Waste reduction via image classification algorithms: beyond the human eye with an AI-based vision

Modern manufacturing is the world's largest and most automated industrial sector. The rise of Industry 4.0 technologies such as Big Data, Internet of Things (IoT) devices, and Machine Learning has enabled a better connection with machines and factory systems. Data harvesting allowed for a more...

Full description

Saved in:
Bibliographic Details
Published in:International journal of production research Vol. 62; no. 9; pp. 3193 - 3211
Main Authors: Shahin, Mohammad, Chen, F. Frank, Hosseinzadeh, Ali, Bouzary, Hamed, Shahin, Awni
Format: Journal Article
Language:English
Published: London Taylor & Francis 02.05.2024
Taylor & Francis LLC
Subjects:
ISSN:0020-7543, 1366-588X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Modern manufacturing is the world's largest and most automated industrial sector. The rise of Industry 4.0 technologies such as Big Data, Internet of Things (IoT) devices, and Machine Learning has enabled a better connection with machines and factory systems. Data harvesting allowed for a more seamless and comprehensive implementation of the knowledge-based decision-making process. New models that provide a competitive edge must be created by combining the Lean paradigm with the new technologies of Industry 4.0. This paper presents novel computer-based vision models for automated detection and classification of damaged packages from intact packages. In high-volume production environments, the package manual inspection process through the human eye consumes inordinate amounts of time poring over physical packages. Our proposed three different computer-based vision approaches detect damaged packages to prevent them from moving to shipping operations that would otherwise incur waste in the form of wasted operating hours, wasted resources and lost customer satisfaction. The proposed approaches were carried out on a data set consisting of package images and achieved high precision, accuracy, and recall values during the training and validation stage, with the resultant trained YOLO v7 model.
AbstractList Modern manufacturing is the world's largest and most automated industrial sector. The rise of Industry 4.0 technologies such as Big Data, Internet of Things (IoT) devices, and Machine Learning has enabled a better connection with machines and factory systems. Data harvesting allowed for a more seamless and comprehensive implementation of the knowledge-based decision-making process. New models that provide a competitive edge must be created by combining the Lean paradigm with the new technologies of Industry 4.0. This paper presents novel computer-based vision models for automated detection and classification of damaged packages from intact packages. In high-volume production environments, the package manual inspection process through the human eye consumes inordinate