ECG Arrhythmia Measurement and Classification for Portable Monitoring

Globally, cardiovascular disease kills more than 500000 people every year, thus becoming the primary reason for death. Nevertheless, cardiovascular health monitoring is essential for accurate analysis and therapy of heart disease. In this work, a novel deep learning-based StrIppeD NAS-Network (SID-N...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Measurement science review Ročník 24; číslo 4; s. 118 - 128
Hlavní autoři: P Ajitha Gladis, K., Ahilan, A, Muthukumaran, N, Jenifer, L
Médium: Journal Article
Jazyk:angličtina
Vydáno: Bratislava Sciendo 01.08.2024
De Gruyter Brill Sp. z o.o., Paradigm Publishing Services
Témata:
ISSN:1335-8871, 1335-8871
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Globally, cardiovascular disease kills more than 500000 people every year, thus becoming the primary reason for death. Nevertheless, cardiovascular health monitoring is essential for accurate analysis and therapy of heart disease. In this work, a novel deep learning-based StrIppeD NAS-Network (SID-NASNet) for arrhythmia categorization into octa-classes with electrocardiogram (ECG) signals is presented. First, the ECG signals are recorded in real time using 12-lead electrodes. Then, the Discrete Wavelet Transform (DWT) is used to denoise the signals to reduce repetition and increase resilience. The noise-free ECG signals are fed into a K-means clustering algorithm to group ECG signal segments into a set number of clusters to identify patterns that may indicate heart abnormalities. Subsequently, the deep learning-based NASNet with Stripped convolutional layers is used to detect ECG irregularities of arrhythmia. Each sample point is examined for its local fractal dimension before extracting the heartbeat waveforms within a predetermined window length. A bio-inspired Dingo Optimization (DO) algorithm is used in the SID-NASNet to normalize the parameters to improve the efficiency of the network with low network complexity. The efficiency of the proposed SID-NASNet is assessed with specificity, accuracy, precision, F1 score and recall based on the MIT-BIH arrhythmia dataset. From the test results, the proposed SID-NASNet achieves an accuracy of 98.22% for effective categorization of ECG signals. The proposed SID-NASNet improves the overall accuracy of 1.24%, 3.76%, 1.87%, and 0.22% better than ECG-NET, Deep Learning (DL)-based GAN, 1D-CNN, and GAN-Long-Short Term Memory (LSTM), respectively.
AbstractList Globally, cardiovascular disease kills more than 500000 people every year, thus becoming the primary reason for death. Nevertheless, cardiovascular health monitoring is essential for accurate analysis and therapy of heart disease. In this work, a novel deep learning-based StrIppeD NAS-Network (SID-NASNet) for arrhythmia categorization into octa-classes with electrocardiogram (ECG) signals is presented. First, the ECG signals are recorded in real time using 12-lead electrodes. Then, the Discrete Wavelet Transform (DWT) is used to denoise the signals to reduce repetition and increase resilience. The noise-free ECG signals are fed into a K-means clustering algorithm to group ECG signal segments into a set number of clusters to identify patterns that may indicate heart abnormalities. Subsequently, the deep learning-based NASNet with Stripped convolutional layers is used to detect ECG irregularities of arrhythmia. Each sample point is examined for its local fractal dimension before extracting the heartbeat waveforms within a predetermined window length. A bio-inspired Dingo Optimization (DO) algorithm is used in the SID-NASNet to normalize the parameters to improve the efficiency of the network with low network complexity. The efficiency of the proposed SID-NASNet is assessed with specificity, accuracy, precision, F1 score and recall based on the MIT-BIH arrhythmia dataset. From the test results, the proposed SID-NASNet achieves an accuracy of 98.22% for effective categorization of ECG signals. The proposed SID-NASNet improves the overall accuracy of 1.24%, 3.76%, 1.87%, and 0.22% better than ECG-NET, Deep Learning (DL)-based GAN, 1D-CNN, and GAN-Long-Short Term Memory (LSTM), respectively.
Author P Ajitha Gladis, K.
