Evolutionary Programming for High-Dimensional Constrained Expensive Black-Box Optimization Using Radial Basis Functions

This paper develops a surrogate-assisted evolutionary programming (EP) algorithm for constrained expensive black-box optimization that can be used for high-dimensional problems with many black-box inequality constraints. The proposed method does not use a penalty function and it builds surrogates fo...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on evolutionary computation Vol. 18; no. 3; pp. 326 - 347
Main Author: Regis, Rommel G.
Format: Journal Article
Language:English
Published: New York, NY IEEE 01.06.2014
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1089-778X, 1941-0026
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This paper develops a surrogate-assisted evolutionary programming (EP) algorithm for constrained expensive black-box optimization that can be used for high-dimensional problems with many black-box inequality constraints. The proposed method does not use a penalty function and it builds surrogates for the objective and constraint functions. Each parent generates a large number of trial offspring in each generation. Then, the surrogate functions are used to identify the trial offspring that are predicted to be feasible with the best predicted objective function values or those with the minimum number of predicted constraint violations. The objective and constraint functions are then evaluated only on the most promising trial offspring from each parent, and the method proceeds in the same way as in a standard EP. In the numerical experiments, the type of surrogate used to model the objective and each of the constraint functions is a cubic radial basis function (RBF) augmented by a linear polynomial. The resulting RBF-assisted EP is applied to 18 benchmark problems and to an automotive problem with 124 decision variables and 68 black-box inequality constraints. The proposed method is much better than a traditional EP, a surrogate-assisted penalty-based EP, stochastic ranking evolution strategy, scatter search, and CMODE, and it is competitive with ConstrLMSRBF on the problems used.
AbstractList This paper develops a surrogate-assisted evolutionary programming (EP) algorithm for constrained expensive black-box optimization that can be used for high-dimensional problems with many black-box inequality constraints. The proposed method does not use a penalty function and it builds surrogates for the objective and constraint functions. Each parent generates a large number of trial offspring in each generation. Then, the surrogate functions are used to identify the trial offspring that are predicted to be feasible with the best predicted objective function values or those with the minimum number of predicted constraint violations. The objective and constraint functions are then evaluated only on the most promising trial offspring from each parent, and the method proceeds in the same way as in a standard EP. In the numerical experiments, the type of surrogate used to model the objective and each of the constraint functions is a cubic radial basis function (RBF) augmented by a linear polynomial. The resulting RBF-assisted EP is applied to 18 benchmark problems and to an automotive problem with 124 decision variables and 68 black-box inequality constraints. The proposed method is much better than a traditional EP, a surrogate-assisted penalty-based EP, stochastic ranking evolution strategy, scatter search, and CMODE, and it is competitive with ConstrLMSRBF on the problems used.
Author Regis, Rommel G.
Author_xml – sequence: 1
  givenname: Rommel G.
  surname: Regis
  fullname: Regis, Rommel G.
  email: rregis@sju.edu
  organization: Department of Mathematics, Saint Joseph's University, Philadelphia, PA, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28562577$$DView record in Pascal Francis