amounts of time poring over physical packages. Our proposed three different computer-based vision approaches detect damaged packages to prevent them from moving to shipping operations that would otherwise incur waste in the form of wasted operating hours, wasted resources and lost customer satisfaction. The proposed approaches were carried out on a data set consisting of package images and achieved high precision, accuracy, and recall values during the training and validation stage, with the resultant trained YOLO v7 model.
Not provided.
Author Bouzary, Hamed
Shahin, Mohammad
Hosseinzadeh, Ali
Shahin, Awni
Chen, F. Frank
Author_xml – sequence: 1
  givenname: Mohammad
  surname: Shahin
  fullname: Shahin, Mohammad
  organization: The University of Texas at San Antonio
– sequence: 2
  givenname: F. Frank
  surname: Chen
  fullname: Chen, F. Frank
  email: FF.Chen@utsa.edu
  organization: The University of Texas at San Antonio
– sequence: 3
  givenname: Ali
  surname: Hosseinzadeh
  fullname: Hosseinzadeh, Ali
  organization: The University of Texas at San Antonio
– sequence: 4
  givenname: Hamed
  surname: Bouzary
  fullname: Bouzary, Hamed
  organization: The University of Texas at San Antonio
– sequence: 5
  givenname: Awni
  surname: Shahin
  fullname: Shahin, Awni
  organization: Mu'tah University
BackLink https://www.osti.gov/biblio/2578642$$D View this record in Osti.gov
BookMark eNqFkE1rHSEUhqWk0JukP6Eg7XpSx9G52m4aQj8CgWwa0p2c0WOuYa6m6m24_75ObrrponWhwnnel8NzTI5iikjIm56d9Uyx94xxtpZiOOOMt4tzOUr-gqz6YRw7qdSPI7JamG6BXpHjUu5ZO1KJFYFbKBVpRrezNaRIfwWgYQt3SO0MpQQfLDwNYL5LOdTNtnygE-5TdLRukG52W4gU90gf25C2__llN0FB16pKC56Slx7mgq-f3xNy8-Xz94tv3dX118uL86vOCs5rpz3qQTutvFgL7Sbg0gFoz4XvYVSeuwlHrTgATr2Y1gyFt1pwJ2CUCvlwQt4eelOpwRQbKtqNTTGirYbLtRrFAr07QA85_dxhqeY-7XJse5mB9YPWcuhFo-SBsjmVktGbh9yc5L3pmVmUmz_KzaLcPCtvuY9_5doWT_ZqhjD_N_3pkA7Rp7yFx5RnZyrs55R9hmhDW_LfFb8BTKicEA
CitedBy_id crossref_primary_10_1016_j_ijpe_2024_109475
crossref_primary_10_1108_IJLSS_05_2024_256
crossref_primary_10_1080_00207543_2025_2535515
crossref_primary_10_3390_s24103247
crossref_primary_10_1007_s10044_024_01318_4
crossref_primary_10_1007_s00170_025_15834_y
crossref_primary_10_1080_00207543_2024_2309309
crossref_primary_10_1007_s12053_024_10228_7
crossref_primary_10_1007_s00170_024_13874_4
crossref_primary_10_1080_00207543_2024_2316279
crossref_primary_10_1016_j_procs_2025_02_017
crossref_primary_10_1371_journal_pone_0329492
crossref_primary_10_1108_IJPDLM_04_2025_559
Cites_doi 10.1111/exsy.12800
10.1109/ACCESS.2021.3077499
10.1080/00207543.2022.2100840
10.1101/2020.05.03.075184
10.1080/09537287.2021.1917720
10.1080/00207543.2022.2056860
10.1109/ACCESS.2022.3193250
10.1007/s41315-021-00180-5
10.12776/qip.v25i3.1613
10.1109/JSTARS.2021.3130238
10.12709/mest.10.10.01.01
10.1109/ITOEC53115.2022.9734594
10.1080/19397038.2019.1566411
10.1007/978-3-319-46448-0_2
10.1108/IJLSS-06-2020-0075
10.1109/5.726791