Muthukumaran, N
Ahilan, A
Jenifer, L
Author_xml – sequence: 1
  givenname: K.
  surname: P Ajitha Gladis
  fullname: P Ajitha Gladis, K.
  email: kpajithagladis@gmail.com
  organization: Department of Information Technology, CSI Institute of Technology, Thovalai, Tamilnadu- 629302, India
– sequence: 2
  givenname: A
  surname: Ahilan
  fullname: Ahilan, A
  email: listentoahil@gmail.com
  organization: Department of Electronics and Communication Engineering, PSN College of Engineering and Technology, Tirunelveli, Tamil Nadu, India
– sequence: 3
  givenname: N
  surname: Muthukumaran
  fullname: Muthukumaran, N
  email: kumaranece@gmail.com
  organization: Centre for Computational Imaging and Machine Vision, Department of Electronics and Communication Engineering, Sri Eshwar College of Engineering, Coimbatore – 641202, Tamil Nadu, India
– sequence: 4
  givenname: L
  surname: Jenifer
  fullname: Jenifer, L
  email: Jenifer54312@outlook.com
  organization: Department of Electrical and Electronics Engineering, Sathyabama Institute of Science and Technology, Chennai, 600119, India
BookMark eNp1kM1rFEEQxRuJYIw5eh_wPNof1dM9eArLGgMJetBz0z1TvelldjpW9yL73zubNURE61JF8d7j8XvNzuY8I2NvBX8vwdgPu0Kt5BJazoV5wc6FUrq11oizP-5X7LKULV9GCdDGnLP1enXdXBHdH-r9LvnmDn3ZE-5wro2fx2Y1-VJSTIOvKc9NzNR8zVR9mLC5y3OqmdK8ecNeRj8VvPy9L9j3T-tvq8_t7Zfrm9XVbTuAlLXtxuBBjjpaAG96wTseIUIHIUQvFURuMEjsVVBxsFGClTF0xnaa9xqNVBfs5pQ7Zr91D5R2ng4u--QeH5k2zlNNw4TODqj4CFJJlNBF9H0wqIMGwBFFwCXr3SnrgfKPPZbqtnlP81LfKd73xmrD9aJSJ9VAuRTC6IZUH1lU8mlygrsjfrfgd0f87oh_cbV_uZ66_k__8aT_6aeKNOKG9ofleK70T58EEMKqX3g3m9Y
CitedBy_id crossref_primary_10_1007_s41939_025_00885_1
crossref_primary_10_1016_j_bspc_2025_108206
Cites_doi 10.1016/j.bspc.2021.102820
10.1016/j.aeue.2020.153363
10.2478/msr-2019-0030
10.1016/j.cpcardiol.2023.101924
10.1155/2021/9107547
10.1109/TIM.2021.3051412
10.1016/j.ymeth.2021.04.021
10.1088/2057-1976/ab6e1e
10.1007/s11277-014-2160-x
10.3390/s21030951
10.1016/j.cmpb.2020.105607
10.3390/s23031697
10.3390/rs15153741
10.1016/j.eswa.2020.113807
10.3390/diagnostics13162645
10.2478/msr-2023-0028
10.3390/ecsa-7-08229
10.17694/bajece.814473
10.4108/eai.24-4-2019.2284216
10.1109/I-SMAC47947.2019.9032698
10.3390/electronics10161871
10.1063/5.0113586
10.1007/s11831-023-09916-x
10.1371/journal.pone.0260661
10.3390/jimaging8030070
10.1007/s11760-023-02710-z
10.1098/rsta.2020.0258
10.3390/s21134331
10.1016/j.compbiomed.2023.106641
10.1109/ICISC47916.2020.9171084
10.1016/j.artmed.2023.102489
10.1155/2021/1819112
10.1016/j.engappai.2023.106484
10.3389/fphys.2021.673819
ContentType Journal Article
Copyright 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7U5
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BYOGL
CCPQU
DWQXO
HCIFZ
L6V
L7M
M7S
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.2478/msr-2024-0017
DatabaseName CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
East Europe, Central Europe Database (ProQuest)
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
East Europe, Central Europe Database
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Solid State and Superconductivity Abstracts
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BYOGL
  name: East Europe, Central Europe Database (ProQuest)
  url: https://search.proquest.com/eastcentraleurope
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1335-8871
EndPage 128
ExternalDocumentID oai_doaj_org_article_8ce30d4232e246fea9b7e5b544ede1be
10_2478_msr_2024_0017
10_2478_msr_2024_0017244118
GroupedDBID 0R~
29M
2WC
5GY
5VS
8FE
8FG
9WM
AATOW
ABFKT
ABJCF
ABUWG
ACGFS
ADBBV
ADBLJ
ADMLS
AENEX
AFFHD
AFKRA
AHGSO
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BPHCQ
BYOGL
CCPQU
CS3
DU5
E0C
E3Z
EBS
GROUPED_DOAJ
HCIFZ
HZ~
KQ8
L6V
M7S
M~E
O9-
OK1
OVT
P62
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PTHSS
QD8
SA.
