2004.07.041 10.1063/1.1770712 10.1016/S0042-207X(99)00189-X 10.1088/0963-0252/24/4/045016 10.1088/0022-3727/43/46/465201 10.1016/j.surfcoat.2011.08.005 10.1016/0040-6090(84)90160-3 10.1088/0022-3727/44/11/115201 10.1557/S0883769400063697 10.1016/S0040-6090(96)08559-8 10.1016/j.vacuum.2017.10.016 10.1016/S0257-8972(01)01691-7 10.1063/1.366092 10.1063/1.109742 10.1016/j.tsf.2006.06.027 10.1016/j.tsf.2012.06.053 10.1016/j.surfcoat.2014.06.037 10.1088/1361-6595/aa6f9e 10.1109/TPS.2014.2338742 10.1063/1.4773103 10.1016/S0040-6090(02)00339-5 10.1063/1.1730942 10.1063/1.4995278 10.1116/1.576223 10.1088/0022-3727/44/9/095201 10.1016/j.surfcoat.2018.07.047 10.1088/0022-3727/47/22/224001 10.1016/j.tsf.2013.05.075 10.1016/0039-6028(75)90417-3 10.1063/1.2219163 10.1016/S0042-207X(01)00350-5 10.1016/0022-5088(77)90040-6 10.1016/S0257-8972(99)00125-5 10.1016/j.tsf.2013.07.025 10.1088/0022-3727/41/20/205307 10.1016/j.tsf.2004.10.051 10.1016/j.surfcoat.2016.06.096 10.1364/AO.13.002142 10.1016/j.surfcoat.2013.02.012 10.1088/0022-3727/45/35/355202 10.1016/j.mineng.2013.06.001 10.1063/1.3536635 10.1088/0963-0252/7/4/016 10.1063/1.2266888 10.1063/1.4795763 10.1016/j.tsf.2006.07.183 10.1088/1361-6463/aa5ab6 10.1063/1.1661657 10.1116/1.1601610 |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier B.V. Copyright Elsevier BV Nov 15, 2019 Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: 2019 Elsevier B.V. – notice: Copyright Elsevier BV Nov 15, 2019 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | AAYXX CITATION 7QQ 7SR 8BQ 8FD JG9 1XC VOOES |
| DOI | 10.1016/j.surfcoat.2019.08.016 |
| DatabaseName | CrossRef Ceramic Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Ceramic Abstracts Technology Research Database METADEX |
| DatabaseTitleList | Materials Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Chemistry |
| EISSN | 1879-3347 |
| ExternalDocumentID | oai:HAL:hal-02381748v1 10_1016_j_surfcoat_2019_08_016 S025789721930859X |
| GroupedDBID | --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFRF ABMAC ABNEU ABXRA ABYKQ ACDAQ ACFVG ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEFWE AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM M24 M38 M41 MAGPM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SSM SSQ SSZ T5K XPP ZMT ~02 ~G- 29Q 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGHFR AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM CITATION EFKBS FEDTE FGOYB G-2 HMV HVGLF HX~ HZ~ NDZJH R2- SEW SMS SPG WUQ ~HD 7QQ 7SR 8BQ 8FD AFXIZ AGCQF AGRNS JG9 SSH 1XC VOOES |
| ID | FETCH-LOGICAL-c422t-b2750061ebf08145d9d12d0576e38392639d8ebd23643bcaa84ed2c7cce6801d3 |
| ISICitedReferencesCount | 41 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000488417800034&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0257-8972 |
| IngestDate | Tue Oct 14 21:00:55 EDT 2025 Fri Jul 25 05:16:21 EDT 2025 Sat Nov 29 07:18:39 EST 2025 Tue Nov 18 19:39:42 EST 2025 Fri Feb 23 02:30:26 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Magnetron sputtering Sputtering process Energy flux Thin film deposition Crystalline phase formation sputtering process crystalline phase formation thin film deposition energy flux |
| Language | English |
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c422t-b2750061ebf08145d9d12d0576e38392639d8ebd23643bcaa84ed2c7cce6801d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-0701-3571 0000-0001-9540-1381 |
| OpenAccessLink | https://hal.science/hal-02381748 |
| PQID | 2312228317 |
| PQPubID | 2045394 |
| ParticipantIDs | hal_primary_oai_HAL_hal_02381748v1 proquest_journals_2312228317 crossref_citationtrail_10_1016_j_surfcoat_2019_08_016 crossref_primary_10_1016_j_surfcoat_2019_08_016 elsevier_sciencedirect_doi_10_1016_j_surfcoat_2019_08_016 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-11-15 |
| PublicationDateYYYYMMDD | 2019-11-15 |
| PublicationDate_xml | – month: 11 year: 2019 text: 2019-11-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationPlace | Lausanne |
| PublicationPlace_xml | – name: Lausanne |
| PublicationTitle | Surface & coatings technology |
| PublicationYear | 2019 |
| Publisher | Elsevier B.V Elsevier BV Elsevier |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier BV – name: Elsevier |
| References | Ellmer, Mientus (bb0150) 1999; 116–119 West, Kelly, Barker, Mishra, Bradley (bb0270) 2009; 6 Westwood (bb0045) 1988; 13 Musil, Baroch, Vlcˇek, Nam, Han (bb0285) 2005; 475 Kinslow, Arney (bb0185) 1967; 119 Martin, Mader, Fromm (bb0195) 1994; 250 Bowes, Poolcharuansin, Bradley (bb0315) 2013; 46 Cormier, Balhamri, Thomann, Dussart, Semmar, Mathias, Snyders, Konstantinidis (bb0075) 2013; 113 Thomann, Cormier, Dolique, Semmar, Dussart, Lecas, Courtois, Brault (bb0290) 2013; 539 Cormier, Stahl, Thomann, Dussart, Wolter, Semmar, Mathias, Kersten (bb0050) 2010; 43 Mráz, Schneider (bb0305) 2006; 100 Blais, Mann (bb0175) 1960; 32 Drüsedau, Bock, John, Klabunde, Eckstein (bb0245) 1999; 17 Andersson, Wallin, Münger, Helmersson (bb0295) 2006; 100 Kelly, Arnell (bb0260) 2000; 56 Mráz, Schneider (bb0095) 2011; 109 Thomann, Semmar, Dussart, Mathias, Lang (bb0155) 2006; 77 Mahieu, Ghekiere, Depla, De Gryse (bb0015) 2006; 515 Cormier, Thomann, Dolique, Balhamri, Dussart, Semmar, Lecas, Brault, Snyders, Konstantinidis (bb0080) 2013; 545 Mráz, Schneider (bb0300) 2006; 89 Kersten, Deutsch, Steffen, Kroesen, Hippler (bb0005) 2001; 63 Gauter, Haase, Kersten (bb0250) 2018; 669 Chau, Ho, Wolfe, Licon (bb0235) 1996; 287 Britun, Minea, Konstantinidis, Snyders (bb0265) 2014; 47 