10.1016/j.cie.2019.106099
10.1080/00207543.2020.1832274
10.1007/s00170-022-10259-3
10.1080/00207543.2022.2153943
10.1016/j.jclepro.2019.119903
10.1007/978-3-319-56871-3_8
10.1080/00207543.2020.1824085
10.1108/IJCHM-03-2022-0304
10.1108/IJLSS-05-2020-0067
10.3390/w10121712
10.1109/ICCV.2015.169
10.1109/ICNISC54316.2021.00084
10.3390/logistics5040066
10.1007/s11042-022-12962-5
10.2478/mspe-2022-0013
10.1108/IJLSS-11-2015-0042
10.1108/IJLSS-03-2013-0019
10.1007/s12553-022-00691-6
10.1109/ICTA50426.2020.9332115
10.1109/ACCESS.2021.3077567
10.1109/ACCESS.2022.3144433
10.29119/1641-3466.2022.156.27
10.1016/j.autcon.2017.11.002
10.1155/2021/5597337
10.1108/IJPPM-05-2020-0223
10.1109/TIFS.2019.2907184
10.1007/s11042-022-12916-x
10.1109/CVPR.2016.90
10.1007/978-3-031-18326-3_11
10.1109/ACCESS.2020.3021508
10.1109/ACCESS.2020.3012701
10.1007/s42486-021-00057-3
10.1007/s00170-022-10329-6
10.1016/j.asoc.2022.108942
10.1088/1757-899X/271/1/012037
10.1109/TCBB.2022.3199572
10.1109/ACCESS.2022.3160179
10.1007/s00170-020-05822-9
10.1007/s00170-021-06748-6
10.1109/DICTA51227.2020.9363372
10.1080/00207543.2019.1651458
10.1080/00207543.2021.1946192
10.3390/su131810029
10.1109/ICCV.2017.322
10.1117/1.JEI.28.1.013023
10.1007/s11263-007-0090-8
10.1007/s11042-022-13451-5
10.1109/UEMCON53757.2021.9666552
10.1109/ACCESS.2021.3064040
10.1007/s00170-020-05124-0
10.1007/s00170-023-10970-9
10.1109/AISP53593.2022.9760665
10.1155/2022/1070405
10.1109/LGRS.2020.3038901
10.1016/j.ijproman.2006.11.007
10.22381/emfm16320215
10.1007/s40313-019-00551-1
10.1080/00207543.2023.2179346
10.1162/neco.1997.9.8.1735
10.1080/00207543.2020.1740342
10.1080/00207543.2019.1672902
10.1108/IJLSS-02-2014-0004
10.1016/j.ijpe.2019.04.036
10.1109/RIVF51545.2021.9642128
10.1109/CVPR.2014.81
10.21203/rs.3.rs-2782987/v1
10.1108/IJLSS-06-2017-0063
10.1016/j.jmsy.2021.03.005
10.1108/IJLSS-06-2015-0024
10.48550/arXiv.1905.11946
10.1142/S0218001421600089
10.1109/CAC48633.2019.8997382
10.29207/resti.v5i4.3175
10.1109/ACCESS.2020.3029555
10.1007/s13198-021-01514-z
10.1016/j.array.2022.100220
10.17512/pjms.2022.25.2.24
10.1109/ACCESS.2021.3113337
10.1080/002075400189509
10.1016/j.autcon.2013.08.009
10.1109/ACCESS.2022.3184113
10.1145/3065386
10.1108/IJCHM-01-2022-0103
ContentType Journal Article
Copyright 2023 Informa UK Limited, trading as Taylor & Francis Group 2023
2023 Informa UK Limited, trading as Taylor & Francis Group
Copyright_xml – notice: 2023 Informa UK Limited, trading as Taylor & Francis Group 2023
– notice: 2023 Informa UK Limited, trading as Taylor & Francis Group
CorporateAuthor University of Texas Rio Grande Valley, Edinburg, TX (United States)
CorporateAuthor_xml – name: University of Texas Rio Grande Valley, Edinburg, TX (United States)
DBID AAYXX
CITATION
7SC
8FD
F28
FR3
JQ2
L7M
L~C
L~D
OTOTI
DOI 10.1080/00207543.2023.2225652
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
OSTI.GOV
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1366-588X