SLJYH
TR2
AAYXX
CITATION
7U5
8FD
AZQEC
DWQXO
L7M
PKEHL
PQEST
PQUKI
PRINS
ID FETCH-LOGICAL-c422t-6dba42d5f844a791060f4f464bbfa234f07eb2e93b3fc8f2482fb67865095e723
IEDL.DBID M7S
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001302259500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1335-8871
IngestDate Tue Oct 14 19:08:17 EDT 2025
Sun Oct 19 01:28:36 EDT 2025
Sat Nov 29 07:30:38 EST 2025
Tue Nov 18 21:56:00 EST 2025
Sat Nov 29 01:25:16 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
http://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c422t-6dba42d5f844a791060f4f464bbfa234f07eb2e93b3fc8f2482fb67865095e723
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/3099785705?pq-origsite=%requestingapplication%
PQID 3099785705
PQPubID 2026594
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_8ce30d4232e246fea9b7e5b544ede1be
proquest_journals_3099785705
crossref_citationtrail_10_2478_msr_2024_0017
crossref_primary_10_2478_msr_2024_0017
walterdegruyter_journals_10_2478_msr_2024_0017244118
PublicationCentury 2000
PublicationDate 2024-08-01
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Bratislava
PublicationPlace_xml – name: Bratislava
PublicationTitle Measurement science review
PublicationYear 2024
Publisher Sciendo
De Gruyter Brill Sp. z o.o., Paradigm Publishing Services
Publisher_xml – name: Sciendo
– name: De Gruyter Brill Sp. z o.o., Paradigm Publishing Services
References 2025091709013167090_j_msr-2024-0017_ref_017
2025091709013167090_j_msr-2024-0017_ref_016
2025091709013167090_j_msr-2024-0017_ref_015
2025091709013167090_j_msr-2024-0017_ref_014
2025091709013167090_j_msr-2024-0017_ref_036
2025091709013167090_j_msr-2024-0017_ref_013
2025091709013167090_j_msr-2024-0017_ref_035
2025091709013167090_j_msr-2024-0017_ref_012
2025091709013167090_j_msr-2024-0017_ref_034
2025091709013167090_j_msr-2024-0017_ref_011
2025091709013167090_j_msr-2024-0017_ref_033
2025091709013167090_j_msr-2024-0017_ref_010
2025091709013167090_j_msr-2024-0017_ref_032
2025091709013167090_j_msr-2024-0017_ref_019
2025091709013167090_j_msr-2024-0017_ref_018
2025091709013167090_j_msr-2024-0017_ref_031
2025091709013167090_j_msr-2024-0017_ref_030
2025091709013167090_j_msr-2024-0017_ref_006
2025091709013167090_j_msr-2024-0017_ref_028
2025091709013167090_j_msr-2024-0017_ref_005
2025091709013167090_j_msr-2024-0017_ref_027
2025091709013167090_j_msr-2024-0017_ref_004
2025091709013167090_j_msr-2024-0017_ref_026
2025091709013167090_j_msr-2024-0017_ref_003
2025091709013167090_j_msr-2024-0017_ref_025
2025091709013167090_j_msr-2024-0017_ref_002
2025091709013167090_j_msr-2024-0017_ref_024
2025091709013167090_j_msr-2024-0017_ref_001
2025091709013167090_j_msr-2024-0017_ref_023
2025091709013167090_j_msr-2024-0017_ref_022
2025091709013167090_j_msr-2024-0017_ref_021
2025091709013167090_j_msr-2024-0017_ref_009
2025091709013167090_j_msr-2024-0017_ref_008
2025091709013167090_j_msr-2024-0017_ref_007
2025091709013167090_j_msr-2024-0017_ref_029
2025091709013167090_j_msr-2024-0017_ref_020
References_xml – ident: 2025091709013167090_j_msr-2024-0017_ref_025
  doi: 10.1016/j.bspc.2021.102820
