AI-driven precision diagnosis and treatment in Parkinson’s disease: a comprehensive review and experimental analysis
Parkinson's disease (PD) represents one of the most prevalent neurodegenerative disorders globally, affecting over 10 million individuals worldwide. Traditional diagnostic approaches rely heavily on clinical observation and subjective assessment, often leading to delayed or inaccurate diagnoses...
Saved in:
| Published in: | Frontiers in aging neuroscience Vol. 17; p. 1638340 |
|---|---|
| Main Author: | |
| Format: | Journal Article |
| Language: | English |
| Published: |
Switzerland
Frontiers Media S.A
28.07.2025
|
| Subjects: | |
| ISSN: | 1663-4365, 1663-4365 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Parkinson's disease (PD) represents one of the most prevalent neurodegenerative disorders globally, affecting over 10 million individuals worldwide. Traditional diagnostic approaches rely heavily on clinical observation and subjective assessment, often leading to delayed or inaccurate diagnoses. The emergence of artificial intelligence (AI) technologies offers unprecedented opportunities for precision diagnosis and personalized treatment strategies in PD management.
This study aims to comprehensively review current AI applications in Parkinson's disease diagnosis and treatment, evaluate existing methodologies, and present experimental results from a novel multimodal AI diagnostic framework.
A systematic review was conducted across PubMed, IEEE Xplore, and Web of Science databases from 2018 to 2024, focusing on AI applications in PD diagnosis and treatment. Additionally, we developed and tested a hybrid machine learning model combining deep learning, computer vision, and natural language processing techniques for PD assessment using motor symptom analysis, voice pattern recognition, and gait analysis.
The systematic review identified 127 relevant studies demonstrating significant advances in AI-driven PD diagnosis, with accuracy rates ranging from 78 to 96%. Our experimental framework achieved 94.2% accuracy in early-stage PD detection, outperforming traditional clinical assessment methods. The integrated approach showed particular strength in identifying subtle motor fluctuations and predicting treatment response patterns.
AI-driven approaches demonstrate substantial potential for revolutionizing PD diagnosis and treatment personalization. The integration of multiple data modalities and advanced machine learning algorithms enables earlier detection, more accurate monitoring, and optimized therapeutic interventions. Future research should focus on large-scale clinical validation and implementation frameworks for healthcare systems. |
|---|---|
| AbstractList | Parkinson's disease (PD) represents one of the most prevalent neurodegenerative disorders globally, affecting over 10 million individuals worldwide. Traditional diagnostic approaches rely heavily on clinical observation and subjective assessment, often leading to delayed or inaccurate diagnoses. The emergence of artificial intelligence (AI) technologies offers unprecedented opportunities for precision diagnosis and personalized treatment strategies in PD management.
This study aims to comprehensively review current AI applications in Parkinson's disease diagnosis and treatment, evaluate existing methodologies, and present experimental results from a novel multimodal AI diagnostic framework.
A systematic review was conducted across PubMed, IEEE Xplore, and Web of Science databases from 2018 to 2024, focusing on AI applications in PD diagnosis and treatment. Additionally, we developed and tested a hybrid machine learning model combining deep learning, computer vision, and natural language processing techniques for PD assessment using motor symptom analysis, voice pattern recognition, and gait analysis.
The systematic review identified 127 relevant studies demonstrating significant advances in AI-driven PD diagnosis, with accuracy rates ranging from 78 to 96%. Our experimental framework achieved 94.2% accuracy in early-stage PD detection, outperforming traditional clinical assessment methods. The integrated approach showed particular strength in identifying subtle motor fluctuations and predicting treatment response patterns.
AI-driven approaches demonstrate substantial potential for revolutionizing PD diagnosis and treatment personalization. The integration of multiple data modalities and advanced machine learning algorithms enables earlier detection, more accurate monitoring, and optimized therapeutic interventions. Future research should focus on large-scale clinical validation and implementation frameworks for healthcare systems. Parkinson's disease (PD) represents one of the most prevalent neurodegenerative disorders globally, affecting over 10 million individuals worldwide. Traditional diagnostic approaches rely heavily on clinical observation and subjective assessment, often leading to delayed or inaccurate diagnoses. The emergence of artificial intelligence (AI) technologies offers unprecedented opportunities for precision diagnosis and personalized treatment strategies in PD management.BackgroundParkinson's disease (PD) represents one of the most prevalent neurodegenerative disorders globally, affecting over 10 million individuals worldwide. Traditional diagnostic approaches rely heavily on clinical observation and subjective assessment, often leading to delayed or inaccurate diagnoses. The emergence of artificial intelligence (AI) technologies offers unprecedented opportunities for precision diagnosis and personalized treatment strategies in PD management.This study aims to comprehensively review current AI applications in Parkinson's disease diagnosis and treatment, evaluate existing methodologies, and present experimental results from a novel multimodal AI diagnostic framework.ObjectiveThis study aims to comprehensively review current AI applications in Parkinson's disease diagnosis and treatment, evaluate existing methodologies, and present experimental results from a novel multimodal AI diagnostic framework.A systematic review was conducted across PubMed, IEEE Xplore, and Web of Science databases from 2018 to 2024, focusing on AI applications in PD diagnosis and treatment. Additionally, we developed and tested a hybrid machine learning model combining deep learning, computer vision, and natural language processing techniques for PD assessment using motor symptom analysis, voice pattern recognition, and gait analysis.MethodsA systematic review was conducted across PubMed, IEEE Xplore, and Web of Science databases from 2018 to 2024, focusing on AI applications in PD diagnosis and treatment. Additionally, we developed and tested a hybrid machine learning model combining deep learning, computer vision, and natural language processing techniques for PD assessment using motor symptom analysis, voice pattern recognition, and gait analysis.The systematic review identified 127 relevant studies demonstrating significant advances in AI-driven PD diagnosis, with accuracy rates ranging from 78 to 96%. Our experimental framework achieved 94.2% accuracy in early-stage PD detection, outperforming traditional clinical assessment methods. The integrated approach showed particular strength in identifying subtle motor fluctuations and predicting treatment response patterns.ResultsThe systematic review identified 127 relevant studies demonstrating significant advances in AI-driven PD diagnosis, with accuracy rates ranging from 78 to 96%. Our experimental framework achieved 94.2% accuracy in early-stage PD detection, outperforming traditional clinical assessment methods. The integrated approach showed particular strength in identifying subtle motor fluctuations and predicting treatment response patterns.AI-driven approaches demonstrate substantial potential for revolutionizing PD diagnosis and treatment personalization. The integration of multiple data modalities and advanced machine learning algorithms enables earlier detection, more accurate monitoring, and optimized therapeutic interventions. Future research should focus on large-scale clinical validation and implementation frameworks for healthcare systems.ConclusionAI-driven approaches demonstrate substantial potential for revolutionizing PD diagnosis and treatment personalization. The integration of multiple data modalities and advanced machine learning algorithms enables earlier detection, more accurate monitoring, and optimized therapeutic interventions. Future research should focus on large-scale clinical validation and implementation frameworks for healthcare systems. BackgroundParkinson’s disease (PD) represents one of the most prevalent neurodegenerative disorders globally, affecting over 10 million individuals worldwide. Traditional diagnostic approaches rely heavily on clinical observation and subjective assessment, often leading to delayed or inaccurate diagnoses. The emergence of artificial intelligence (AI) technologies offers unprecedented opportunities for precision diagnosis and personalized treatment strategies in PD management.ObjectiveThis study aims to comprehensively review current AI applications in Parkinson’s disease diagnosis and treatment, evaluate existing methodologies, and present experimental results from a novel multimodal AI diagnostic framework.MethodsA systematic review was conducted across PubMed, IEEE Xplore, and Web of Science databases from 2018 to 2024, focusing on AI applications in PD diagnosis and treatment. Additionally, we developed and tested a hybrid machine learning model combining deep learning, computer vision, and natural language processing techniques for PD assessment using motor symptom analysis, voice pattern recognition, and gait analysis.ResultsThe systematic review identified 127 relevant studies demonstrating significant advances in AI-driven PD diagnosis, with accuracy rates ranging from 78 to 96%. Our experimental framework achieved 94.2% accuracy in early-stage PD detection, outperforming traditional clinical assessment methods. The integrated approach showed particular strength in identifying subtle motor fluctuations and predicting treatment response patterns.ConclusionAI-driven approaches demonstrate substantial potential for revolutionizing PD diagnosis and treatment personalization. The integration of multiple data modalities and advanced machine learning algorithms enables earlier detection, more accurate monitoring, and optimized therapeutic interventions. Future research should focus on large-scale clinical validation and implementation frameworks for healthcare systems. |
| Author | Twala, Bhekisipho |
| AuthorAffiliation | Office of the DVC for Digital Transformation, Tshwane University of Technology , Pretoria , South Africa |
| AuthorAffiliation_xml | – name: Office of the DVC for Digital Transformation, Tshwane University of Technology , Pretoria , South Africa |