Caillard, El'Mokh, Semmar, Dussart, Lecas, Thomann (bb0220) 2014; 42 Kersten, Rohdes, Berndt, Deutsch, Hippler (bb0025) 2000; 585 Martin, Rousselot, Rondot, Palmino, Mercier (bb0090) 1997; 300 Roth, Oberbossel, Rohr (bb0135) 2012; 45 Roth, Bornholdt, Zuber, Sonnenfeld, Kersten, Rudolf von Rohr (bb0140) 2011; 44 Tesař, Martan, Rezek (bb0210) 2011; 206 Cormier, Balhamri, Thomann, Dussart, Semmar, Lecas, Snyders, Konstantinidis (bb0070) 2014; 254 Bornholdt, Kersten (bb0130) 2013; 67 Chandos, Chandos (bb0165) 1974; 13 Rossnagel (bb0065) 1989; 7 Moens, Kalvas, Van Steenberge, Depla (bb0330) 2017; 50 Harbauer, Welzel, Ellmer (bb0345) 2012; 520 Petrov, Adibi, Greene, Hultman, Sundgren (bb0110) 1993; 63 Lemons, Rosenblatt (bb0190) 1975; 48 Sidelev, Bleykher, Krivobokov, Koishybayeva (bb0230) 2016; 308 Gauter, Fröhlich, Garkas, Polak, Kersten (bb0125) 2017; 26 Berg, Nyberg (bb0280) 2005; 476 Devienne (bb0180) 1965; volume 2 Leroy, Konstantinidis, Mahieu, Snyders, Depla (bb0275) 2011; 44 Löbl, Huppertz, Mergel (bb0085) 1994; 251 Van Aeken, Mahieu, Depla (bb0120) 2008; 41 Porte, Demosthenous, Duc (bb0200) 1977; 56 Ho, Mohanchandra, Carman (bb0240) 2002; 413 Caillard, El'Mokh, Lecas, Thomann (bb0205) 2018; 147 Ekpe, Dew (bb0255) 2003; 21 Wendt, Ellmer, Wiesemann (bb0020) 1997; 82 Alami, Stranak, Herrendorf, Hubicka, Hippler (bb0325) 2015; 24 Ball (bb0030) 1972; 43 Weise, Seeger, Harbauer, Welzel, Ellmer (bb0340) 2017; 122 Petrov, Barna, Hultman, Greene (bb0105) 2003; 21 Gardon (bb0035) 1953; 24 Thornton (bb0040) 1978; 54 Sarakinos, Alami, Konstantinidis (bb0310) 2010; 204 Raza, Cornil, Cornil, Lucas, Snyders, Konstantinidis (bb0335) 2016; 124 Anders (bb0010) 2010; 518 May, Hamann, Quade, Brüser (bb0145) 2013; 50-51 Yang, Liu, Wu, Hong, Wang, Lee, Gong (bb0215) 2013; 102 Bedra, Thomann, Semmar, Dussart, Mathias (bb0160) 2010; 43 Bohlmark, Östbye, Lattemann, Ljungcrantz, Rosell, Helmersson (bb0320) 2006; 515 Mahieu, Van Aeken, Depla (bb0115) 2008 Thornton, Lamb (bb0055) 1984; 119 Drüsedau, Koppenhagen (bb0060) 2002; 153 Piejak, Godyak, Alexandrovich, Tishchenko (bb0170) 1998; 7 Sidelev, Bestetti, Bleykher, Krivobokov, Grudinin, Franz, Vicenzo, Shanenkov (bb0225) 2018; 350 Stranak, Herrendorf, Wulff, Drache, Cada, Hubicka, Tichy, Hippler (bb0100) 2013; 222 Kersten (10.1016/j.surfcoat.2019.08.016_bb0005) 2001; 63 Mráz (10.1016/j.surfcoat.2019.08.016_bb0305) 2006; 100 Porte (10.1016/j.surfcoat.2019.08.016_bb0200) 1977; 56 Drüsedau (10.1016/j.surfcoat.2019.08.016_bb0245) 1999; 17 Kinslow (10.1016/j.surfcoat.2019.08.016_bb0185) 1967; 119 Roth (10.1016/j.surfcoat.2019.08.016_bb0135) 2012; 45 May (10.1016/j.surfcoat.2019.08.016_bb0145) 2013; 50-51 Mráz (10.1016/j.surfcoat.2019.08.016_bb0095) 2011; 109 Yang (10.1016/j.surfcoat.2019.08.016_bb0215) 2013; 102 West (10.1016/j.surfcoat.2019.08.016_bb0270) 2009; 6 Martin (10.1016/j.surfcoat.2019.08.016_bb0090) 1997; 300 Kersten (10.1016/j.surfcoat.2019.08.016_bb0025) 2000; 585 Berg (10.1016/j.surfcoat.2019.08.016_bb0280) 2005; 476 Bedra (10.1016/j.surfcoat.2019.08.016_bb0160) 2010; 43 Caillard (10.1016/j.surfcoat.2019.08.016_bb0220) 2014; 42 Thomann (10.1016/j.surfcoat.2019.08.016_bb0290) 2013; 539 Sidelev (10.1016/j.surfcoat.2019.08.016_bb0230) 2016; 308 Bohlmark (10.1016/j.surfcoat.2019.08.016_bb0320) 2006; 515 Musil (10.1016/j.surfcoat.2019.08.016_bb0285) 2005; 475 Petrov (10.1016/j.surfcoat.2019.08.016_bb0105) 2003; 21 Britun (10.1016/j.surfcoat.2019.08.016_bb0265) 2014; 47 Thornton (10.1016/j.surfcoat.2019.08.016_bb0040) 1978; 54 Rossnagel (10.1016/j.surfcoat.2019.08.016_bb0065) 1989; 7 Ellmer (10.1016/j.surfcoat.2019.08.016_bb0150) 1999; 116–119 Leroy (10.1016/j.surfcoat.2019.08.016_bb0275) 2011; 44 Raza (10.1016/j.surfcoat.2019.08.016_bb0335) 2016; 124 Kelly (10.1016/j.surfcoat.2019.08.016_bb0260) 2000; 56 Cormier (10.1016/j.surfcoat.2019.08.016_bb0050) 2010; 43 Petrov (10.1016/j.surfcoat.2019.08.016_bb0110) 1993; 63 Gauter (10.1016/j.surfcoat.2019.08.016_bb0250) 2018; 669 Mráz (10.1016/j.surfcoat.2019.08.016_bb0300) 2006; 89 Mahieu (10.1016/j.surfcoat.2019.08.016_bb0115) 2008 Wendt (10.1016/j.surfcoat.2019.08.016_bb0020) 1997; 82 Cormier (10.1016/j.surfcoat.2019.08.016_bb0070) 2014; 254 Mahieu (10.1016/j.surfcoat.2019.08.016_bb0015) 2006; 515 Bornholdt (10.1016/j.surfcoat.2019.08.016_bb0130) 2013; 67 Alami (10.1016/j.surfcoat.2019.08.016_bb0325) 2015; 24 Lemons (10.1016/j.surfcoat.2019.08.016_bb0190) 1975; 48 Devienne (10.1016/j.surfcoat.2019.08.016_bb0180) 1965; volume 2 Gardon (10.1016/j.surfcoat.2019.08.016_bb0035) 1953; 24 Ekpe (10.1016/j.surfcoat.2019.08.016_bb0255) 2003; 21 Piejak (10.1016/j.surfcoat.2019.08.016_bb0170) 1998; 7 Weise (10.1016/j.surfcoat.2019.08.016_bb0340) 2017; 122 Sidelev (10.1016/j.surfcoat.2019.08.016_bb0225) 2018; 350 Ball (10.1016/j.surfcoat.2019.08.016_bb0030) 1972; 43 Thomann (10.1016/j.surfcoat.2019.08.016_bb0155) 2006; 77 Löbl (10.1016/j.surfcoat.2019.08.016_bb0085) 1994; 251 Stranak (10.1016/j.surfcoat.2019.08.016_bb0100) 2013; 222 Thornton (10.1016/j.surfcoat.2019.08.016_bb0055) 1984; 119 Chau (10.1016/j.surfcoat.2019.08.016_bb0235) 1996; 287 Martin (10.1016/j.surfcoat.2019.08.016_bb0195) 1994; 250 Westwood (10.1016/j.surfcoat.2019.08.016_bb0045) 1988; 13 Sarakinos (10.1016/j.surfcoat.2019.08.016_bb0310) 2010; 204 Cormier (10.1016/j.surfcoat.2019.08.016_bb0075) 2013; 113 Andersson (10.1016/j.surfcoat.2019.08.016_bb0295) 2006; 100 Cormier (10.1016/j.surfcoat.2019.08.016_bb0080) 2013; 545 Tesař (10.1016/j.surfcoat.2019.08.016_bb0210) 2011; 206 Drüsedau (10.1016/j.surfcoat.2019.08.016_bb0060) 2002; 153 Anders (10.1016/j.surfcoat.2019.08.016_bb0010) 2010; 518 Ho (10.1016/j.surfcoat.2019.08.016_bb0240) 2002; 413 Roth (10.1016/j.surfcoat.2019.08.016_bb0140) 2011; 44 Caillard (10.1016/j.surfcoat.2019.08.016_bb0205) 2018; 147 Chandos (10.1016/j.surfcoat.2019.08.016_bb0165) 1974; 13 Harbauer (10.1016/j.surfcoat.2019.08.016_bb0345) 2012; 520 Van Aeken (10.1016/j.surfcoat.2019.08.016_bb0120) 2008; 41 Gauter (10.1016/j.surfcoat.2019.08.016_bb0125) 2017; 26 Blais (10.1016/j.surfcoat.2019.08.016_bb0175) 1960; 32 Bowes (10.1016/j.surfcoat.2019.08.016_bb0315) 2013; 46 Moens (10.1016/j.surfcoat.2019.08.016_bb0330) 2017; 50 |