– ident: 2025091709013167090_j_msr-2024-0017_ref_008
  doi: 10.1016/j.aeue.2020.153363
– ident: 2025091709013167090_j_msr-2024-0017_ref_004
  doi: 10.2478/msr-2019-0030
– ident: 2025091709013167090_j_msr-2024-0017_ref_016
  doi: 10.1016/j.cpcardiol.2023.101924
– ident: 2025091709013167090_j_msr-2024-0017_ref_033
  doi: 10.1155/2021/9107547
– ident: 2025091709013167090_j_msr-2024-0017_ref_011
– ident: 2025091709013167090_j_msr-2024-0017_ref_010
  doi: 10.1109/TIM.2021.3051412
– ident: 2025091709013167090_j_msr-2024-0017_ref_021
  doi: 10.1016/j.ymeth.2021.04.021
– ident: 2025091709013167090_j_msr-2024-0017_ref_035
  doi: 10.1088/2057-1976/ab6e1e
– ident: 2025091709013167090_j_msr-2024-0017_ref_006
  doi: 10.1007/s11277-014-2160-x
– ident: 2025091709013167090_j_msr-2024-0017_ref_023
  doi: 10.3390/s21030951
– ident: 2025091709013167090_j_msr-2024-0017_ref_027
  doi: 10.1016/j.cmpb.2020.105607
– ident: 2025091709013167090_j_msr-2024-0017_ref_017
  doi: 10.3390/s23031697
– ident: 2025091709013167090_j_msr-2024-0017_ref_032
  doi: 10.3390/rs15153741
– ident: 2025091709013167090_j_msr-2024-0017_ref_014
  doi: 10.1016/j.eswa.2020.113807
– ident: 2025091709013167090_j_msr-2024-0017_ref_031
  doi: 10.3390/diagnostics13162645
– ident: 2025091709013167090_j_msr-2024-0017_ref_003
  doi: 10.2478/msr-2023-0028
– ident: 2025091709013167090_j_msr-2024-0017_ref_026
  doi: 10.3390/ecsa-7-08229
– ident: 2025091709013167090_j_msr-2024-0017_ref_030
  doi: 10.17694/bajece.814473
– ident: 2025091709013167090_j_msr-2024-0017_ref_034
  doi: 10.4108/eai.24-4-2019.2284216
– ident: 2025091709013167090_j_msr-2024-0017_ref_012
  doi: 10.1109/I-SMAC47947.2019.9032698
– ident: 2025091709013167090_j_msr-2024-0017_ref_002
  doi: 10.3390/electronics10161871
– ident: 2025091709013167090_j_msr-2024-0017_ref_029
  doi: 10.1063/5.0113586
– ident: 2025091709013167090_j_msr-2024-0017_ref_009
  doi: 10.1007/s11831-023-09916-x
– ident: 2025091709013167090_j_msr-2024-0017_ref_007
  doi: 10.1371/journal.pone.0260661
– ident: 2025091709013167090_j_msr-2024-0017_ref_022
  doi: 10.3390/jimaging8030070
– ident: 2025091709013167090_j_msr-2024-0017_ref_013
  doi: 10.1007/s11760-023-02710-z
– ident: 2025091709013167090_j_msr-2024-0017_ref_024
  doi: 10.1098/rsta.2020.0258
– ident: 2025091709013167090_j_msr-2024-0017_ref_015
  doi: 10.3390/s21134331
– ident: 2025091709013167090_j_msr-2024-0017_ref_001
– ident: 2025091709013167090_j_msr-2024-0017_ref_020
  doi: 10.1016/j.compbiomed.2023.106641
– ident: 2025091709013167090_j_msr-2024-0017_ref_005
  doi: 10.1109/ICISC47916.2020.9171084
– ident: 2025091709013167090_j_msr-2024-0017_ref_019
  doi: 10.1016/j.artmed.2023.102489
– ident: 2025091709013167090_j_msr-2024-0017_ref_028
  doi: 10.1155/2021/1819112
– ident: 2025091709013167090_j_msr-2024-0017_ref_018
  doi: 10.1016/j.engappai.2023.106484
– ident: 2025091709013167090_j_msr-2024-0017_ref_036
  doi: 10.3389/fphys.2021.673819
SSID ssj0000314577
Score 2.345103
Snippet Globally, cardiovascular disease kills more than 500000 people every year, thus becoming the primary reason for death. Nevertheless, cardiovascular health...