EndPage 3211
ExternalDocumentID 2578642
10_1080_00207543_2023_2225652
2225652
Genre Research Article
GrantInformation_xml – fundername: University of Texas at San Antonio
– fundername: Office of Naval Research
– fundername: U.S. Department of Energy
GroupedDBID -~X
.7F
.QJ
0BK
0R~
29J
2DF
30N
4.4
5GY
5VS
8VB
A8Z
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACTIO
ADCVX
ADGTB
ADXPE
AEGXH
AEISY
AEMOZ
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AHDZW
AHQJS
AIAGR
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EBD
EBE
EBO
EBR
EBS
EBU
EMK
EPL
ESTFP
E~A
E~B
GTTXZ
H13
HF~
HZ~
H~9
H~P
I-F
IPNFZ
J.P
KYCEM
LJTGL
M4Z
ML~
NA5
NX~
O9-
P2P
PQQKQ
QWB
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TH9
TN5
TNC
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
ZL0
~S~
AAYXX
CITATION
K1G
7SC
8FD
F28
FR3
JQ2
L7M
L~C
L~D
OTOTI
ID FETCH-LOGICAL-c422t-9fe939d98f4749dba25daa9f24f1a68f2dbe6982aaeb14b70e4fc942d4a658e23
IEDL.DBID TFW
ISICitedReferencesCount 22
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001018771800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0020-7543
IngestDate Mon Aug 25 02:20:40 EDT 2025
Wed Aug 13 06:25:53 EDT 2025
Sat Nov 29 05:36:24 EST 2025
Tue Nov 18 21:18:10 EST 2025
Mon Oct 20 23:46:46 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c422t-9fe939d98f4749dba25daa9f24f1a68f2dbe6982aaeb14b70e4fc942d4a658e23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
None
NA0004003
USDOE National Nuclear Security Administration (NNSA)
PQID 3013995314
PQPubID 30924
PageCount 19
ParticipantIDs proquest_journals_3013995314
informaworld_taylorfrancis_310_1080_00207543_2023_2225652
crossref_citationtrail_10_1080_00207543_2023_2225652
crossref_primary_10_1080_00207543_2023_2225652
osti_scitechconnect_2578642
PublicationCentury 2000
PublicationDate 2024-05-02
PublicationDateYYYYMMDD 2024-05-02
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-02
  day: 02
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: United States
PublicationTitle International journal of production research
PublicationYear 2024
Publisher Taylor & Francis
Taylor & Francis LLC
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis LLC
References e_1_3_3_50_1
e_1_3_3_77_1
e_1_3_3_39_1
e_1_3_3_16_1
e_1_3_3_35_1
e_1_3_3_58_1
e_1_3_3_92_1
e_1_3_3_12_1
e_1_3_3_31_1
e_1_3_3_54_1
e_1_3_3_73_1
e_1_3_3_96_1
e_1_3_3_113_1
e_1_3_3_61_1
e_1_3_3_88_1
e_1_3_3_9_1
e_1_3_3_105_1
e_1_3_3_109_1
e_1_3_3_27_1
e_1_3_3_46_1
e_1_3_3_69_1
e_1_3_3_80_1
e_1_3_3_5_1
e_1_3_3_23_1
e_1_3_3_42_1
e_1_3_3_65_1
e_1_3_3_84_1
e_1_3_3_101_1
e_1_3_3_30_1
e_1_3_3_76_1
e_1_3_3_99_1
Devitt Caitlin. (e_1_3_3_22_1) 2022; 394
e_1_3_3_116_1
e_1_3_3_19_1
e_1_3_3_38_1
e_1_3_3_91_1
e_1_3_3_34_1
e_1_3_3_72_1
e_1_3_3_95_1
e_1_3_3_112_1
e_1_3_3_11_1
e_1_3_3_53_1
e_1_3_3_41_1
e_1_3_3_87_1
e_1_3_3_60_1
e_1_3_3_108_1
e_1_3_3_8_1
Ohno T. (e_1_3_3_57_1) 1991
Ciaburro Giuseppe (e_1_3_3_15_1) 2017