| References_xml | – volume: 82 start-page: 2115 year: 1997 ident: bb0020 article-title: Thermal power at a substrate during ZnO:Al thin film deposition in a planar magnetron sputtering system publication-title: J. Appl. Phys. – volume: 7 start-page: 1025 year: 1989 ident: bb0065 article-title: Energetic particle bombardment of films during magnetron sputtering publication-title: Journal of Vacuum Science & Technology – volume: 124 start-page: 26 year: 2016 ident: bb0335 article-title: Oxygen vacancy stabilized zirconia (OVSZ); a joint experimental and theoretical study publication-title: Scr. Mater. – volume: 206 start-page: 1155 year: 2011 end-page: 1159 ident: bb0210 article-title: On surface temperatures during high power pulsed magnetron sputtering using a hot target publication-title: Surface & Coatings Technology – volume: 222 start-page: 112 year: 2013 end-page: 117 ident: bb0100 article-title: Deposition of rutile (TiO2) with preferred orientation by assisted high power impulse magnetron sputtering publication-title: Surface & Coatings Technology – volume: 24 year: 2015 ident: bb0325 article-title: Design of magnetic field configuration for controlled discharge properties in highly ionized plasma publication-title: Plasma Sources Sci. Technol. – volume: 518 start-page: 4087 year: 2010 ident: bb0010 article-title: A structure zone diagram including plasma-based deposition and ion etching publication-title: Thin Solid Films – volume: 26 year: 2017 ident: bb0125 article-title: Calorimetric probe measurements for a high voltage pulsed substrate (PBII) in a HiPIMS process publication-title: Plasma Sources Sci. Technol. – volume: 46 year: 2013 ident: bb0315 article-title: Negative ion energy distributions in reactive HiPIMS publication-title: J. Phys. D. Appl. Phys. – volume: 43 start-page: 3047 year: 1972 ident: bb0030 article-title: Plasma diagnostics and energy transport of a dc discharge used for sputtering publication-title: J. Appl. Phys. – volume: 119 year: 1967 ident: bb0185 article-title: Thermal Molecular Pressure Effects in Tubes and at Orifices – volume: 515 start-page: 1229 year: 2006 end-page: 1249 ident: bb0015 article-title: Biaxial alignment in sputter deposited thin films publication-title: Thin Solid Films – volume: 32 start-page: 1459 year: 1960 ident: bb0175 article-title: Thermal conductivity of helium and hydrogen at high temperatures publication-title: J. Chem. Phys. – volume: 54 start-page: 23 year: 1978 ident: bb0040 article-title: Substrate heating in cylindrical magnetron sputtering sources publication-title: Thin Solid Films – volume: 42 start-page: 2802 year: 2014 ident: bb0220 article-title: Energy transferred from a hot nickel target during magnetron sputtering publication-title: IEEE Transition on Plasma Science – volume: 43 year: 2010 ident: bb0050 article-title: On the measurement of energy fluxes in plasmas using a calorimetric probe and a thermopile sensor publication-title: J. Phys. D. Appl. Phys. – volume: 545 start-page: 44 year: 2013 end-page: 49 ident: bb0080 article-title: IR emission from the target during plasma magnetron sputter deposition publication-title: Thin Solid Films – volume: 24 start-page: 366 year: 1953 ident: bb0035 article-title: An instrument for the direct measurement of intense thermal radiation publication-title: Rev. Sci. Instrum. – volume: 520 start-page: 6429 year: 2012 ident: bb0345 article-title: A combined sensor for the diagnostics of plasma and film properties in magnetron sputtering processes publication-title: Thin Solid Films – volume: 100 year: 2006 ident: bb0305 article-title: Influence of the negative oxygen ions on the structure evolution of transition metal oxide thin films publication-title: J. Appl. Phys. – volume: 48 start-page: 432 year: 1975 end-page: 448 ident: bb0190 article-title: Thermal accommodation coefficients by high speed vibration of solid samples publication-title: Surf. Sci. – volume: 63 start-page: 36 year: 1993 ident: bb0110 article-title: Average energy deposited per atom: a universal parameter for describing ion-assisted film growth? publication-title: Appl. Phys. Lett. – volume: 147 start-page: 82 year: 2018 end-page: 91 ident: bb0205 article-title: Effect of the target temperature during magnetron sputtering of nickel publication-title: Vacuum – volume: 515 start-page: 1928 year: 2006 ident: bb0320 article-title: Guiding the deposition flux in an ionized magnetron discharge publication-title: Thin Solid Films – volume: 56 start-page: 159 year: 2000 ident: bb0260 article-title: Magnetron sputtering: a review of recent developments and applications publication-title: Vacuum – volume: 89 year: 2006 ident: bb0300 article-title: Energy distribution of O-ions during reactive magnetron sputtering publication-title: Appl. Phys. Lett. – volume: 413 start-page: 1 year: 2002 end-page: 7 ident: bb0240 article-title: Examination of the sputtering profile of NiTi under