BookMark eNp9kV1vFCEYhYmpiW31BxhvSIxJb2YLDB_DpbtuP5ImNaY13k0YBlbqDKww01Z_fcHd9KIXXvGG9zmHcM4ROPDBGwDeY7TAGMnTm_X31YIgXC8I4QRj_AocYklxhRDhB3lGjayEaH68AUcp3SGEKcPyEDys78MwTy54Ff_ArzFsohpH5zfQhggv3OZn9cWNxqdCDHAVfJqict70cP24Lff3Bi4HpX9Vy_AIr7eTG91fVQzhbSo-31TvsnKpkkvwbPa67NJb8NqqIZl3-_MY3J6tb1YX1dX1-eXq81WlKSFTpWRna8FETxva1dQ2UkjR8EYQqYygQpO6o6InmmnJrJSmw5gryZnoqEW2r4_Byc53G8Pv2aSpHV3SZhiUN2FOLeZcypyR5Bn9-AK9C3PMv84UozxDTNSZ-rSnVNJqsFF57VK7jW7MCbakYTxzInN4x-kYUorGPiMYtaWytlTWlsrafWVZI15otJv-ZVkyH_6r_LBTOmPM80uc5ZY5rp8AWcOmAw
CODEN ITEVF5
CitedBy_id crossref_primary_10_1016_j_swevo_2022_101081
crossref_primary_10_1016_j_knosys_2019_06_023
crossref_primary_10_1016_j_cja_2024_03_026
crossref_primary_10_1016_j_engappai_2022_105397
crossref_primary_10_1016_j_ins_2021_03_002
crossref_primary_10_1016_j_procs_2023_12_122
crossref_primary_10_1007_s40747_024_01745_0
crossref_primary_10_1016_j_eswa_2025_126729
crossref_primary_10_1007_s40747_021_00421_x
crossref_primary_10_1016_j_asoc_2018_02_033
crossref_primary_10_1109_TEVC_2019_2919762
crossref_primary_10_3390_aerospace10080672
crossref_primary_10_1109_TCYB_2022_3214825
crossref_primary_10_1007_s11081_023_09874_0
crossref_primary_10_1016_j_ast_2021_106927
crossref_primary_10_1016_j_ins_2015_10_010
crossref_primary_10_1016_j_swevo_2024_101516
crossref_primary_10_1007_s00500_023_07845_2
crossref_primary_10_1016_j_cor_2021_105444
crossref_primary_10_1007_s00158_022_03419_2
crossref_primary_10_1016_j_eswa_2016_03_044
crossref_primary_10_3389_fenrg_2022_1030034
crossref_primary_10_1016_j_swevo_2025_101992
crossref_primary_10_1061__ASCE_HE_1943_5584_0002214
crossref_primary_10_1109_TCYB_2017_2710978
crossref_primary_10_1109_TEVC_2022_3175517
crossref_primary_10_1016_j_asoc_2021_107713
crossref_primary_10_1109_TEVC_2016_2555315
crossref_primary_10_1109_TCYB_2021_3123625
crossref_primary_10_1016_j_swevo_2023_101251
crossref_primary_10_1080_02626667_2019_1584400
crossref_primary_10_1016_j_ast_2023_108675
crossref_primary_10_1109_TSMC_2023_3259947
crossref_primary_10_1016_j_asoc_2025_113440
crossref_primary_10_1016_j_swevo_2025_102060
crossref_primary_10_1109_TEVC_2024_3383095
crossref_primary_10_1007_s10898_015_0370_8
crossref_primary_10_1016_j_ins_2019_08_054
crossref_primary_10_1016_j_swevo_2024_101629
crossref_primary_10_1109_TCYB_2021_3126341
crossref_primary_10_1109_TEVC_2023_3346435
crossref_primary_10_3390_math8071070
crossref_primary_10_1007_s40747_023_00993_w
crossref_primary_10_1109_TII_2018_2876907
crossref_primary_10_1016_j_swevo_2024_101586
crossref_primary_10_1080_10407782_2023_2292200
crossref_primary_10_1109_TEVC_2021_3130835
crossref_primary_10_1109_TSMC_2021_3102298
crossref_primary_10_1109_TETCI_2024_3370033
crossref_primary_10_3390_aerospace10070605
crossref_primary_10_1016_j_ins_2022_11_021
crossref_primary_10_1109_TETCI_2023_3301794
crossref_primary_10_1016_j_knosys_2018_08_010
crossref_primary_10_1007_s40747_021_00277_1
crossref_primary_10_1109_TEVC_2017_2785351
crossref_primary_10_1007_s00158_018_1987_2
crossref_primary_10_1016_j_ymssp_2020_107337
crossref_primary_10_1155_2018_2609014
crossref_primary_10_2514_1_J057989
crossref_primary_10_1016_j_asoc_2022_109909
crossref_primary_10_1109_TCYB_2018_2811761
crossref_primary_10_1016_j_cam_2018_02_017
crossref_primary_10_1016_j_neucom_2024_127629
crossref_primary_10_1109_TCYB_2021_3113575
crossref_primary_10_1007_s12065_022_00711_4
crossref_primary_10_1016_j_asoc_2024_111586
crossref_primary_10_1109_TEVC_2020_2979740
crossref_primary_10_1007_s12530_025_09678_w
crossref_primary_10_1145_3459664
crossref_primary_10_1109_ACCESS_2022_3210523
crossref_primary_10_1007_s11277_018_5474_2
crossref_primary_10_1016_j_ins_2022_01_052
crossref_primary_10_1177_1687814019834161
crossref_primary_10_1016_j_ejor_2017_03_057
crossref_primary_10_1016_j_apenergy_2022_119146