e_1_3_3_49_1
e_1_3_3_100_1
e_1_3_3_26_1
e_1_3_3_68_1
e_1_3_3_45_1
e_1_3_3_83_1
e_1_3_3_104_1
e_1_3_3_4_1
e_1_3_3_64_1
e_1_3_3_52_1
e_1_3_3_75_1
e_1_3_3_98_1
e_1_3_3_71_1
e_1_3_3_79_1
e_1_3_3_18_1
e_1_3_3_14_1
e_1_3_3_37_1
e_1_3_3_90_1
e_1_3_3_111_1
e_1_3_3_10_1
e_1_3_3_33_1
e_1_3_3_56_1
e_1_3_3_94_1
Womack J. (e_1_3_3_106_1) 2003
e_1_3_3_115_1
e_1_3_3_40_1
e_1_3_3_63_1
e_1_3_3_86_1
e_1_3_3_7_1
e_1_3_3_107_1
e_1_3_3_29_1
e_1_3_3_25_1
e_1_3_3_48_1
e_1_3_3_3_1
e_1_3_3_21_1
e_1_3_3_44_1
e_1_3_3_67_1
e_1_3_3_82_1
e_1_3_3_103_1
e_1_3_3_97_1
e_1_3_3_51_1
e_1_3_3_78_1
e_1_3_3_70_1
e_1_3_3_17_1
e_1_3_3_110_1
e_1_3_3_13_1
e_1_3_3_59_1
e_1_3_3_36_1
e_1_3_3_93_1
e_1_3_3_114_1
e_1_3_3_74_1
Hiremath Chetan V. (e_1_3_3_32_1) 2021; 18
e_1_3_3_62_1
e_1_3_3_89_1
e_1_3_3_6_1
e_1_3_3_28_1
e_1_3_3_24_1
e_1_3_3_47_1
Murugesan T. K. (e_1_3_3_55_1) 2012; 29
e_1_3_3_81_1
e_1_3_3_2_1
e_1_3_3_20_1
e_1_3_3_66_1
e_1_3_3_43_1
e_1_3_3_85_1
e_1_3_3_102_1
References_xml – ident: e_1_3_3_63_1
  doi: 10.1111/exsy.12800
– ident: e_1_3_3_109_1
  doi: 10.1109/ACCESS.2021.3077499
– ident: e_1_3_3_91_1
  doi: 10.1080/00207543.2022.2100840
– ident: e_1_3_3_25_1
– ident: e_1_3_3_112_1
  doi: 10.1101/2020.05.03.075184
– ident: e_1_3_3_101_1
  doi: 10.1080/09537287.2021.1917720
– ident: e_1_3_3_52_1
  doi: 10.1080/00207543.2022.2056860
– ident: e_1_3_3_61_1
  doi: 10.1109/ACCESS.2022.3193250
– ident: e_1_3_3_69_1
  doi: 10.1007/s41315-021-00180-5
– ident: e_1_3_3_80_1
  doi: 10.12776/qip.v25i3.1613
– ident: e_1_3_3_110_1
  doi: 10.1109/JSTARS.2021.3130238
– ident: e_1_3_3_12_1
  doi: 10.12709/mest.10.10.01.01
– volume: 29
  start-page: 295
  issue: 2
  year: 2012
  ident: e_1_3_3_55_1
  article-title: Competitive Advantage of World Class Manufacturing System (WCMS)–A Study of Manufacturing Companies in South India
  publication-title: European Journal of Social Sciences
– ident: e_1_3_3_104_1
– ident: e_1_3_3_48_1
  doi: 10.1109/ITOEC53115.2022.9734594
– ident: e_1_3_3_100_1
  doi: 10.1080/19397038.2019.1566411
– ident: e_1_3_3_51_1
  doi: 10.1007/978-3-319-46448-0_2
– ident: e_1_3_3_5_1
  doi: 10.1108/IJLSS-06-2020-0075
– ident: e_1_3_3_47_1
  doi: 10.1109/5.726791
– ident: e_1_3_3_8_1
  doi: 10.1016/j.cie.2019.106099
– ident: e_1_3_3_9_1
  doi: 10.1080/00207543.2020.1832274
– ident: e_1_3_3_82_1
  doi: 10.1007/s00170-022-10259-3
– ident: e_1_3_3_98_1
  doi: 10.1080/00207543.2022.2153943
– ident: e_1_3_3_7_1
  doi: 10.1016/j.jclepro.2019.119903
– ident: e_1_3_3_102_1
– volume-title: Neural Networks with R: Smart Models Using CNN, RNN, Deep Learning, and Artificial Intelligence Principles
  year: 2017
  ident: e_1_3_3_15_1
– ident: e_1_3_3_71_1
– ident: e_1_3_3_19_1
  doi: 10.1007/978-3-319-56871-3_8
– ident: e_1_3_3_116_1
  doi: 10.1080/00207543.2020.1824085
– ident: e_1_3_3_54_1
  doi: 10.1108/IJCHM-03-2022-0304
– ident: e_1_3_3_97_1
  doi: 10.1108/IJLSS-05-2020-0067
– ident: e_1_3_3_115_1
  doi: 10.3390/w10121712