SourceID doaj
proquest
crossref
walterdegruyter
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 118
SubjectTerms Abnormalities
Accuracy
Algorithms
Arrhythmia
arrhythmia classification
Cardiac arrhythmia
Classification
Cluster analysis
Clustering
Deep learning
Dingo optimization algorithm
Discrete Wavelet Transform
ECG signal
Electrocardiography
Fractal geometry
Heart diseases
Machine learning
Parameter identification
stripped convolution
Telemedicine
Vector quantization
Waveforms
Wavelet transforms
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQYoCh4inKSxkQE1ET-xI7I1QtLCAGkNgiO7ahUltQmoL49_ic9AECsTAmOkfW3fkeufN3hJwyLamItAplIW0IScxCkfEolM5V2ERlzPLCD5vgt7fi8TG7Wxr1hT1hNTxwzbiOKAyLNJYTDYXUGpkpbhKVABhtYmXQ-kY8W0qmvA1mMSSc16CaFLjojCal0wgKIdrlL07IY_V_CTBb775Urc1TOf2oZqVR73H6m6TVhIrBRb3FLbJixttkYwlA0D3dzFFXJzuk1-teOfLy-aN6Hg1kcLP4_xfIsQ78AExsDfLSCFy4GvhGUjU0QX228au75KHfu-9eh82YhLAASqsw1UoC1YkVAJI7959GFiykoJSVlIGNuEufTcYUs4WwFAS1yvkoxM5LDKdsj6yOX8ZmnwQx1W5NFCsoGEgVC2XSLMULCsp5eknb5HzGt7xoMMRxlMUwd7kEsjl3bM6Rzdgrx9vkbE7-WoNn_EZ4iUKYEyHmtX_hNCFvNCH_SxPa5Ggmwrw5iJOc4c1gBPFP2gS-iXVB9eOmXODjsq-D_9jaIVmvdQ8bB4_IalVOzTFZK96qwaQ88ar7CcrB9Ec
  priority: 102
  providerName: Directory of Open Access Journals
Title ECG Arrhythmia Measurement and Classification for Portable Monitoring
URI https://reference-global.com/article/10.2478/msr-2024-0017
https://www.proquest.com/docview/3099785705
https://doaj.org/article/8ce30d4232e246fea9b7e5b544ede1be
Volume 24
WOSCitedRecordID wos001302259500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1335-8871
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000314577
  issn: 1335-8871
  databaseCode: DOA
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1335-8871
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000314577
  issn: 1335-8871
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1335-8871
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000314577
  issn: 1335-8871
  databaseCode: P5Z
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: East Europe, Central Europe Database (ProQuest)
  customDbUrl:
  eissn: 1335-8871
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000314577
  issn: 1335-8871
  databaseCode: BYOGL
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eastcentraleurope
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1335-8871
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000314577
  issn: 1335-8871
  databaseCode: M7S