crossref_primary_10_1016_j_swevo_2020_100800
crossref_primary_10_2166_hydro_2017_063
crossref_primary_10_1007_s00521_024_09903_8
crossref_primary_10_1109_TETCI_2019_2961190
crossref_primary_10_1109_TEVC_2018_2869001
crossref_primary_10_1109_TETCI_2023_3240221
crossref_primary_10_1109_JAS_2024_124320
crossref_primary_10_1109_TEVC_2018_2869247
crossref_primary_10_1109_TCYB_2023_3267454
crossref_primary_10_1016_j_ins_2018_09_003
crossref_primary_10_1007_s00158_018_2167_0
crossref_primary_10_1007_s00500_025_10432_2
crossref_primary_10_1016_j_ejor_2021_02_053
crossref_primary_10_1109_TEVC_2021_3139263
crossref_primary_10_1016_j_petrol_2020_107441
crossref_primary_10_1109_TEVC_2022_3180693
crossref_primary_10_3390_app15169068
crossref_primary_10_1109_TEVC_2022_3226837
crossref_primary_10_1016_j_asoc_2023_110866
crossref_primary_10_1016_j_asoc_2021_108353
crossref_primary_10_3233_JIFS_201124
crossref_primary_10_1016_j_asoc_2021_107268
crossref_primary_10_1109_TCYB_2018_2809430
crossref_primary_10_1109_TEVC_2020_3017865
crossref_primary_10_1016_j_asoc_2020_106896
crossref_primary_10_1177_09544070231226349
crossref_primary_10_1109_TAP_2021_3051034
crossref_primary_10_1109_TSMC_2023_3281822
crossref_primary_10_1007_s12293_021_00326_9
crossref_primary_10_1016_j_asoc_2020_106812
crossref_primary_10_1007_s10957_016_0977_z
crossref_primary_10_1016_j_advwatres_2023_104537
crossref_primary_10_1109_TEVC_2022_3159000
crossref_primary_10_1007_s00158_024_03758_2
crossref_primary_10_1016_j_asoc_2018_08_016
crossref_primary_10_1515_math_2017_0029
crossref_primary_10_1007_s10898_019_00759_0
crossref_primary_10_1016_j_cma_2020_113215
crossref_primary_10_1016_j_ast_2020_105980
crossref_primary_10_1109_TSE_2020_3019406
crossref_primary_10_1007_s11633_022_1317_4
crossref_primary_10_1109_TEVC_2015_2449293
crossref_primary_10_1016_j_apm_2023_05_018
crossref_primary_10_1007_s11831_017_9240_5
crossref_primary_10_1016_j_swevo_2024_101794
crossref_primary_10_1007_s00158_019_02256_0
crossref_primary_10_1109_JAS_2022_105425
crossref_primary_10_1007_s11269_016_1337_3
crossref_primary_10_1016_j_procs_2022_12_310
crossref_primary_10_1109_TEC_2020_2967511
crossref_primary_10_1007_s10898_015_0376_2
crossref_primary_10_1016_j_compchemeng_2019_106567
crossref_primary_10_1109_TEVC_2019_2890818
crossref_primary_10_1007_s10898_018_0715_1
crossref_primary_10_1109_TEVC_2021_3078486
crossref_primary_10_1016_j_apenergy_2019_114085
crossref_primary_10_1007_s00158_022_03337_3
crossref_primary_10_1007_s10462_021_10042_y
crossref_primary_10_1007_s40747_021_00362_5
crossref_primary_10_1016_j_ijmecsci_2025_110418
crossref_primary_10_1016_j_asoc_2019_03_049
crossref_primary_10_1016_j_swevo_2023_101446
crossref_primary_10_1016_j_swevo_2022_101146
crossref_primary_10_1016_j_swevo_2025_102136
crossref_primary_10_1109_TEVC_2023_3287213
crossref_primary_10_1016_j_asoc_2021_107603
crossref_primary_10_1109_TETCI_2018_2872029
crossref_primary_10_1109_TEVC_2021_3066606
crossref_primary_10_1109_TSIPI_2022_3217109
crossref_primary_10_1016_j_dt_2025_02_013
crossref_primary_10_1016_j_biosystems_2019_05_005
crossref_primary_10_1109_TSMC_2022_3219080
crossref_primary_10_1109_TEVC_2021_3067015
crossref_primary_10_1007_s10409_017_0703_6
crossref_primary_10_1016_j_asoc_2018_07_037
crossref_primary_10_1109_JAS_2025_125111
crossref_primary_10_1109_TCYB_2018_2869674
crossref_primary_10_2514_1_J060718
crossref_primary_10_1007_s12065_023_00882_8
crossref_primary_10_1016_j_petrol_2021_109059
crossref_primary_10_1109_TNNLS_2023_3297624
crossref_primary_10_1109_TEVC_2021_3113923
crossref_primary_10_1109_TEVC_2022_3177936
crossref_primary_10_1007_s00158_022_03473_w
crossref_primary_10_1007_s12293_020_00317_2
crossref_primary_10_1109_TCST_2022_3210164
crossref_primary_10_3390_math10060943
crossref_primary_10_1007_s40747_022_00910_7
crossref_primary_10_1061__ASCE_IR_1943_4774_0001699