– ident: e_1_3_3_26_1
  doi: 10.1109/ICCV.2015.169
– ident: e_1_3_3_108_1
  doi: 10.1109/ICNISC54316.2021.00084
– ident: e_1_3_3_89_1
  doi: 10.3390/logistics5040066
– ident: e_1_3_3_28_1
– ident: e_1_3_3_23_1
  doi: 10.1007/s11042-022-12962-5
– ident: e_1_3_3_56_1
  doi: 10.2478/mspe-2022-0013
– ident: e_1_3_3_72_1
  doi: 10.1108/IJLSS-11-2015-0042
– ident: e_1_3_3_44_1
  doi: 10.1108/IJLSS-03-2013-0019
– ident: e_1_3_3_66_1
  doi: 10.1007/s12553-022-00691-6
– ident: e_1_3_3_93_1
  doi: 10.1109/ICTA50426.2020.9332115
– ident: e_1_3_3_92_1
  doi: 10.1109/ACCESS.2021.3077567
– ident: e_1_3_3_75_1
  doi: 10.1109/ACCESS.2022.3144433
– ident: e_1_3_3_39_1
  doi: 10.29119/1641-3466.2022.156.27
– ident: e_1_3_3_24_1
  doi: 10.1016/j.autcon.2017.11.002
– ident: e_1_3_3_77_1
  doi: 10.1155/2021/5597337
– ident: e_1_3_3_88_1
  doi: 10.1108/IJPPM-05-2020-0223
– ident: e_1_3_3_59_1
  doi: 10.1109/TIFS.2019.2907184
– ident: e_1_3_3_14_1
  doi: 10.1007/s11042-022-12916-x
– ident: e_1_3_3_31_1
  doi: 10.1109/CVPR.2016.90
– ident: e_1_3_3_94_1
– ident: e_1_3_3_83_1
  doi: 10.1007/978-3-031-18326-3_11
– ident: e_1_3_3_6_1
  doi: 10.1109/ACCESS.2020.3021508
– ident: e_1_3_3_53_1
– ident: e_1_3_3_114_1
  doi: 10.1109/ACCESS.2020.3012701
– ident: e_1_3_3_68_1
  doi: 10.1007/s42486-021-00057-3
– ident: e_1_3_3_85_1
  doi: 10.1007/s00170-022-10329-6
– ident: e_1_3_3_38_1
  doi: 10.1016/j.asoc.2022.108942
– ident: e_1_3_3_70_1
  doi: 10.1088/1757-899X/271/1/012037
– ident: e_1_3_3_34_1
  doi: 10.1109/TCBB.2022.3199572
– ident: e_1_3_3_95_1
  doi: 10.1109/ACCESS.2022.3160179
– ident: e_1_3_3_105_1
  doi: 10.1007/s00170-020-05822-9
– ident: e_1_3_3_107_1
  doi: 10.1007/s00170-021-06748-6
– ident: e_1_3_3_90_1
  doi: 10.1109/DICTA51227.2020.9363372
– ident: e_1_3_3_79_1
  doi: 10.1080/00207543.2019.1651458
– ident: e_1_3_3_65_1
  doi: 10.1080/00207543.2021.1946192
– ident: e_1_3_3_20_1
  doi: 10.3390/su131810029
– ident: e_1_3_3_30_1
  doi: 10.1109/ICCV.2017.322
– ident: e_1_3_3_46_1
  doi: 10.1117/1.JEI.28.1.013023
– ident: e_1_3_3_74_1
  doi: 10.1007/s11263-007-0090-8
– ident: e_1_3_3_67_1
  doi: 10.1007/s11042-022-13451-5
– ident: e_1_3_3_18_1
  doi: 10.1109/UEMCON53757.2021.9666552
– ident: e_1_3_3_113_1
  doi: 10.1109/ACCESS.2021.3064040
– ident: e_1_3_3_76_1
– ident: e_1_3_3_84_1
  doi: 10.1007/s00170-020-05124-0
– ident: e_1_3_3_86_1
  doi: 10.1007/s00170-023-10970-9
– ident: e_1_3_3_60_1
  doi: 10.1109/AISP53593.2022.9760665
– ident: e_1_3_3_4_1
  doi: 10.1155/2022/1070405
– ident: e_1_3_3_50_1
  doi: 10.1109/LGRS.2020.3038901
– ident: e_1_3_3_78_1
  doi: 10.1016/j.ijproman.2006.11.007
– ident: e_1_3_3_3_1
  doi: 10.22381/emfm16320215
– ident: e_1_3_3_11_1
  doi: 10.1007/s40313-019-00551-1
– ident: e_1_3_3_43_1
  doi: 10.1080/00207543.2023.2179346
– ident: e_1_3_3_33_1
  doi: 10.1162/neco.1997.9.8.1735
– ident: e_1_3_3_49_1
  doi: 10.1080/00207543.2020.1740342
– ident: e_1_3_3_73_1