| Author_xml | – sequence: 1 givenname: Bhekisipho surname: Twala fullname: Twala, Bhekisipho |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40791245$$D View this record in MEDLINE/PubMed |
| BookMark | eNpVkktuFDEQhlsoiISQC7BAvWQzg-2y3d1sUBTxGCkSLGBtVdvVE4cee7B7BrLjGlyPk-B5ECXe2Kr666sq-X9enYQYqKpecjYHaLs3Q8Clnwsm1JxraEGyJ9UZ1xpmErQ6efA-rS5yvmXlADCm2mfVqWRNx4VUZ9X2cjFzyW8p1OtE1mcfQ-08LkPMPtcYXD0lwmlFYap9qL9g-u5DjuHv7z-5CDNhprc11jauCuCGQi6wOtHW0899Of1aU_K7ehxLAMe7An5RPR1wzHRxvM-rbx_ef736NLv-_HFxdXk9s1KIadZhjzhIpSxzqtMSFLq-oVZjq7TteqY6UBwcEus7q1rV9A3CYAVDciAJzqvFgesi3pp1mQPTnYnozT4Q09JgmrwdydiGoJfEG4ZCSt61um8bN8gBBu6GRhTWuwNrvelX5GzZKOH4CPo4E_yNWcat4QJAc5CF8PpISPHHhvJkVj5bGkcMFDfZgIC24R3otkhfPWx23-X_zxWBOAhsijknGu4lnJmdQ8zeIWbnEHN0CPwDHSay_w |
| Cites_doi | 10.1371/journal.pone.009381 10.1109/TASSP.1980.1163420 10.5555/3454287.3455008 10.1109/ACCESS.2017.2676168 10.1016/j.nicl.2017.09.010 10.1093/brain/awt192 10.3171/jns.2006.104.4.506 10.1136/jnnp.2007.131045 10.2196/15182 10.1038/s41591-018-0307-0 10.1146/annurev-bioeng-071516-044442 10.1038/nrdp.2017.13 10.1126/science.aay9547 10.1002/mds.10527 10.1002/mds.26718 10.1093/jamia/ocv189 10.1161/CIRCULATIONAHA.115.001593 10.1002/mds.26642 10.1001/jamainternmed.2018.3763 10.5555/3045118.3045167 10.1016/S2589-7500(20)30292-2 10.1155/2013/717853 10.1002/mds.26312 10.1136/svn-2017-000101 10.1016/j.parkreldis.2015.02.026 10.1016/j.asoc.2017.11.001 10.1016/j.asoc.2018.10.022 10.1016/j.media.2018.05.004 10.1038/s41591-018-0300-7 10.1038/s41746-018-0029-1 10.1121/1.3514381 10.1016/j.eswa.2013.11.031 10.1002/mds.25383 10.1002/mds.26241 10.1371/journal.pmed.1000097 10.1038/s41591-018-0316-z 10.1002/mds.102 10.1162/neco.1997.9.8.1735 10.1002/mds.26424 10.1001/jama.2019.22360 10.1136/jnnp.55.3.181 10.1002/wsbm.1198 10.1016/j.ijmedinf.2016.03.001 10.1109/TBME.2012.2183367 10.1212/WNL.17.5.427 10.1001/jama.2018.17163 10.1016/s0197-4580(02)00065-9 10.1002/mds.22340 10.1212/WNL.0000000000002350 10.1080/0142159X.2019.1595557 10.1038/sdata.2016.11 10.1001/jama.2008.929 10.23919/ICACT.2018.8323864 10.1016/S2589-7500(21)00208-9 10.1016/j.patrec.2019.04.003 10.1056/NEJMoa1809983 10.1145/3313831.3376301 10.1016/j.jns.2020.117003 10.1186/s12874-018-0482-1 10.1093/ageing/26.5.353 10.1093/brain/117.5.1169 10.1002/mds.27528 10.1109/TPAMI.2021.3079209 10.1109/TBME.2018.2873252 10.1038/s41746-020-0253-3 10.1038/s41591-019-0548-6 10.1155/2018/3860146 10.1016/S1474-4422(18)30295-3 10.1001/archneur.56.1.33 10.1093/bib/bbx044 10.1002/mds.25628 10.1002/mds.870130310 10.1016/S0140-6736(14)61393-3 10.1007/BF02295996 10.1016/j.ejmp.2021.10.005 10.1073/pnas.1919012117 10.1212/01.wnl.0000180516.69442.95 10.3389/fneur.2020.00053 10.3389/fbioe.2015.00104 10.1038/s41551-018-0305-z 10.1093/brain/114.5.2283 10.1002/mds.26110 10.1038/nature14539 10.1002/ima.22141 10.1016/j.cmpb.2016.08.005 10.1056/NEJMoa0809335 10.1001/jamaneurol.2018.0809 10.1109/CVPR.2016.90 10.1016/j.bandc.2004.05.002 |
| ContentType | Journal Article |
| Copyright | Copyright © 2025 Twala. Copyright © 2025 Twala. 2025 Twala |
| Copyright_xml | – notice: Copyright © 2025 Twala. – notice: Copyright © 2025 Twala. 2025 Twala |
| DBID | AAYXX CITATION NPM 7X8 5PM DOA |
| DOI | 10.3389/fnagi.2025.1638340 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1663-4365 |
| ExternalDocumentID | oai_doaj_org_article_c7e3b4e170a2441986b87df4f3f1df72 PMC12336134 40791245 10_3389_fnagi_2025_1638340 |
| Genre | Journal Article |
| GroupedDBID | --- 53G 5VS 7X7 88I 8FE 8FH 8FI 8FJ 9T4 AAFWJ AAYXX ABIVO ABUWG ACGFO ACGFS ADBBV ADRAZ AEGXH AENEX AFFHD AFKRA AFPKN AIAGR ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI CCPQU CITATION DIK DWQXO E3Z EIHBH F5P FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE KQ8 LK8 M2P M7P M~E O5R O5S OK1 PGMZT PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC RNS RPM TR2 UKHRP ACXDI ALIPV IPNFZ M48 NPM RIG 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c422t-9abaaf455c0d596435adb7e86a856c9b0593513dae0b9c5857b7a3fc20aed34e3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001547932200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1663-4365 |
| IngestDate | Fri Oct 03 12:52:22 EDT 2025 Tue Nov 04 02:05:10 EST 2025 Fri Sep 05 15:15:29 EDT 2025 Fri Aug 15 02:01:24 EDT 2025 Sat Nov 29 07:41:54 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | neurodegeneration precision medicine digital biomarkers machine learning Parkinson’s disease artificial intelligence |
| Language | English |
| License | Copyright © 2025 Twala. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c422t-9abaaf455c0d596435adb7e86a856c9b0593513dae0b9c5857b7a3fc20aed34e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Rohan Gupta, University of South Carolina, United States Reviewed by: Steven Gunzler, Case Western Reserve University, United States Jinyang Huang, Hefei University of Technology, China Edited by: Alice Maria Giani, Icahn School of Medicine at Mount Sinai, United States |
| OpenAccessLink | https://doaj.org/article/c7e3b4e170a2441986b87df4f3f1df72 |
| PMID | 40791245 |
| PQID | 3238719368 |
| PQPubID | 23479 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_c7e3b4e170a2441986b87df4f3f1df72 pubmedcentral_primary_oai_pubmedcentral_nih_gov_12336134 proquest_miscellaneous_3238719368 pubmed_primary_40791245 crossref_primary_10_3389_fnagi_2025_1638340 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-07-28 |
| PublicationDateYYYYMMDD | 2025-07-28 |
| PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-28 day: 28 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland |
| PublicationTitle | Frontiers in aging neuroscience |
| PublicationTitleAlternate | Front Aging Neurosci |
| PublicationYear | 2025 |
| Publisher | Frontiers Media S.A |
| Publisher_xml | – name: Frontiers Media S.A |
| References | Davis (ref18) 1980; 28 Jenkinson (ref49) 1997; 26 Weaver (ref98) 2009; 301 Postuma (ref72) 2015; 30 Williams (ref100) 2020; 10 Sendak (ref87) 2020; 3 Yu (ref102) 2018; 2 Pereira (ref70) 2016; 136 Rusz (ref83) 2015; 3 Haq (ref37) 2018; 2018 Schrag (ref85) 2003; 18 Duncan (ref21) 2016; 31 (ref26) 2019 McNemar (ref60) 1947; 12 Rajkomar (ref77) 2019; 380 Kordower (ref53) 2013; 136 Simonyan (ref91) 2014 Topol (ref94) 2019; 25 Rusz (ref82) 2011; 129 Burciu (ref12) 2018; 33 Hausdorff (ref39) 1998; 13 Sendak (ref88) 2020; 8 Olanow (ref67) 2009; 361 Rajkomar (ref78) 2018; 1 Rosa (ref81) 2015; 30 Muehlematter (ref65) 2021; 3 Masters (ref59) 2019; 41 Del Din (ref19) 2016; 31 Larrazabal (ref54) 2020; 117 Espay (ref22) 2016; 31 Jankovic (ref48) 2008; 79 Bernardo (ref8) 2018; 2018 Galna (ref29) 2015; 30 Morris (ref64) 1994; 117 Prince (ref76) 2019; 66 Harel (ref38) 2004; 56 Shortliffe (ref90) 2018; 320 Ghassemi (ref32) 2021; 3 Chen (ref16) 2013; 5 Bahdanau (ref6) 2014 Poewe (ref71) 2017; 3 Moro-Velazquez (ref63) 2017; 62 Gianfrancesco (ref33) 2018; 178 Amoroso (ref2) 2018; 48 Stamatakis (ref92) 2013; 2013 Jiang (ref50) 2017; 2 Zhan (ref103) 2018; 75 (ref27) 2019 Moher (ref62) 2009; 6 Rizzo (ref80) 2016; 86 Guo (ref35) 2018; 2018 Sakar (ref84) 2019; 74 Babic (ref5) 2019; 366 He (ref40) 2019; 25 Shen (ref89) 2017; 19 Prashanth (ref74) 2014; 41 Katzman (ref36) 2018; 18 Hughes (ref45) 1992; 55 Miotto (ref61) 2018; 19 Esteva (ref23) 2019; 25 Cao (ref14) 2020; 11 Bai (ref7) 2018 Mandel (ref58) 2016; 23 Kalia (ref51) 2015; 386 Maetzler (ref57) 2013; 28 Vaswani (ref96) 2017; 30 Prashanth (ref75) 2016; 90 Arora (ref4) 2015; 21 (ref25) 2017 Yang (ref101) 2020; 2020 Butterworth (ref13) 1930; 7 Betrouni (ref9) 2019; 34 Stebbins (ref93) 2013; 28 Verschuur (ref97) 2019; 380 Fearnley (ref28) 1991; 114 (ref24) 2017; 117 Gelb (ref31) 1999; 56 Schwarz (ref86) 2014; 13 He (ref41) 2016; 2016 Chen (ref15) 2017; 5 Prashanth (ref73) 2018; 96 Kingma (ref52) 2014 LeCun (ref55) 2015; 521 Braak (ref11) 2003; 24 Wiens (ref99) 2019; 25 Hochreiter (ref42) 1997; 9 Ioffe (ref46) 2015; 2015 Rana (ref79) 2015; 25 Goetz (ref34) 2008; 23 Choi (ref17) 2017; 16 Ganin (ref30) 2015; 2015 Aich (ref1) 2018; 2018 Bot (ref10) 2016; 3 Hoehn (ref43) 1967; 17 Hospedales (ref44) 2021; 44 Pahwa (ref68) 2006; 104 Paszke (ref69) 2019; 32 (ref47) 2016 Armstrong (ref3) 2020; 323 Lugaresi (ref56) 2019 Muslimovic (ref66) 2005; 65 Dorsey (ref20) 2018; 17 Tsanas (ref95) 2012; 59 |
| References_xml | – volume: 13 start-page: 461 year: 2014 ident: ref86 article-title: The 'swallow tail' appearance of the healthy nigrosome - a new accurate test of Parkinson's disease: a case-control and cohort study publication-title: Lancet Neurol. doi: 10.1371/journal.pone.009381 – volume: 28 start-page: 357 year: 1980 ident: ref18 article-title: Comparison of parametric representations for monosyllabic word recognition in continuously spoken sentences publication-title: IEEE Trans. Acoust. Speech Signal Process. doi: 10.1109/TASSP.1980.1163420 – volume: 30 start-page: 5998 year: 2017 ident: ref96 article-title: Attention is all you need publication-title: Adv. Neural Inf. Proces. Syst. – volume: 32 start-page: 8024 year: 2019 ident: ref69 article-title: PyTorch: an imperative style, high-performance deep learning library publication-title: Adv. Neural. Inf. Process. Syst. doi: 10.5555/3454287.3455008 – year: 2017 ident: ref25 – volume: 5 start-page: 3095 year: 2017 ident: ref15 article-title: Performance analysis of smartphone-sensor behavior for human activity recognition publication-title: IEEE Access. doi: 10.1109/ACCESS.2017.2676168 – volume: 16 start-page: 586 year: 2017 ident: ref17 article-title: Refining diagnosis of Parkinson's disease with deep learning-based interpretation of dopamine transporter imaging publication-title: NeuroImage doi: 10.1016/j.nicl.2017.09.010 – volume: 136 start-page: 2419 year: 2013 ident: ref53 article-title: Disease duration and the integrity of the nigrostriatal system in Parkinson's disease publication-title: Brain doi: 10.1093/brain/awt192 – volume: 104 start-page: 506 year: 2006 ident: ref68 article-title: Long-term evaluation of deep brain stimulation of the thalamus publication-title: J. Neurosurg. doi: 10.3171/jns.2006.104.4.506 – volume: 79 start-page: 368 year: 2008 ident: ref48 article-title: Parkinson's disease: clinical features and diagnosis publication-title: J. Neurol. Neurosurg. Psychiatry doi: 10.1136/jnnp.2007.131045 – volume: 96 start-page: 266 year: 2018 ident: ref73 article-title: Novel cell-phone based diagnosis of Parkinson's disease using additive logistic regression publication-title: Comput. Biol. Med. – volume-title: Arxiv year: 2014 ident: ref6 article-title: Neural machine translation by jointly learning to align and translate – volume: 8 start-page: e15182 year: 2020 ident: ref88 article-title: Real-world integration of a sepsis deep learning technology into routine clinical care: implementation study publication-title: JMIR Med. Inform. doi: 10.2196/15182 – volume: 25 start-page: 30 year: 2019 ident: ref40 article-title: The practical implementation of artificial intelligence technologies in medicine publication-title: Nat. Med. doi: 10.1038/s41591-018-0307-0 – volume: 19 start-page: 221 year: 2017 ident: ref89 article-title: Deep learning in medical image analysis publication-title: Annu. Rev. Biomed. Eng. doi: 10.1146/annurev-bioeng-071516-044442 – volume: 3 start-page: 17013 year: 2017 ident: ref71 article-title: Parkinson disease publication-title: Nat. Rev. Dis. Primers doi: 10.1038/nrdp.2017.13 – volume: 366 start-page: 1202 year: 2019 ident: ref5 article-title: Algorithms on regulatory lockdown in medicine publication-title: Science doi: 10.1126/science.aay9547 – volume: 18 start-page: 1250 year: 2003 ident: ref85 article-title: Young- versus older-onset Parkinson's disease: impact of disease and psychosocial consequences publication-title: Mov. Disord. doi: 10.1002/mds.10527 – volume: 31 start-page: 1293 year: 2016 ident: ref19 article-title: Free-living monitoring of Parkinson's disease: lessons from the field publication-title: Mov. Disord. doi: 10.1002/mds.26718 – volume: 23 start-page: 899 year: 2016 ident: ref58 article-title: SMART on FHIR: a standards-based, interoperable apps platform for electronic health records publication-title: J. Am. Med. Inform. Assoc. doi: 10.1093/jamia/ocv189 – volume: 380 start-page: 1347 year: 2019 ident: ref77 article-title: Machine learning in medicine publication-title: N. Engl. J. Med. doi: 10.1161/CIRCULATIONAHA.115.001593 – volume: 31 start-page: 1272 year: 2016 ident: ref22 article-title: Technology in Parkinson's disease: challenges and opportunities publication-title: Mov. Disord. doi: 10.1002/mds.26642 – volume: 178 start-page: 1544 year: 2018 ident: ref33 article-title: Potential biases in machine learning algorithms using electronic health record data publication-title: JAMA Intern. Med. doi: 10.1001/jamainternmed.2018.3763 – volume: 2015 start-page: 448 year: 2015 ident: ref46 article-title: Batch normalization: accelerating deep network training by reducing internal covariate shift publication-title: Proc. Int. Conf. Mach. Learn. doi: 10.5555/3045118.3045167 – volume: 3 start-page: e195 year: 2021 ident: ref65 article-title: Approval of artificial intelligence and machine learning-based medical devices in the USA and Europe (2015-20): a comparative analysis publication-title: Lancet Digit Health. doi: 10.1016/S2589-7500(20)30292-2 – volume-title: Arxiv year: 2014 ident: ref52 article-title: Adam: a method for stochastic optimization – volume: 2013 start-page: 1 year: 2013 ident: ref92 article-title: Finger tapping clinometric score prediction in Parkinson's disease using low-cost accelerometers publication-title: Comput. Intell. Neurosci. doi: 10.1155/2013/717853 – volume: 31 start-page: 103 year: 2016 ident: ref21 article-title: Gray and white matter imaging: a biomarker for cognitive impairment in early Parkinson's disease? publication-title: Mov. Disord. doi: 10.1002/mds.26312 – volume: 2 start-page: 230 year: 2017 ident: ref50 article-title: Artificial intelligence in healthcare: past, present and future publication-title: Stroke Vasc Neurol. doi: 10.1136/svn-2017-000101 – volume: 21 start-page: 650 year: 2015 ident: ref4 article-title: Detecting and monitoring the symptoms of Parkinson's disease using smartphones: a pilot study publication-title: Parkinsonism Relat. Disord. doi: 10.1016/j.parkreldis.2015.02.026 – volume: 62 start-page: 649 year: 2017 ident: ref63 article-title: Analysis of speaker recognition methodologies and the influence of kinetic changes to automatically detect Parkinson's disease publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.11.001 – volume: 74 start-page: 255 year: 2019 ident: ref84 article-title: A comparative analysis of speech signal processing algorithms for Parkinson's disease classification and the use of the tunable Q-factor wavelet transform publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.10.022 – volume: 48 start-page: 12 year: 2018 ident: ref2 article-title: Complex networks reveal early MRI markers of Parkinson's disease publication-title: Med. Image Anal. doi: 10.1016/j.media.2018.05.004 – volume: 25 start-page: 44 year: 2019 ident: ref94 article-title: High-performance medicine: the convergence of human and artificial intelligence publication-title: Nat. Med. doi: 10.1038/s41591-018-0300-7 – volume: 1 start-page: 18 year: 2018 ident: ref78 article-title: Scalable and accurate deep learning with electronic health records publication-title: NPJ Digit Med. doi: 10.1038/s41746-018-0029-1 – volume: 129 start-page: 350 year: 2011 ident: ref82 article-title: Quantitative acoustic measurements for characterization of speech and voice disorders in early untreated Parkinson's disease publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.3514381 – volume: 41 start-page: 3333 year: 2014 ident: ref74 article-title: Automatic classification and prediction models for early Parkinson's disease diagnosis from SPECT imaging publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2013.11.031 – volume: 28 start-page: 668 year: 2013 ident: ref93 article-title: How to identify tremor dominant and postural instability/gait difficulty groups with the movement disorder society unified Parkinson's disease rating scale: comparison with the unified Parkinson's disease rating scale publication-title: Mov. Disord. doi: 10.1002/mds.25383 – volume: 30 start-page: 1003 year: 2015 ident: ref81 article-title: Adaptive deep brain stimulation in a freely moving parkinsonian patient publication-title: Mov. Disord. doi: 10.1002/mds.26241 – volume: 6 start-page: e1000097 year: 2009 ident: ref62 article-title: Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement publication-title: PLoS Med. doi: 10.1371/journal.pmed.1000097 – volume: 25 start-page: 24 year: 2019 ident: ref23 article-title: A guide to deep learning in healthcare publication-title: Nat. Med. doi: 10.1038/s41591-018-0316-z – volume: 33 start-page: 1688 year: 2018 ident: ref12 article-title: Imaging of motor cortex physiology in Parkinson's disease publication-title: Mov. Disord. doi: 10.1002/mds.102 – volume: 9 start-page: 1735 year: 1997 ident: ref42 article-title: Long short-term memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – volume: 30 start-page: 1591 year: 2015 ident: ref72 article-title: MDS clinical diagnostic criteria for Parkinson's disease publication-title: Mov. Disord. doi: 10.1002/mds.26424 – volume: 323 start-page: 548 year: 2020 ident: ref3 article-title: Diagnosis and treatment of Parkinson's disease: a review publication-title: JAMA doi: 10.1001/jama.2019.22360 – volume: 55 start-page: 181 year: 1992 ident: ref45 article-title: Accuracy of clinical diagnosis of idiopathic Parkinson's disease: a clinicopathological study of 100 cases publication-title: J. Neurol. Neurosurg. Psychiatry doi: 10.1136/jnnp.55.3.181 – volume: 5 start-page: 73 year: 2013 ident: ref16 article-title: Promise of personalized omics to precision medicine publication-title: Wiley Interdiscip. Rev. Syst. Biol. Med. doi: 10.1002/wsbm.1198 – volume: 90 start-page: 13 year: 2016 ident: ref75 article-title: High-accuracy detection of early Parkinson's disease through multimodal features and machine learning publication-title: Int. J. Med. Inform. doi: 10.1016/j.ijmedinf.2016.03.001 – volume: 59 start-page: 1264 year: 2012 ident: ref95 article-title: Novel speech signal processing algorithms for high-accuracy classification of Parkinson's disease publication-title: I.E.E.E. Trans. Biomed. Eng. doi: 10.1109/TBME.2012.2183367 – volume: 17 start-page: 427 year: 1967 ident: ref43 article-title: Parkinsonism: onset, progression and mortality publication-title: Neurology doi: 10.1212/WNL.17.5.427 – volume: 320 start-page: 2199 year: 2018 ident: ref90 article-title: Clinical decision support in the era of artificial intelligence publication-title: JAMA doi: 10.1001/jama.2018.17163 – volume: 24 start-page: 197 year: 2003 ident: ref11 article-title: Staging of brain pathology related to sporadic Parkinson's disease publication-title: Neurobiol. Aging doi: 10.1016/s0197-4580(02)00065-9 – volume: 23 start-page: 2129 year: 2008 ident: ref34 article-title: Movement Disorder Society-sponsored revision of the unified Parkinson's disease rating scale (MDS-UPDRS): scale presentation and clinimetric testing results publication-title: Mov. Disord. doi: 10.1002/mds.22340 – volume: 86 start-page: 566 year: 2016 ident: ref80 article-title: Accuracy of clinical diagnosis of Parkinson's disease: a systematic review and meta-analysis publication-title: Neurology doi: 10.1212/WNL.0000000000002350 – volume: 2015 start-page: 1180 year: 2015 ident: ref30 article-title: Unsupervised domain adaptation by backpropagation publication-title: Proc. Int. Conf. Mach. Learn. – volume: 41 start-page: 976 year: 2019 ident: ref59 article-title: Artificial intelligence in medical education publication-title: Med. Teach. doi: 10.1080/0142159X.2019.1595557 – volume: 3 start-page: 160011 year: 2016 ident: ref10 article-title: The mPower study, Parkinson's disease mobile data collected using ResearchKit publication-title: Sci Data doi: 10.1038/sdata.2016.11 – volume: 301 start-page: 63 year: 2009 ident: ref98 article-title: Bilateral deep brain stimulation vs best medical therapy for patients with advanced Parkinson disease: a randomized controlled trial publication-title: JAMA doi: 10.1001/jama.2008.929 – volume: 2018 start-page: 638 year: 2018 ident: ref1 article-title: A non-linear decision tree-based classification approach to predict the Parkinson's disease using different feature sets of voice data publication-title: Proc. Int. Conf. Adv. Commun. Technol. doi: 10.23919/ICACT.2018.8323864 – volume-title: Arxiv year: 2018 ident: ref7 article-title: An empirical evaluation of generic convolutional and recurrent networks for sequence modelling – volume: 3 start-page: e745 year: 2021 ident: ref32 article-title: The false hope of current approaches to explainable artificial intelligence in health care publication-title: Lancet Digit Health. doi: 10.1016/S2589-7500(21)00208-9 – volume: 2018 start-page: 4764 year: 2018 ident: ref8 article-title: Handwriting pattern recognition as a complementary technique for detecting Parkinson's disease publication-title: Proc. Int. Conf. Pattern Recognit. doi: 10.1016/j.patrec.2019.04.003 – volume: 380 start-page: 315 year: 2019 ident: ref97 article-title: Randomized delayed-start trial of levodopa in Parkinson's disease publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1809983 – volume: 2020 start-page: 4527 year: 2020 ident: ref101 article-title: Re-examining whether, why, and how human-AI interaction is uniquely difficult to design publication-title: Proc SIGCHI Conf Hum Factor Comput Syst. doi: 10.1145/3313831.3376301 – volume: 10 start-page: 597 year: 2020 ident: ref100 article-title: The discerning eye of computer vision: can it measure Parkinson's motor symptoms? publication-title: J. Parkinsons Dis. doi: 10.1016/j.jns.2020.117003 – volume: 18 start-page: 24 year: 2018 ident: ref36 article-title: DeepSurv: Personalized treatment recommender system using a Cox proportional hazards deep neural network publication-title: BMC Medical Research Methodology doi: 10.1186/s12874-018-0482-1 – volume: 26 start-page: 353 year: 1997 ident: ref49 article-title: The Parkinson's disease questionnaire (PDQ-39): development and validation of a Parkinson's disease summary index score publication-title: Age Ageing doi: 10.1093/ageing/26.5.353 – volume: 117 start-page: 1169 year: 1994 ident: ref64 article-title: The pathogenesis of gait hypokinesia in Parkinson's disease publication-title: Brain doi: 10.1093/brain/117.5.1169 – volume: 34 start-page: 210 year: 2019 ident: ref9 article-title: Electroencephalography-based machine learning for cognitive profiling in Parkinson's disease: preliminary results publication-title: Mov. Disord. doi: 10.1002/mds.27528 – volume: 117 start-page: 1 year: 2017 ident: ref24 article-title: Regulation (EU) 2017/745 of the European Parliament and of the council on medical devices publication-title: Off. J. Eur. Union – volume: 44 start-page: 1 year: 2021 ident: ref44 article-title: Meta-learning in neural networks: a survey publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2021.3079209 – volume: 66 start-page: 1402 year: 2019 ident: ref76 article-title: Multi-source ensemble learning for the remote prediction of Parkinson's disease in the presence of source-wise missing data publication-title: I.E.E.E. Trans. Biomed. Eng. doi: 10.1109/TBME.2018.2873252 – volume: 3 start-page: 41 year: 2020 ident: ref87 article-title: Presenting machine learning model information to clinical end users with model facts labels publication-title: NPJ Digit Med. doi: 10.1038/s41746-020-0253-3 – volume: 25 start-page: 1337 year: 2019 ident: ref99 article-title: Do no harm: a roadmap for responsible machine learning for health care publication-title: Nat. Med. doi: 10.1038/s41591-019-0548-6 – volume: 2018 start-page: 1 year: 2018 ident: ref37 article-title: A hybrid intelligent system framework for the prediction of heart disease using machine learning algorithms publication-title: Mob. Inf. Syst. doi: 10.1155/2018/3860146 – volume: 17 start-page: 939 year: 2018 ident: ref20 article-title: Global, regional, and national burden of Parkinson's disease, 1990-2016: a systematic analysis for the global burden of disease study 2016 publication-title: Lancet Neurol. doi: 10.1016/S1474-4422(18)30295-3 – volume: 56 start-page: 33 year: 1999 ident: ref31 article-title: Diagnostic criteria for Parkinson's disease publication-title: Arch. Neurol. doi: 10.1001/archneur.56.1.33 – volume: 19 start-page: 1236 year: 2018 ident: ref61 article-title: Deep learning for healthcare: review, opportunities and challenges publication-title: Brief. Bioinform. doi: 10.1093/bib/bbx044 – volume-title: Arxiv year: 2019 ident: ref56 article-title: MediaPipe: a framework for building perception pipelines – volume: 7 start-page: 536 year: 1930 ident: ref13 article-title: On the theory of filter amplifiers publication-title: Exp. Wireless Eng. – volume: 28 start-page: 1628 year: 2013 ident: ref57 article-title: Quantitative wearable sensors for objective assessment of Parkinson's disease publication-title: Mov. Disord. doi: 10.1002/mds.25628 – volume: 13 start-page: 428 year: 1998 ident: ref39 article-title: Gait variability and basal ganglia disorders: stride-to-stride variations of gait cycle timing in Parkinson's disease and Huntington's disease publication-title: Mov. Disord. doi: 10.1002/mds.870130310 – volume-title: Arxiv year: 2014 ident: ref91 article-title: Very deep convolutional networks for large-scale image recognition – volume: 386 start-page: 896 year: 2015 ident: ref51 article-title: Parkinson's disease publication-title: Lancet doi: 10.1016/S0140-6736(14)61393-3 – volume: 12 start-page: 153 year: 1947 ident: ref60 article-title: Note on the sampling error of the difference between correlated proportions or percentages publication-title: Psychometrika doi: 10.1007/BF02295996 – volume: 2018 start-page: 529 year: 2018 ident: ref35 article-title: Rescue-me: a framework for distributed collaborative machine learning for clinical decision support publication-title: Proc. AMIA Annu. Symp. doi: 10.1016/j.ejmp.2021.10.005 – volume: 117 start-page: 12592 year: 2020 ident: ref54 article-title: Gender imbalance in medical imaging datasets produces biased classifiers for computer-aided diagnosis publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1919012117 – volume: 65 start-page: 1239 year: 2005 ident: ref66 article-title: Cognitive profile of patients with newly diagnosed Parkinson's disease publication-title: Neurology doi: 10.1212/01.wnl.0000180516.69442.95 – volume-title: Quality system regulation 21 CFR part 820 year: 2019 ident: ref27 – volume: 11 start-page: 53 year: 2020 ident: ref14 article-title: Abnormal anatomical rich-club organization and structural-functional coupling in mild cognitive impairment and Alzheimer's disease publication-title: Front. Neurol. doi: 10.3389/fneur.2020.00053 – volume: 3 start-page: 104 year: 2015 ident: ref83 article-title: Automatic evaluation of speech rhythm instability and acceleration in dysarthrias associated with basal ganglia dysfunction publication-title: Front. Bioeng. Biotechnol. doi: 10.3389/fbioe.2015.00104 – volume: 2 start-page: 719 year: 2018 ident: ref102 article-title: Artificial intelligence in healthcare publication-title: Nat Biomed Eng. doi: 10.1038/s41551-018-0305-z – volume: 114 start-page: 2283 year: 1991 ident: ref28 article-title: Ageing and Parkinson's disease: substantia nigra regional selectivity publication-title: Brain doi: 10.1093/brain/114.5.2283 – volume-title: ISO 13485:2016 Medical devices - quality management systems - requirements for regulatory purposes year: 2016 ident: ref47 – year: 2019 ident: ref26 – volume: 30 start-page: 359 year: 2015 ident: ref29 article-title: Progression of gait dysfunction in incident Parkinson's disease: impact of medication and phenotype publication-title: Mov. Disord. doi: 10.1002/mds.26110 – volume: 521 start-page: 436 year: 2015 ident: ref55 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 25 start-page: 245 year: 2015 ident: ref79 article-title: Graph-theory-based spectral feature selection for computer-aided diagnosis of Parkinson's disease using T1-weighted MRI publication-title: Expert Syst. Appl. doi: 10.1002/ima.22141 – volume: 136 start-page: 79 year: 2016 ident: ref70 article-title: A new computer vision-based approach to aid the diagnosis of Parkinson's disease publication-title: Comput. Methods Prog. Biomed. doi: 10.1016/j.cmpb.2016.08.005 – volume: 361 start-page: 1268 year: 2009 ident: ref67 article-title: A double-blind, delayed-start trial of rasagiline in Parkinson's disease publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa0809335 – volume: 75 start-page: 876 year: 2018 ident: ref103 article-title: Using smartphones and machine learning to quantify Parkinson disease severity: the mobile Parkinson disease score publication-title: JAMA Neurol. doi: 10.1001/jamaneurol.2018.0809 – volume: 2016 start-page: 770 year: 2016 ident: ref41 article-title: Deep residual learning for image recognition publication-title: Proc. IEEE Conf. Comput. Vis. Pattern Recognit. doi: 10.1109/CVPR.2016.90 – volume: 56 start-page: 24 year: 2004 ident: ref38 article-title: Variability in fundamental frequency during speech in prodromal and incipient Parkinson's disease: a longitudinal case study publication-title: Brain Cogn. doi: 10.1016/j.bandc.2004.05.002 |
| SSID | ssj0000330058 |
| Score | 2.3861985 |
| Snippet | Parkinson's disease (PD) represents one of the most prevalent neurodegenerative disorders globally, affecting over 10 million individuals worldwide.... BackgroundParkinson’s disease (PD) represents one of the most prevalent neurodegenerative disorders globally, affecting over 10 million individuals worldwide.... |
| SourceID | doaj pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database |
| StartPage | 1638340 |
| SubjectTerms | Aging Neuroscience artificial intelligence digital biomarkers machine learning neurodegeneration Parkinson’s disease precision medicine |
| Title | AI-driven precision diagnosis and treatment in Parkinson’s disease: a comprehensive review and experimental analysis |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/40791245 https://www.proquest.com/docview/3238719368 https://pubmed.ncbi.nlm.nih.gov/PMC12336134 https://doaj.org/article/c7e3b4e170a2441986b87df4f3f1df72 |
| Volume | 17 |
| WOSCitedRecordID | wos001547932200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1663-4365 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000330058 issn: 1663-4365 databaseCode: DOA dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1663-4365 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000330058 issn: 1663-4365 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1663-4365 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000330058 issn: 1663-4365 databaseCode: M7P dateStart: 20230101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1663-4365 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000330058 issn: 1663-4365 databaseCode: BENPR dateStart: 20230101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Health & Medical customDbUrl: eissn: 1663-4365 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000330058 issn: 1663-4365 databaseCode: 7X7 dateStart: 20230101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 1663-4365 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000330058 issn: 1663-4365 databaseCode: PIMPY dateStart: 20230101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 1663-4365 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000330058 issn: 1663-4365 databaseCode: M2P dateStart: 20230101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BixAXxLOEx8pI3FBoEsexza1FrehhVxECaTlFfqp7Savstmf-Bn-vv6QeO11lERIXLnPIQ7H8TTwz9sw3AB_K2rvGUp4X2po8WHyfK6Np7pTXlfFaGWdiswm-WIjlUraTVl-YE5bogdPEHRruqK5dyQsVLFEIkRstuPW1p760nsfVt-ByEkzFNZgiDbtIVTIhCpOHHrv-hHiwYp_QBaG42zGxRJGw_29e5p_JkhPrc_oEHo9uIzlKw30K91z_DB7Ox4Px53B9dJbbAVcucjmMbXOITWl0qzVRvSXblHKy6gkWO8e6r5tfv9dkPKX5TBTBFPPBnae0dpIKW-Lr01YA4UKiMnkBP05Pvn_5mo8tFXJTV9Uml0or5WvGTGEZUnExhfzKolGCNUZqbPDHSmqVK7Q0IZTgmivqTVUoZ2nt6EvY6y969wpIo43kpeZWa1ZXmksfq1xpUTmrmdcZfLyb3u4yMWd0IeJAMLoIRodgdCMYGRwjAtsnkfU6Xgi60I260P1LFzJ4f4dfF_4SPPpQvbu4Wnc0eCY8-KqNyOAg4bn9VAhpZfByWAZiB-mdseze6VfnkYk7mH0a_KH69f8Y_Rt4hDOCG8eVeAt7m-HKvYMH5nqzWg8zuM-XPEoxg_3jk0X7bRZ1Psh51aLkQe63Z_P25y37ug1E |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AI-driven+precision+diagnosis+and+treatment+in+Parkinson%27s+disease%3A+a+comprehensive+review+and+experimental+analysis&rft.jtitle=Frontiers+in+aging+neuroscience&rft.au=Twala%2C+Bhekisipho&rft.date=2025-07-28&rft.issn=1663-4365&rft.eissn=1663-4365&rft.volume=17&rft.spage=1638340&rft_id=info:doi/10.3389%2Ffnagi.2025.1638340&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1663-4365&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1663-4365&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1663-4365&client=summon |