crossref_primary_10_1109_TEVC_2021_3064835
crossref_primary_10_1007_s12293_022_00376_7
crossref_primary_10_1109_TEVC_2023_3291697
crossref_primary_10_1007_s12293_016_0199_9
crossref_primary_10_1016_j_eswa_2015_06_036
crossref_primary_10_1109_TAP_2024_3481663
crossref_primary_10_1109_TEVC_2018_2834881
crossref_primary_10_3390_app14177853
crossref_primary_10_1109_TG_2022_3145886
crossref_primary_10_3390_app11052277
crossref_primary_10_1016_j_ins_2023_119035
crossref_primary_10_1109_TCYB_2020_3008280
crossref_primary_10_1007_s40747_025_01980_z
crossref_primary_10_1016_j_swevo_2021_100972
crossref_primary_10_1016_j_swevo_2022_101169
Cites_doi 10.1109/TEVC.2009.2027359
10.2514/2.1999
10.1115/1.4001597
10.1007/s10898-007-9172-y
10.1016/j.swevo.2011.02.002
10.1287/opre.21.6.1267
10.1137/09074927X
10.1016/j.swevo.2011.05.001
10.1109/CEC.2006.1688386
10.1023/A:1011255519438
10.1109/CEC.2005.1554975
10.1007/s10898-006-9075-3
10.1145/2330163.2330210
10.1109/TSMCC.2005.855506
10.1109/4235.873238
10.1016/j.swevo.2011.10.001
10.1007/s00158-011-0745-5
10.1115/1.4003035
10.1137/050638382
10.1109/CEC.2006.1688315
10.1145/2330163.2330207
10.1007/s10898-012-9940-1
10.1137/040603371
10.1109/TEVC.2004.835247
10.1007/978-94-015-8330-5_4
10.1016/j.cor.2010.09.013
10.1109/4235.687880
10.1109/CEC.2006.1688286
10.1016/S1474-0346(02)00011-3
10.1109/TEVC.2005.859463
10.1109/TEVC.2010.2093582
10.1109/TEVC.2004.836819
10.1007/3-540-53032-0
10.1109/TEVC.2002.800884
10.1287/ijoc.1060.0182
10.1007/s10898-008-9354-2
10.1029/2005WR004723
10.1023/A:1011584207202
10.1080/0305215X.2012.687731
10.1137/070691814
10.1162/evco.1996.4.1.1
10.1504/IJPD.2009.026179
10.1162/evco.1993.1.1.1
10.1080/03052150410001647966
10.1109/TAI.2003.1250183
10.1007/978-3-540-76931-6_23
10.1145/1389095.1389289
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2014
Copyright_xml – notice: 2015 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2014
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
DOI 10.1109/TEVC.2013.2262111
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList
Technology Research Database
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Applied Sciences
EISSN 1941-0026
EndPage 347
ExternalDocumentID 3377807291
28562577
10_1109_TEVC_2013_2262111
6514561
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IF
6IK
6IL
6IN
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ADZIZ
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
EBS
EJD
HZ~
H~9
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RIL
RNS
TN5
VH1
AAYXX
CITATION
AAYOK
IQODW
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
ID FETCH-LOGICAL-c422t-a9bf3757d484b34f89797868729ae747c23b47d2c5c95f99eb116a9657b4f0fd3
IEDL.DBID RIE
ISICitedReferencesCount 210
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000337129300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1089-778X
IngestDate Sun Sep 28 11:27:14 EDT 2025
Sun Nov 09 08:07:44 EST 2025
Wed Apr 02 07:21:53 EDT 2025
Tue Nov 18 22:22:13 EST 2025
Sat Nov 29 03:13:46 EST 2025
Wed Aug 27 06:27:50 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords surrogate-assisted evolutionary algorithms
high-dimensional optimization
evolutionary programming
radial basis functions
constrained optimization
Black-box optimization
Motor car
Search strategy
Probabilistic approach
Hierarchical classification
Decision making
Evolutionary algorithm
Black box
Constrained optimization
Radial basis function
Penalty function
Assisted programming
Value function
Multidimensional analysis
Inequality constraint
Cubics
Objective function
Metamodel
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c422t-a9bf3757d484b34f89797868729ae747c23b47d2c5c95f99eb116a9657b4f0fd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1546002573
PQPubID 85418
PageCount 22
ParticipantIDs crossref_primary_10_1109_TEVC_2013_2262111
proquest_journals_1546002573