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1335-8871
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000314577
  issn: 1335-8871
  databaseCode: BENPR
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 1335-8871
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000314577
  issn: 1335-8871
  databaseCode: PIMPY
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELag5QCH8hYLZZUD4oTVxB7Hzgm11bZw2FXEQypcIju220rtbklSUP99PU52l6LChUukJBPLyoxnxjPjbwh5w61mKrWG6lp7CiLjVBUypTqYCi9Mwb2sY7MJOZupo6OiHAJu7VBWudSJUVHbRY0x8h2ORzwRjV28v_hBsWsUZleHFhp3ySaiJGSxdO_zKsaC0OxCyh5ak4FUO-dtE-SCAUXtfMMURcT-G27m1q-YsLbuuLm86pYJ0mh3Dh7-74wfka3B40x2exF5TO64-RPy4DccwnA3XYG3tk_JZLJ_GMibk6vu5PxUJ9N1GDHRc5vEPppYYRSZmgSvN4n1qObMJb2KwFGfka8Hky_7H-jQbYHWwFhHc2s0MCu8AtAyeBF56sFDDsZ4zTj4VIZduCu44b5WnoFi3gRThxB8wknGn5ON-WLuXpAkYzZ8k2YGag7aZMq4vMjxnIMJDoNmI_Ju-eOreoAix44YZ1XYkiCfqsCnCvmEJXdyRN6uyC96DI6_Ee4hF1dECJ0dHyya42pYiZWqHU8t5qcdg9w7XRjphBEAzrrMuBHZXrKzGtZzW615OSLwh1ysqW6dVPCfwibu5b9HfUXu92KJlYXbZKNrLt1rcq_-2Z22zZhs7k1m5adxDBiMo4yHaym-hzflx2n57RqAVwaZ
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VWyTgUN5ioYUcgBNRE2cSJweEoN3SVburPRSpnIId222ldrckKdX-qf7GepxklyLg1gPHRBMriT_PwzP-BuBNpARLAyV9UQjjYxxGfprxwBfWVJhYZpHhhWs2wcfj9PAwm6zAVXcWhsoqO53oFLWaFbRHvhnREU9iY48_nv_wqWsUZVe7FhoNLPb0_NKGbNWH4bad37eM7QwOtnb9tquAXyBjtZ8oKZCp2KSIgltrmQQGDSYopREsQhNwG23qLJKRKVLDMGVGWpVOVHOx5kR0YFX-KhLYe7A6GY4m3xa7OkQGH3PekHky5OnmWVVaJDL0yR7cMH6uR8ANx3bt0qXIlT4qL-Z1l5J1lm7nwf_2jx7CWutTe5-aRfAIVvT0Mdz_hWnRXo0W9LTVExgMtr5Y8fJ4Xh-fnQhvtNwo9cRUea5TKNVQOdh61q_3XMWtPNVeowRp1Kfw9Va-6hn0prOpfg5eyJR9JgglFhEKGaZSJ1lCJzmkdYkE68P7bqLzoiVbp54fp7kNuggXucVFTrigokLeh3cL8fOGZeRvgp8JNQshIgd3N2blUd7qmjwtdBQoysBrhonRIpNcxzJG1EqHUvdhvYNP3mqsKl9ipw_4Gw6XUn98Kesh2jD1xb9HfQ13dw9G-_n-cLz3Eu41S4LqKNehV5cXegPuFD_rk6p81a4pD77fNkSvAa1ZXv8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ECG+Arrhythmia+Measurement+and+Classification+for+Portable+Monitoring&rft.jtitle=Measurement+science+review&rft.au=K+P+Ajitha+Gladis&rft.au=Ahilan%2C+A&rft.au=Muthukumaran%2C+N&rft.au=Jenifer%2C+L&rft.date=2024-08-01&rft.pub=De+Gruyter+Brill+Sp.+z+o.o.%2C+Paradigm+Publishing+Services&rft.eissn=1335-8871&rft.volume=24&rft.issue=4&rft.spage=118&rft.epage=128&rft_id=info:doi/10.2478%2Fmsr-2024-0017
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1335-8871&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1335-8871&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1335-8871&client=summon