Uniqueness of codes using semidefinite programming

For  n , d , w ∈ N , let  A ( n ,  d ,  w ) denote the maximum size of a binary code of word length  n , minimum distance  d and constant weight  w . Schrijver recently showed using semidefinite programming that A ( 23 , 8 , 11 ) = 1288 , and the second author that  A ( 22 , 8 , 11 ) = 672 and  A (...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Designs, codes, and cryptography Ročník 87; číslo 8; s. 1881 - 1895
Hlavní autori: Brouwer, Andries E., Polak, Sven C.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 2019
Springer Nature B.V
Predmet:
ISSN:0925-1022, 1573-7586, 1573-7586
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:For  n , d , w ∈ N , let  A ( n ,  d ,  w ) denote the maximum size of a binary code of word length  n , minimum distance  d and constant weight  w . Schrijver recently showed using semidefinite programming that A ( 23 , 8 , 11 ) = 1288 , and the second author that  A ( 22 , 8 , 11 ) = 672 and  A ( 22 , 8 , 10 ) = 616 . Here we show uniqueness of the codes achieving these bounds. Let  A ( n ,  d ) denote the maximum size of a binary code of word length  n and minimum distance  d . Gijswijt et al. showed that  A ( 20 , 8 ) = 256 . We show that there are several nonisomorphic codes achieving this bound, and classify all such codes with all distances divisible by 4.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Communicated by J. H. Koolen.
ISSN:0925-1022
1573-7586
1573-7586
DOI:10.1007/s10623-018-0589-8