target heating conditions publication-title: Thin Solid Films – volume: 475 start-page: 208 year: 2005 end-page: 218 ident: bb0285 article-title: Reactive magnetron sputtering of thin films: present status and trends publication-title: Thin Solid Films – volume: 44 year: 2011 ident: bb0275 article-title: Angular-resolved energy flux measurements of a dc- and HIPIMS-powered rotating cylindrical magnetron in reactive and non-reactive atmosphere publication-title: J. Phys. D. Appl. Phys. – volume: 77 year: 2006 ident: bb0155 article-title: Diagnostic system for plasma/surface energy transfer characterization publication-title: Rev. Sci. Instrum. – volume: 100 start-page: 033305 year: 2006 ident: bb0295 article-title: Energy distributions of positive and negative ions during magnetron sputtering of an Al target in Ar/O2 mixtures publication-title: J. Appl. Phys. – volume: 63 start-page: 385 year: 2001 ident: bb0005 article-title: The energy balance at substrate surfaces during plasma processing publication-title: Vacuum – volume: 50-51 start-page: 48 year: 2013 end-page: 56 ident: bb0145 article-title: Study on Cu2S mineral surface modification by low temperature Ar/O2 plasmas publication-title: Miner. Eng. – volume: 47 year: 2014 ident: bb0265 article-title: Plasma diagnostics for understanding the plasma-surface interaction in HiPIMS discharges: a review publication-title: J. Phys. D. Appl. Phys. – volume: 7 start-page: 590 year: 1998 end-page: 598 ident: bb0170 article-title: Surface temperature and thermal balance of probes immersed in high density plasma publication-title: Plasma Sources Sci. Technol. – volume: 308 start-page: 168 year: 2016 end-page: 173 ident: bb0230 article-title: High-rate magnetron sputtering with hot target publication-title: Surface & Coatings Technology – volume: 254 start-page: 291 year: 2014 end-page: 297 ident: bb0070 article-title: Titanium oxide thin film growth by magnetron sputtering: total energy flux and its relationship with the phase constitution publication-title: Surf. Coatings Technol. – year: 2008 ident: bb0115 publication-title: Reactive Sputter Deposition – volume: volume 2 year: 1965 ident: bb0180 article-title: Low density heat transfer publication-title: Advances in Heat Transfer – volume: 287 start-page: 57 year: 1996 end-page: 64 ident: bb0235 article-title: Effect of target temperature on the reactive d.c.-sputtering of silicon and niobium oxides publication-title: Thin Solid Films – volume: 116–119 start-page: 1102 year: 1999 end-page: 1106 ident: bb0150 article-title: Calorimetric measurements with a heat flux transducer of the total power influx onto a substrate during magnetron sputtering publication-title: Surf. Coat. Technol. – volume: 250 start-page: 61 year: 1994 end-page: 66 ident: bb0195 article-title: Oxidation of iron, aluminium and titanium films in the temperature range 50–200 °C publication-title: Thin Solid Films – volume: 476 start-page: 215 year: 2005 end-page: 230 ident: bb0280 article-title: Fundamental understanding and modeling of reactive sputtering processes publication-title: Thin Solid Films – volume: 44 year: 2011 ident: bb0140 article-title: Comparison of calorimetric plasma diagnostics in a plasma downstream reactor publication-title: J. Phys. D. Appl. Phys. – volume: 350 start-page: 560 year: 2018 end-page: 568 ident: bb0225 article-title: Deposition of Cr films by hot target magnetron sputtering on biased substrates publication-title: Surface & Coatings Technology – volume: 539 start-page: 88 year: 2013 end-page: 95 ident: bb0290 article-title: Energy transferred to the substrate surface during reactive magnetron sputtering of aluminum in Ar/O2 atmosphere publication-title: Thin Solid Films – volume: 251 start-page: 72 year: 1994 end-page: 79 ident: bb0085 article-title: Nucleation and growth in TiO2 films prepared by sputtering and evaporation publication-title: Thin Solid Films – volume: 153 start-page: 155 year: 2002 end-page: 159 ident: bb0060 article-title: Substrate heating by sputter-deposition of AlN: the effects of dc and rf discharges in nitrogen atmosphere publication-title: Surf. Coat. Technol. – volume: 50 year: 2017 ident: bb0330 article-title: Effect of space charge on the negative oxygen flux during reactive sputtering publication-title: J. Phys. D. Appl. Phys. – volume: 122 start-page: 044503 year: 2017 ident: bb0340 article-title: A multifunctional plasma and deposition sensor for the characterization of plasma sources for film deposition and etching publication-title: J. Appl. Phys. – volume: 21 start-page: S117 year: 2003 ident: bb0105 article-title: Microstructural evolution during film growth publication-title: J. Vac. Sci. Technol. A – volume: 585 start-page: 377 year: 2000 end-page: 378 ident: bb0025 article-title: Investigations on the energy influx at plasma processes by means of a simple thermal probe publication-title: Thin Solid Films – volume: 56 start-page: 183 year: 1977 end-page: 191 ident: bb0200 article-title: Etude ESCA de l'interacion oxygène-titane publication-title: J. of Less-Common Metals – volume: 113 year: 2013 ident: bb0075 article-title: Measuring the energy flux at the substrate position during magnetron sputter deposition processes publication-title: J. Appl. Phys. – volume: 67 start-page: 176 year: 2013 ident: bb0130 article-title: Transient calorimetric diagnostics for plasma processing publication-title: Eur. Phys. J. D – volume: 41 year: 2008 ident: bb0120 article-title: The metal flux from a rotating cylindrical magnetron: a