proquest_miscellaneous_1669900296
pascalfrancis_primary_28562577
crossref_citationtrail_10_1109_TEVC_2013_2262111
ieee_primary_6514561
PublicationCentury 2000
PublicationDate 2014-06-01
PublicationDateYYYYMMDD 2014-06-01
PublicationDate_xml – month: 06
  year: 2014
  text: 2014-06-01
  day: 01
PublicationDecade 2010
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: New York
PublicationTitle IEEE transactions on evolutionary computation
PublicationTitleAbbrev TEVC
PublicationYear 2014
Publisher IEEE
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref12
zavala (ref38) 0
ref59
ref15
ref58
ref14
ref52
ref11
ref54
ref10
mallipeddi (ref32) 2010
ref17
fogel (ref19) 1966
araujo (ref3) 2009; 198
runarsson (ref48) 0; lncs 3242
a -montano (ref4) 0
ref51
ref50
ref46
ref45
ref47
ref42
ref44
ref43
abramson (ref1) 0
ref49
ref8
ref7
powell (ref41) 1992
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
viana (ref56) 0
ref30
ref33
beightler (ref9) 1976
ref2
ref39
ulmer (ref55) 0
hedar (ref21) 2004
emmerich (ref16) 0
ref24
ref23
floudas (ref18) 1990
ref26
ref25
ref20
ref22
jones (ref27) 0
takahama (ref53) 0
ref28
ref29
ref60
ref62
ref61
References_xml – start-page: 209
  year: 0
  ident: ref38
  article-title: Constrained optimization via particle evolutionary swarm optimization algorithm (PESO)
  publication-title: Proc Genetic Evol Comput Conf
– ident: ref30
  doi: 10.1109/TEVC.2009.2027359
– ident: ref39
  doi: 10.2514/2.1999
– ident: ref50
  doi: 10.1115/1.4001597
– ident: ref15
  doi: 10.1007/s10898-007-9172-y
– ident: ref13
  doi: 10.1016/j.swevo.2011.02.002
– start-page: 362
  year: 0
  ident: ref16
  article-title: Metamodel-assisted evolution strategies
  publication-title: Proceedings of the Parallel Problem Solving from Nature
– ident: ref22
  doi: 10.1287/opre.21.6.1267
– ident: ref61
  doi: 10.1137/09074927X
– ident: ref25
  doi: 10.1016/j.swevo.2011.05.001
– start-page: 62
  year: 0
  ident: ref53
  article-title: Efficient constrained optimization by the epsilon constrained rank-based differential evolution
  publication-title: Proc IEEE Congr Evol Comput
– ident: ref49
  doi: 10.1109/CEC.2006.1688386
– ident: ref20
  doi: 10.1023/A:1011255519438
– ident: ref59
  doi: 10.1109/CEC.2005.1554975
– ident: ref14
  doi: 10.1007/s10898-006-9075-3
– ident: ref31
  doi: 10.1145/2330163.2330210
– start-page: 1188
  year: 0
  ident: ref4
  article-title: Multiobjective airfoil shape optimization using a multiple-surrogate approach
  publication-title: Proc IEEE Congr Evol Comput
– ident: ref62
  doi: 10.1109/TSMCC.2005.855506
– volume: lncs 3242
  start-page: 401
  year: 0
  ident: ref48
  article-title: Constrained evolutionary optimization by approximate ranking and surrogate models
  publication-title: Proceedings of the Parallel Problem Solving from Nature
– ident: ref47
  doi: 10.1109/4235.873238
– year: 0
  ident: ref1
  publication-title: NOMADm Version 4 6 User's Guide
– ident: ref34
  doi: 10.1016/j.swevo.2011.10.001
– ident: ref8
  doi: 10.1007/s00158-011-0745-5
– start-page: 105
  year: 1992
  ident: ref41
  article-title: The theory of radial basis function approximation in 1990
  publication-title: Advances in Numerical Analysis Volume 2 Wavelets Subdivision Algorithms and Radial Basis Functions
– ident: ref28
  doi: 10.1115/1.4003035
– ident: ref2
  doi: 10.1137/050638382
– ident: ref52
  doi: 10.1109/CEC.2006.1688315
– year: 1966
  ident: ref19
  publication-title: Artificial Intelligence Through Simulated Evolution
– volume: 198
  start-page: 193
  year: 2009
  ident: ref3
  article-title: Constrained optimization based on quadratic approximations in genetic algorithms
  publication-title: Constraint-Handling in Evolutionary Computation Studies in Computational Intelligence
– year: 0
  ident: ref56
  article-title: Why not run the efficient global optimization algorithm with multiple surrogates?