  doi: 10.1080/00207543.2019.1672902
– ident: e_1_3_3_36_1
– ident: e_1_3_3_58_1
  doi: 10.1108/IJLSS-02-2014-0004
– ident: e_1_3_3_62_1
  doi: 10.1016/j.ijpe.2019.04.036
– volume: 394
  start-page: 1
  issue: 35772
  year: 2022
  ident: e_1_3_3_22_1
  article-title: Projects Face Labor Shortage
  publication-title: Bond Buyer
– ident: e_1_3_3_10_1
  doi: 10.1109/RIVF51545.2021.9642128
– ident: e_1_3_3_27_1
  doi: 10.1109/CVPR.2014.81
– ident: e_1_3_3_87_1
  doi: 10.21203/rs.3.rs-2782987/v1
– ident: e_1_3_3_29_1
  doi: 10.1108/IJLSS-06-2017-0063
– ident: e_1_3_3_103_1
  doi: 10.1016/j.jmsy.2021.03.005
– ident: e_1_3_3_64_1
  doi: 10.1108/IJLSS-06-2015-0024
– ident: e_1_3_3_96_1
  doi: 10.48550/arXiv.1905.11946
– ident: e_1_3_3_41_1
  doi: 10.1142/S0218001421600089
– ident: e_1_3_3_111_1
  doi: 10.1109/CAC48633.2019.8997382
– ident: e_1_3_3_35_1
  doi: 10.29207/resti.v5i4.3175
– volume-title: Lean Thinking: Banish Waste and Create Wealth in Your Corporation
  year: 2003
  ident: e_1_3_3_106_1
– ident: e_1_3_3_37_1
  doi: 10.1109/ACCESS.2020.3029555
– ident: e_1_3_3_13_1
  doi: 10.1007/s13198-021-01514-z
– ident: e_1_3_3_17_1
  doi: 10.1016/j.array.2022.100220
– ident: e_1_3_3_16_1
  doi: 10.1016/j.array.2022.100220
– ident: e_1_3_3_99_1
  doi: 10.17512/pjms.2022.25.2.24
– ident: e_1_3_3_2_1
  doi: 10.1109/ACCESS.2021.3113337
– ident: e_1_3_3_21_1
  doi: 10.1080/002075400189509
– ident: e_1_3_3_40_1
  doi: 10.1016/j.autcon.2013.08.009
– ident: e_1_3_3_81_1
  doi: 10.1109/ACCESS.2022.3184113
– ident: e_1_3_3_42_1
  doi: 10.1145/3065386
– volume: 18
  start-page: 21
  issue: 3
  year: 2021
  ident: e_1_3_3_32_1
  article-title: Unveiling the Linkages Between Enablers for On-Time Dispatch of Finished Goods in SMEs: An Integrative TISM-Fuzzy MICMAC Analysis
  publication-title: IUP Journal of Supply Chain Management
– volume-title: El Sistema de Produccion Toyota: Más Allá de La Produccion a Gran Escala [Internet]
  year: 1991
  ident: e_1_3_3_57_1
– ident: e_1_3_3_45_1
  doi: 10.1108/IJCHM-01-2022-0103
SSID ssj0000584
Score 2.5181859
Snippet Modern manufacturing is the world's largest and most automated industrial sector. The rise of Industry 4.0 technologies such as Big Data, Internet of Things...
Not provided.
SourceID osti
proquest
crossref
informaworld
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3193
SubjectTerms Algorithms
Artificial intelligence
Automation
Big Data
Customer satisfaction
Damage detection
Decision making
Engineering
Image classification
Industrial applications
Industry 4.0
Internet of Things
Lean manufacturing
Machine learning
New technology
Operations Research & Management Science
Packages
waste reduction
Title Waste reduction via image classification algorithms: beyond the human eye with an AI-based vision
URI https://www.tandfonline.com/doi/abs/10.1080/00207543.2023.2225652
https://www.proquest.com/docview/3013995314
https://www.osti.gov/biblio/2578642