Monte Carlo simulation publication-title: J. Phys. D – volume: 43 year: 2010 ident: bb0160 article-title: Highly sensitive measurements of the energy transferred during plasma sputter deposition of metals publication-title: J. Phys. D. Appl. Phys. – volume: 13 start-page: 2142 year: 1974 end-page: 2152 ident: bb0165 article-title: Radiometric properties of isothermal, diffuse wall cavity sources publication-title: Appl. Opt. – volume: 669 start-page: 8 year: 2018 end-page: 18 ident: bb0250 article-title: Experimentally unraveling the energy flux originating from a DC magnetron sputtering source publication-title: Thin Solid Films – volume: 204 start-page: 1661 year: 2010 end-page: 1684 ident: bb0310 article-title: High power pulsed magnetron sputtering: a review on scientific and engineering state of the art publication-title: Surf. Coatings Technol. – volume: 300 start-page: 113 year: 1997 end-page: 121 ident: bb0090 article-title: Microstructure modification of amorphous titanium oxide thin films during annealing treatment publication-title: Thin Solid Films – volume: 13 start-page: 6 year: 1988 ident: bb0045 article-title: Sputter deposition processes publication-title: MRS Bull. – volume: 21 start-page: 476 year: 2003 ident: bb0255 article-title: Theoretical and experimental determination of the energy flux during magnetron sputter deposition onto an unbiased substrate publication-title: J. Vac. Sci. Technol. A Vacuum Surfaces Film. – volume: 6 start-page: S543 year: 2009 end-page: S547 ident: bb0270 article-title: Measurements of deposition rate and substrate heating in a HiPIMS discharge publication-title: Plasma Process. Polym. – volume: 45 year: 2012 ident: bb0135 article-title: Electron temperature, ion density and energy influx measurements in a tubular plasma reactor for powder surface modification publication-title: J. Phys. D. Appl. Phys. – volume: 119 start-page: 87 year: 1984 end-page: 95 ident: bb0055 article-title: Substrate heating rates for planar and cylindrical-post magnetron sputtering sources publication-title: Thin Solid Films – volume: 109 year: 2011 ident: bb0095 article-title: Structure evolution of magnetron sputtered TiO2 thin films publication-title: J. Appl. Phys. – volume: 102 year: 2013 ident: bb0215 article-title: Low substrate temperature fabrication of high-performance metal oxide thin-film by magnetron sputtering with target self-heating publication-title: Appl. Phys. Letters – volume: 17 start-page: 2896 year: 1999 ident: bb0245 article-title: Energy transfer into the growing film during sputter deposition: an investigation by calorimetric measurements and Monte Carlo simulations publication-title: J. Vac. Sci. Technol. A Vacuum Surfaces Film. – volume: 100 year: 2006 ident: 10.1016/j.surfcoat.2019.08.016_bb0305 article-title: Influence of the negative oxygen ions on the structure evolution of transition metal oxide thin films publication-title: J. Appl. Phys. doi: 10.1063/1.2216354 – volume: 77 year: 2006 ident: 10.1016/j.surfcoat.2019.08.016_bb0155 article-title: Diagnostic system for plasma/surface energy transfer characterization publication-title: Rev. Sci. Instrum. doi: 10.1063/1.2166467 – year: 2008 ident: 10.1016/j.surfcoat.2019.08.016_bb0115 – volume: 669 start-page: 8 year: 2018 ident: 10.1016/j.surfcoat.2019.08.016_bb0250 article-title: Experimentally unraveling the energy flux originating from a DC magnetron sputtering source publication-title: Thin Solid Films doi: 10.1016/j.tsf.2018.10.021 – volume: 124 start-page: 26 year: 2016 ident: 10.1016/j.surfcoat.2019.08.016_bb0335 article-title: Oxygen vacancy stabilized zirconia (OVSZ); a joint experimental and theoretical study publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2016.06.025 – volume: 46 year: 2013 ident: 10.1016/j.surfcoat.2019.08.016_bb0315 article-title: Negative ion energy distributions in reactive HiPIMS publication-title: J. Phys. D. Appl. Phys. doi: 10.1088/0022-3727/46/4/045204 – volume: 54 start-page: 23 issue: 1 year: 1978 ident: 10.1016/j.surfcoat.2019.08.016_bb0040 article-title: Substrate heating in cylindrical magnetron sputtering sources publication-title: Thin Solid Films doi: 10.1016/0040-6090(78)90273-0 – volume: 6 start-page: S543 issue: S1 year: 2009 ident: 10.1016/j.surfcoat.2019.08.016_bb0270 article-title: Measurements of deposition rate and substrate heating in a HiPIMS discharge publication-title: Plasma Process. Polym. doi: 10.1002/ppap.200931202 – volume: 518 start-page: 4087 issue: 15 year: 2010 ident: 10.1016/j.surfcoat.2019.08.016_bb0010 article-title: A structure zone diagram including plasma-based deposition and ion etching publication-title: Thin Solid Films doi: 10.1016/j.tsf.2009.10.145 – volume: 251 start-page: 72 year: 1994 ident: 10.1016/j.surfcoat.2019.08.016_bb0085 article-title: Nucleation and growth in TiO2 films prepared by sputtering and evaporation publication-title: Thin Solid Films doi: 10.1016/0040-6090(94)90843-5 – volume: 119 year: 1967 ident: 10.1016/j.surfcoat.2019.08.016_bb0185 – volume: volume 2 year: 1965 ident: 10.1016/j.surfcoat.2019.08.016_bb0180 article-title: Low density heat transfer doi: 10.1016/S0065-2717(08)70263-6 – volume: 17 start-page: 2896 issue: 5 year: 1999 ident: 10.1016/j.surfcoat.2019.08.016_bb0245 article-title: Energy transfer into the growing film during sputter deposition: an investigation by calorimetric measurements and Monte Carlo simulations publication-title: J. Vac. Sci. Technol. A Vacuum Surfaces Film. doi: 10.1116/1.581957 – volume: 250 start-page: 61 year: 