  publication-title: Proc AIAA/ASME/ASCE/AHS/ASC Structures Structural Dyn Mater Conf
– ident: ref5
  doi: 10.1145/2330163.2330207
– ident: ref44
  doi: 10.1007/s10898-012-9940-1
– year: 1976
  ident: ref9
  publication-title: Applied Geometric Programming
– ident: ref6
  doi: 10.1137/040603371
– ident: ref46
  doi: 10.1109/TEVC.2004.835247
– ident: ref40
  doi: 10.1007/978-94-015-8330-5_4
– ident: ref42
  doi: 10.1016/j.cor.2010.09.013
– ident: ref29
  doi: 10.1109/4235.687880
– ident: ref36
  doi: 10.1109/CEC.2006.1688286
– ident: ref12
  doi: 10.1016/S1474-0346(02)00011-3
– ident: ref17
  doi: 10.1109/TEVC.2005.859463
– ident: ref58
  doi: 10.1109/TEVC.2010.2093582
– ident: ref33
  doi: 10.1109/TEVC.2004.836819
– start-page: 692
  year: 0
  ident: ref55
  article-title: Evolution strategies assisted by Gaussian processes with improved pre-selection criterion
  publication-title: Proc IEEE Congr Evol Comput
– year: 1990
  ident: ref18
  publication-title: A Collection of Test Problems for Constrained Global Optimization Algorithms
  doi: 10.1007/3-540-53032-0
– ident: ref26
  doi: 10.1109/TEVC.2002.800884
– ident: ref43
  doi: 10.1287/ijoc.1060.0182
– ident: ref57
  doi: 10.1007/s10898-008-9354-2
– ident: ref54
  doi: 10.1029/2005WR004723
– ident: ref10
  doi: 10.1023/A:1011584207202
– year: 2010
  ident: ref32
  publication-title: Problem definitions and evaluation criteria for the CEC 2010 competition on constrained real-parameter optimization
– ident: ref45
  doi: 10.1080/0305215X.2012.687731
– ident: ref60
  doi: 10.1137/070691814
– ident: ref37
  doi: 10.1162/evco.1996.4.1.1
– ident: ref24
  doi: 10.1504/IJPD.2009.026179
– ident: ref7
  doi: 10.1162/evco.1993.1.1.1
– ident: ref11
  doi: 10.1080/03052150410001647966
– ident: ref35
  doi: 10.1109/TAI.2003.1250183
– ident: ref23
  doi: 10.1007/978-3-540-76931-6_23
– year: 2004
  ident: ref21
  publication-title: Studies on metaheuristics for continuous global optimization problems
– year: 0
  ident: ref27
  article-title: Large-scale multidisciplinary mass optimization in the auto industry
  publication-title: Modeling and Optimization Theory and Applications (MOPTA) Conf
– ident: ref51
  doi: 10.1145/1389095.1389289
SSID ssj0014519
Score 2.5362866
Snippet This paper develops a surrogate-assisted evolutionary programming (EP) algorithm for constrained expensive black-box optimization that can be used for...