Volume 62
WOSCitedRecordID wos001018771800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis
  customDbUrl:
  eissn: 1366-588X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000584
  issn: 0020-7543
  databaseCode: TFW
  dateStart: 19610101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQYoCBN6K85IHVVeo4D7NViAqWiqGobJbjB0SCFqUBiX_PnZOWIoQYYEuGcxTf-bs76-47Qs595GTOvWY2jQQTPS-ZjH3KpPQ8y5y0Rhdh2EQ2HOb39_K2rSactWWVmEP7higiYDUebl3M5hVx2MENjk7EXRz93cWEJU0QhcH149EcDcafWJzkLQ9zxFBk3sPz0ypfvNMX7lKA7Ckcum-QHfzQYOsf_mCbbLZBKO03VrNDVtxkl2wsURPuET3WoH9aIbMr6o6-lZqWz4A-1GDAjRVGQalUPz1Mq7J-fJ5d0CL0w1AIKmkY_kfdu6N41UvhuX_D0Gda2vSz75O7wdXo8pq14xiYEZzXTHonY2ll7kUmpC00T6zWoFPhezrNPbeFS0HxWgP-iyKLnPBGCm6FhjDH8fiArE6mE3dIKAQtzuQ8th6yyyJKtEl05iHV4yZNASU6RMzVoEzLVY4jM55Ub0Fp2uygwh1U7Q52SHch9tKQdfwmIJd1rOpwS-KbkSYq_kX2GA1CQaSCdLsG65JMrRACIafrkJO5nagWFWBBjLcloJ44-sOHj8k6vIpQdclPyGpdvbpTsmbe6nJWnQX7_wBwUv8a
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA6ignrwLdb6yMFryjabfcSbiEWx9lTRW8jmoYXaSl0F_70z2a1WRDzobWGZLJuZfDMTZr4h5NhHTubca2bTSDDR9pLJ2KdMSs-zzElrdBGGTWS9Xn53J2d7YbCsEnNoXxFFBKzGw42X0dOSOGzhBk8n4hbO_m5hxpImAMMLCfha5M_vd24_0TjJaybmiKHMtIvnp2W--Kcv7KUA2mM4dt9AO3iiztp__MM6Wa3jUHpaGc4GmXOjTbIyw064RfStBhOgEyR3RfXR14Gmg0cAIGow5sYio6BXqof348mgfHh8PqFFaImhEFfSMP-PujdH8baXwvPpJUO3aWnV0r5Nbjrn_bMLVk9kYEZwXjLpnYyllbkXmZC20DyxWoNahW_rNPfcFi4F3WsNLkAUWeSEN1JwKzREOo7HO2R-NB65XUIhbnEm57H1kGAWUaJNojMP2R43aQpA0SBiqgdlarpynJoxVO0PVtNqBxXuoKp3sEFaH2JPFV_HbwJyVsmqDBclvppqouJfZJtoEQqCFWTcNViaZEqFKAhpXYPsTw1F1cAAC2LILQH4xN4fPnxEli76113VvexdNckyvBKhCJPvk_ly8uIOyKJ5LQfPk8NwGN4BocoDUw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA6iInrwLdZnDl5TttnsI96KWhSleFD0FrJ5aKG20q4F_70z2a0PRDzobWGZLJuZfDMTZr4h5MhHTubca2bTSDDR8pLJ2KdMSs-zzElrdBGGTWTdbn5_L6_rasJxXVaJObSviCICVuPhfrZ-WhGHHdzg6ETcxNHfTUxY0gRQeA5C5xSN_KZz9wHGSV4TMUcMZaZNPD8t88U9fSEvBcwewqn7htnBEXVW_uEXVslyHYXSdmU2a2TGDdbJ0iduwg2i7zQYAB0htSsqj056mvaeAH6owYgbS4yCVqnuPwxHvfLxaXxMi9AQQyGqpGH6H3WvjuJdL4Xn9gVDp2lp1dC-SW47Zzcn56yex8CM4Lxk0jsZSytzLzIhbaF5YrUGpQrf0mnuuS1cCprXGhyAKLLICW-k4FZoiHMcj7fI7GA4cNuEQtTiTM5j6yG9LKJEm0RnHnI9btIUYKJBxFQNytRk5Tgzo69a75ym1Q4q3EFV72CDNN_Fniu2jt8E5GcdqzJck_hqpomKf5HdRYNQEKog367BwiRTKsRASOoaZG9qJ6qGBVgQA24JsCd2_vDhQ7JwfdpRVxfdy12yCG9EqMDke2S2HL24fTJvJmVvPDoIR-ENhsYCBQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Waste+reduction+via+image+classification+algorithms%3A+beyond+the+human+eye+with+an+AI-based+vision&rft.jtitle=International+journal+of+production+research&rft.au=Shahin%2C+Mohammad&rft.au=Chen%2C+F.&rft.au=Hosseinzadeh%2C+Ali&rft.au=Bouzary%2C+Hamed&rft.date=2024-05-02&rft.pub=Taylor+%26+Francis&rft.issn=0020-7543&rft.volume=62&rft.issue=9&rft_id=info:doi/10.1080%2F00207543.2023.2225652&rft.externalDocID=2578642
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-7543&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-7543&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-7543&client=summon