1994 ident: 10.1016/j.surfcoat.2019.08.016_bb0195 article-title: Oxidation of iron, aluminium and titanium films in the temperature range 50–200 °C publication-title: Thin Solid Films doi: 10.1016/0040-6090(94)90166-X – volume: 300 start-page: 113 year: 1997 ident: 10.1016/j.surfcoat.2019.08.016_bb0090 article-title: Microstructure modification of amorphous titanium oxide thin films during annealing treatment publication-title: Thin Solid Films doi: 10.1016/S0040-6090(96)09510-7 – volume: 204 start-page: 1661 year: 2010 ident: 10.1016/j.surfcoat.2019.08.016_bb0310 article-title: High power pulsed magnetron sputtering: a review on scientific and engineering state of the art publication-title: Surf. Coatings Technol. doi: 10.1016/j.surfcoat.2009.11.013 – volume: 21 start-page: 476 issue: 2 year: 2003 ident: 10.1016/j.surfcoat.2019.08.016_bb0255 article-title: Theoretical and experimental determination of the energy flux during magnetron sputter deposition onto an unbiased substrate publication-title: J. Vac. Sci. Technol. A Vacuum Surfaces Film. doi: 10.1116/1.1554971 – volume: 67 start-page: 176 year: 2013 ident: 10.1016/j.surfcoat.2019.08.016_bb0130 article-title: Transient calorimetric diagnostics for plasma processing publication-title: Eur. Phys. J. D doi: 10.1140/epjd/e2013-40148-8 – volume: 43 year: 2010 ident: 10.1016/j.surfcoat.2019.08.016_bb0160 article-title: Highly sensitive measurements of the energy transferred during plasma sputter deposition of metals publication-title: J. Phys. D. Appl. Phys. doi: 10.1088/0022-3727/43/6/065202 – volume: 475 start-page: 208 year: 2005 ident: 10.1016/j.surfcoat.2019.08.016_bb0285 article-title: Reactive magnetron sputtering of thin films: present status and trends publication-title: Thin Solid Films doi: 10.1016/j.tsf.2004.07.041 – volume: 24 start-page: 366 year: 1953 ident: 10.1016/j.surfcoat.2019.08.016_bb0035 article-title: An instrument for the direct measurement of intense thermal radiation publication-title: Rev. Sci. Instrum. doi: 10.1063/1.1770712 – volume: 56 start-page: 159 year: 2000 ident: 10.1016/j.surfcoat.2019.08.016_bb0260 article-title: Magnetron sputtering: a review of recent developments and applications publication-title: Vacuum doi: 10.1016/S0042-207X(99)00189-X – volume: 24 year: 2015 ident: 10.1016/j.surfcoat.2019.08.016_bb0325 article-title: Design of magnetic field configuration for controlled discharge properties in highly ionized plasma publication-title: Plasma Sources Sci. Technol. doi: 10.1088/0963-0252/24/4/045016 – volume: 43 year: 2010 ident: 10.1016/j.surfcoat.2019.08.016_bb0050 article-title: On the measurement of energy fluxes in plasmas using a calorimetric probe and a thermopile sensor publication-title: J. Phys. D. Appl. Phys. doi: 10.1088/0022-3727/43/46/465201 – volume: 206 start-page: 1155 year: 2011 ident: 10.1016/j.surfcoat.2019.08.016_bb0210 article-title: On surface temperatures during high power pulsed magnetron sputtering using a hot target publication-title: Surface & Coatings Technology doi: 10.1016/j.surfcoat.2011.08.005 – volume: 119 start-page: 87 year: 1984 ident: 10.1016/j.surfcoat.2019.08.016_bb0055 article-title: Substrate heating rates for planar and cylindrical-post magnetron sputtering sources publication-title: Thin Solid Films doi: 10.1016/0040-6090(84)90160-3 – volume: 44 year: 2011 ident: 10.1016/j.surfcoat.2019.08.016_bb0275 article-title: Angular-resolved energy flux measurements of a dc- and HIPIMS-powered rotating cylindrical magnetron in reactive and non-reactive atmosphere publication-title: J. Phys. D. Appl. Phys. doi: 10.1088/0022-3727/44/11/115201 – volume: 13 start-page: 6 year: 1988 ident: 10.1016/j.surfcoat.2019.08.016_bb0045 article-title: Sputter deposition processes publication-title: MRS Bull. doi: 10.1557/S0883769400063697 – volume: 287 start-page: 57 year: 1996 ident: 10.1016/j.surfcoat.2019.08.016_bb0235 article-title: Effect of target temperature on the reactive d.c.-sputtering of silicon and niobium oxides publication-title: Thin Solid Films doi: 10.1016/S0040-6090(96)08559-8 – volume: 147 start-page: 82 year: 2018 ident: 10.1016/j.surfcoat.2019.08.016_bb0205 article-title: Effect of the target temperature during magnetron sputtering of nickel publication-title: Vacuum doi: 10.1016/j.vacuum.2017.10.016 – volume: 153 start-page: 155 year: 2002 ident: 10.1016/j.surfcoat.2019.08.016_bb0060 article-title: Substrate heating by sputter-deposition of AlN: the effects of dc and rf discharges in nitrogen atmosphere publication-title: Surf. Coat. Technol. doi: 10.1016/S0257-8972(01)01691-7 – volume: 82 start-page: 2115 issue: 5 year: 1997 ident: 10.1016/j.surfcoat.2019.08.016_bb0020 article-title: Thermal power at a substrate during ZnO:Al thin film deposition in a planar magnetron sputtering system publication-title: J. Appl. Phys. doi: 10.1063/1.366092 – volume: 63 start-page: 36 year: 1993 ident: 10.1016/j.surfcoat.2019.08.016_bb0110 article-title: Average energy deposited per atom: a universal parameter for describing ion-assisted film growth? publication-title: Appl. Phys. Lett. doi: 10.1063/1.109742 – volume: 515 start-page: 1229 year: 2006 ident: 10.1016/j.surfcoat.2019.08.016_bb0015 article-title: Biaxial alignment in sputter deposited thin films publication-title: Thin Solid Films doi: 10.1016/j.tsf.2006.06.027 – volume: 520 start-page: 6429 year: 2012 ident: 10.1016/j.surfcoat.2019.08.016_bb0345 article-title: A combined sensor for the diagnostics of plasma and film properties in magnetron sputtering processes publication-title: Thin Solid Films doi: 10.1016/j.tsf.2012.06.053 – volume: 254 start-page: 291 year: 2014 ident: 10.1016/j.surfcoat.2019.08.016_bb0070 article-title: Titanium oxide thin film growth by magnetron sputtering: total energy flux and its relationship with the phase constitution publication-title: Surf. Coatings Technol. doi: 10.1016/j.surfcoat.2014.06.037 – volume: 26 year: 2017 ident: 10.1016/j.surfcoat.2019.08.016_bb0125 article-title: Calorimetric probe measurements for a high voltage pulsed substrate (PBII) in a HiPIMS process publication-title: Plasma Sources Sci. Technol. doi: 10.1088/1361-6595/aa6f9e – volume: 42 start-page: 2802 issue: 10 year: 2014 ident: 10.1016/j.surfcoat.2019.08.016_bb0220 article-title: Energy transferred from a hot nickel target during magnetron sputtering publication-title: IEEE Transition on Plasma Science doi: 10.1109/TPS.2014.2338742 – volume: 113 year: 2013 ident: 10.1016/j.surfcoat.2019.08.016_bb0075 article-title: Measuring the energy flux at the substrate position during magnetron sputter deposition processes publication-title: J. Appl. Phys. doi: 10.1063/1.4773103 – volume: 413 start-page: 1 year: 2002 ident: 10.1016/j.surfcoat.2019.08.016_bb0240 article-title: Examination of the sputtering profile of NiTi under target heating conditions publication-title: Thin Solid Films doi: 10.1016/S0040-6090(02)00339-5 – volume: 585 start-page: 377 issue: 5 year: 2000 ident: 10.1016/j.surfcoat.2019.08.016_bb0025 article-title: Investigations on the energy influx at plasma processes by means of a simple thermal probe publication-title: Thin Solid Films – volume: 32 start-page: 1459 year: 1960 ident: 10.1016/j.surfcoat.2019.08.016_bb0175 article-title: Thermal conductivity of helium and hydrogen at high temperatures publication-title: J. Chem. Phys. doi: 10.1063/1.1730942 – volume: 122 start-page: 044503 year: 2017 ident: 10.1016/j.surfcoat.2019.08.016_bb0340 article-title: A multifunctional plasma and deposition sensor for the characterization of plasma sources for film deposition and etching publication-title: J. Appl. Phys. doi: 10.1063/1.4995278 – volume: 7 start-page: 1025 year: 1989 ident: 10.1016/j.surfcoat.2019.08.016_bb0065 article-title: Energetic particle bombardment of films during magnetron sputtering publication-title: Journal of Vacuum Science & Technology doi: 10.1116/1.576223 – volume: 44 year: 2011 ident: 10.1016/j.surfcoat.2019.08.016_bb0140 article-title: Comparison of calorimetric plasma diagnostics in a plasma downstream reactor publication-title: J. Phys. D. Appl. Phys. doi: 10.1088/0022-3727/44/9/095201 – volume: 350 start-page: 560 year: 2018 ident: 10.1016/j.surfcoat.2019.08.016_bb0225 article-title: Deposition of Cr films by hot target magnetron sputtering on biased substrates publication-title: Surface & Coatings Technology doi: 10.1016/j.surfcoat.2018.07.047 – volume: 47 year: 2014 ident: 10.1016/j.surfcoat.2019.08.016_bb0265 article-title: Plasma diagnostics for understanding the plasma-surface interaction in HiPIMS discharges: a review publication-title: J. Phys. D. Appl. Phys. doi: 10.1088/0022-3727/47/22/224001 – volume: 539 start-page: 88 year: 2013 ident: 10.1016/j.surfcoat.2019.08.016_bb0290 article-title: Energy transferred to the substrate surface during reactive magnetron sputtering of aluminum in Ar/O2 atmosphere publication-title: Thin Solid Films doi: 10.1016/j.tsf.2013.05.075 – volume: 48 start-page: 432 year: 1975 ident: 10.1016/j.surfcoat.2019.08.016_bb0190 article-title: Thermal accommodation coefficients by high speed vibration of solid samples publication-title: Surf. Sci. doi: 10.1016/0039-6028(75)90417-3 – volume: 100 start-page: 033305 year: 2006 ident: 10.1016/j.surfcoat.2019.08.016_bb0295 article-title: Energy distributions of positive and negative ions during magnetron sputtering of an Al target in Ar/O2 mixtures publication-title: J. Appl. Phys. doi: 10.1063/1.2219163 – volume: 63 start-page: 385 year: 2001 ident: 10.1016/j.surfcoat.2019.08.016_bb0005 article-title: The energy balance at substrate surfaces during plasma processing publication-title: Vacuum doi: 10.1016/S0042-207X(01)00350-5 – volume: 56 start-page: 183 year: 1977 ident: 10.1016/j.surfcoat.2019.08.016_bb0200 article-title: Etude ESCA de l'interacion oxygène-titane publication-title: J. of Less-Common Metals doi: 10.1016/0022-5088(77)90040-6 – volume: 116–119 start-page: 1102 year: 1999 ident: 10.1016/j.surfcoat.2019.08.016_bb0150 article-title: Calorimetric measurements with a heat flux transducer of the total power influx onto a substrate during magnetron sputtering publication-title: Surf. Coat. Technol. doi: 10.1016/S0257-8972(99)00125-5 – volume: 545 start-page: 44 year: 2013 ident: 10.1016/j.surfcoat.2019.08.016_bb0080 article-title: IR emission from the target during plasma magnetron sputter deposition publication-title: Thin Solid Films doi: 10.1016/j.tsf.2013.07.025 – volume: 41 year: 2008 ident: 10.1016/j.surfcoat.2019.08.016_bb0120 article-title: The metal flux from a rotating cylindrical magnetron: a Monte Carlo simulation publication-title: J. Phys. D doi: 10.1088/0022-3727/41/20/205307 – volume: 476 start-page: 215 year: 2005 ident: 10.1016/j.surfcoat.2019.08.016_bb0280 article-title: Fundamental understanding and modeling of reactive sputtering processes publication-title: Thin Solid Films doi: 10.1016/j.tsf.2004.10.051 – volume: 308 start-page: 168 year: 2016 ident: 10.1016/j.surfcoat.2019.08.016_bb0230 article-title: High-rate magnetron sputtering with hot target publication-title: Surface & Coatings Technology doi: 10.1016/j.surfcoat.2016.06.096 – volume: 13 start-page: 2142 year: 1974 ident: 10.1016/j.surfcoat.2019.08.016_bb0165 article-title: Radiometric properties of isothermal, diffuse wall cavity sources publication-title: Appl. Opt. doi: 10.1364/AO.13.002142 – volume: 222 start-page: 112 year: 2013 ident: 10.1016/j.surfcoat.2019.08.016_bb0100 article-title: Deposition of rutile (TiO2) with preferred orientation by assisted high power impulse magnetron sputtering publication-title: Surface & Coatings Technology doi: 10.1016/j.surfcoat.2013.02.012 – volume: 45 year: 2012 ident: 10.1016/j.surfcoat.2019.08.016_bb0135 article-title: Electron temperature, ion density and energy influx measurements in a tubular plasma reactor for powder surface modification publication-title: J. Phys. D. Appl. Phys. doi: 10.1088/0022-3727/45/35/355202 – volume: 50-51 start-page: 48 year: 2013 ident: 10.1016/j.surfcoat.2019.08.016_bb0145 article-title: Study on Cu2S mineral surface modification by low temperature Ar/O2 plasmas publication-title: Miner. Eng. doi: 10.1016/j.mineng.2013.06.001 – volume: 109 year: 2011 ident: 10.1016/j.surfcoat.2019.08.016_bb0095 article-title: Structure evolution of magnetron sputtered TiO2 thin films publication-title: J. Appl. Phys. doi: 10.1063/1.3536635 – volume: 7 start-page: 590 year: 1998 ident: 10.1016/j.surfcoat.2019.08.016_bb0170 article-title: Surface temperature and thermal balance of probes immersed in high density plasma publication-title: Plasma Sources Sci. Technol. doi: 10.1088/0963-0252/7/4/016 – volume: 89 year: 2006 ident: 10.1016/j.surfcoat.2019.08.016_bb0300 article-title: Energy distribution of O-ions during reactive magnetron sputtering publication-title: Appl. Phys. Lett. doi: 10.1063/1.2266888 – volume: 102 year: 2013 ident: 10.1016/j.surfcoat.2019.08.016_bb0215 article-title: Low substrate temperature fabrication of high-performance metal oxide thin-film by magnetron sputtering with target self-heating publication-title: Appl. Phys. Letters doi: 10.1063/1.4795763 – volume: 515 start-page: 1928 year: 2006 ident: 10.1016/j.surfcoat.2019.08.016_bb0320 article-title: Guiding the deposition flux in an ionized magnetron discharge publication-title: Thin Solid Films doi: 10.1016/j.tsf.2006.07.183 – volume: 50 year: 2017 ident: 10.1016/j.surfcoat.2019.08.016_bb0330 article-title: Effect of space charge on the negative oxygen flux during reactive sputtering publication-title: J. Phys. D. Appl. Phys. doi: 10.1088/1361-6463/aa5ab6 – volume: 43 start-page: 3047 year: 1972 ident: 10.1016/j.surfcoat.2019.08.016_bb0030 article-title: Plasma diagnostics and energy transport of a dc discharge used for sputtering publication-title: J. Appl. Phys. doi: 10.1063/1.1661657 – volume: 21 start-page: S117 issue: 5 year: 2003 ident: 10.1016/j.surfcoat.2019.08.016_bb0105 article-title: Microstructural evolution during film growth publication-title: J. Vac. Sci. Technol. A doi: 10.1116/1.1601610 |
| SSID | ssj0001794 |
| Score | 2.490812 |
| SecondaryResourceType | review_article |
| Snippet | The influence of energetic species on thin film growth mechanism is a long-term issue in the field of low-pressure plasma-based magnetron sputtering... |
| SourceID | hal proquest crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 124887 |
| SubjectTerms | Chemical reactions Crystalline phase formation Energy Energy flux Engineering Sciences Film growth Fluxes Low pressure Magnetron sputtering Materials Organic chemistry Oxidation Parameter identification Phase composition Plasma diagnostics Plasmas Sputtering process Thermopiles Thin film deposition Thin films Zirconium dioxide |
| Title | Energy flux measurements during magnetron sputter deposition processes |
| URI | https://dx.doi.org/10.1016/j.surfcoat.2019.08.016 https://www.proquest.com/docview/2312228317 https://hal.science/hal-02381748 |
| Volume | 377 |
| WOSCitedRecordID | wos000488417800034&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-3347 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001794 issn: 0257-8972 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfYhsR4QDBAKwxkId6qjOajcfwYTZ0GKhNCA_XNSmyHUbqsarKp4q_nznbcsg3GHniJqpPsJr1f7n6-3gchb2VcqKpUYP1UKIOExWnAWZUECntRgQeqKtOB7-uYHR9nkwn_5FKCGjNOgNV1tlzy-X9VNchA2Vg6ewd1-01BAJ9B6XAFtcP1nxQ_stV81exi2T9bRQCbriLxrPhWawyA95u5mVKN2bAudas_t3UDLrFw2lWLLKpCaoMSeV60ZtJney0mb3KNLB3O94Px_urvDZxsZFPocy_9XPw0vPWjl4xmYGF-nK4JXTQi5FiWZ-sxndECExBknP1mYWM3qcXaSGAUmXWy18y3jSRMwW8sKnweTL3jpsVqeEO_7Ct-zGcXdolrU9HtI3AfgfM2w3SDbEVsyMECbuXvR5MP3m-jaTIROfcEa_XkN9_Rn6jMxinm1F5x7YavnDwmj9xBg-YWIE_IPV3vkAcH3Xy_HfJwrRXlU3JoYUMRNnQdNtTChnrYUAcbuoIN9bB5Rr4cjk4OjgI3YyOQSRS1QYn9_YHT6bKCVzMZKq7CSAGJT3WM3BkIrMp0qXDOQFzKosgSrSLJpNQpkBsVPyeb9XmtdwkNdRZnSTjQ2MRNDnjJy5SxQQmL4RhXxD0y7H4uIV0DepyDMhN_V1iPvPPr5rYFy60reKcN4YikJYgCgHbr2jegPv9F2H39KB8LlBl6y5LsMuyRvU67wr36jYCTEoZTgZC_uPMdvyTbq7dpj2y2iwv9ityXl-33ZvHaIfUXWAiuAw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Energy+flux+measurements+during+magnetron+sputter+deposition+processes&rft.jtitle=Surface+%26+coatings+technology&rft.au=Thomann%2C+A.-L.&rft.au=Caillard%2C+A.&rft.au=Raza%2C+M.&rft.au=El+Mokh%2C+M.&rft.date=2019-11-15&rft.issn=0257-8972&rft.volume=377&rft.spage=124887&rft_id=info:doi/10.1016%2Fj.surfcoat.2019.08.016&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_surfcoat_2019_08_016 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0257-8972&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0257-8972&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0257-8972&client=summon |