SourceID proquest
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 326
SubjectTerms Adaptation models
Algorithmics. Computability. Computer arithmetics
Algorithms
Applied sciences
Black-box optimization
Computational modeling
Computer science; control theory; systems
Constrained Optimization
Constraints
Construction
Evolutionary algorithms
Evolutionary computation
Evolutionary programming
Exact sciences and technology
Genetic algorithms
Highdimensional optimization
Mathematical analysis
Mathematical models
Optimization
Parents
Programming
Radial basis function
Radial basis functions
Simulation
Software
Surrogateassisted evolutionary algorithms
Theoretical computing
Title Evolutionary Programming for High-Dimensional Constrained Expensive Black-Box Optimization Using Radial Basis Functions
URI https://ieeexplore.ieee.org/document/6514561
https://www.proquest.com/docview/1546002573
https://www.proquest.com/docview/1669900296
Volume 18
WOSCitedRecordID wos000337129300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0026
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014519
  issn: 1089-778X
  databaseCode: RIE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VigMc2tKCCLSVkTgh0iax48eRll1xKhUqaG-R49hSpXYXbXZb-PfMON6ICoTELZInymPGnhnP528A3krLnQhG563kIRdWFrl2uszb1svWam-c1bHZhLq40LOZudyC9-NZGO99BJ_5E7qMtfxu4da0VXYq0bvXlOs8UkoNZ7XGigHRpAxgeoMRo56lCmZZmNOrybdzAnHxE4w1MOEpH_ig2FSFIJG2x78ShnYWf6zM0d1Md__vRfdgJ4WV7MNgB89gy8_3YXfTsoGlGbwPT3_jHzyA-8ldsjy7_MkuB6jWLQ4xDGUZQUDyj8T-PzB3MGruGVtK-I4RRXKEvrO4BZifLX6wz7j83KZznSxiEdgXoj64YWe2v-7ZFH1oNPPn8HU6uTr_lKdODLkTVbXKrWkDV7XqhBYtF0Ebhdmn1BiZW48Jiat4K1RXudqZOhiDDqCU1shatSIUoeMvYHu-mPuXwAyFVF3hBa-C6LjUwaOAL3lXWS47nUGx0U3jEk05fdpNE9OVwjSkzobU2SR1ZvBuvOX7wNHxL-ED0tcomFSVwfEDAxjHK00polIZHG4soknTvG8w_qS6Zq14Bm_GYZygVHWxc79Yo4yU6PGLyshXf3_0a3iCLygG_NkhbK-Wa38Ej93d6rpfHkcr_wU6tPun
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED5NAwl4YLCBCIxhJJ4Q2ZLYcexHNloNMcqECupb5Di2NGlrUdMO-O-5c9yICYTEWyRflB939t35Pn8H8EoaboXXKm0k96kwMkuVVXnaNE42RjltjQrNJqrJRM1m-nwL3gxnYZxzAXzmDuky1PLbhV3TVtmRRO9eUq5zqxSiyPvTWkPNgIhSeji9xphRzWINM8_00XT09YRgXPwQow1MefIbXii0VSFQpOnwv_i-ocUfa3NwOOOd_3vVB3A_BpbsbW8JD2HLzXdhZ9O0gcU5vAv3fmMg3IPvo-toe2b5k533YK0rHGIYzDICgaTviP-_5-5g1N4zNJVwLSOS5AB-Z2ETMD1e_GCfcAG6iic7WUAjsM9EfnDJjk130bExetFg6I_gy3g0PTlNYy-G1IqiWKVGN55XZdUKJRouvNIV5p9SYWxuHKYktuCNqNrCllaXXmt0Abk0WpZVI3zmW_4YtueLuXsCTFNQ1WZO8MKLlkvlHQq4nLeF4bJVCWQb3dQ2EpXTp13WIWHJdE3qrEmddVRnAq-HW771LB3_Et4jfQ2CUVUJHNwwgGG8UJQkVlUC-xuLqONE72qMQKmyWVY8gZfDME5RqruYuVusUUZK9PlZoeXTvz_6Bdw5nX48q8_eTz48g7v4sqJHo-3D9mq5ds_htr1eXXTLg2DxvwBwO_7u
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evolutionary+Programming+for+High-Dimensional+Constrained+Expensive+Black-Box+Optimization+Using+Radial+Basis+Functions&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Regis%2C+Rommel+G&rft.date=2014-06-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1089-778X&rft.eissn=1941-0026&rft.volume=18&rft.issue=3&rft.spage=326&rft_id=info:doi/10.1109%2FTEVC.2013.2262111&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3377807291
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon