Disaggregation of total energy use into space heating and domestic hot water: A city-scale suited approach
This paper develops a computationally fast algorithm to disaggregate the total energy use recorded by smart heat meters into space heating (SH) and domestic hot water (DHW). The algorithm trains a regression model on SH-only hours and predicts SH for all other hours with potential DHW use. Data from...
Uložené v:
| Vydané v: | Energy (Oxford) Ročník 291; s. 130351 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Ltd
15.03.2024
|
| Predmet: | |
| ISSN: | 0360-5442, 1873-6785 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | This paper develops a computationally fast algorithm to disaggregate the total energy use recorded by smart heat meters into space heating (SH) and domestic hot water (DHW). The algorithm trains a regression model on SH-only hours and predicts SH for all other hours with potential DHW use. Data from smart water meters were used to identify hours with only SH. Assessing 13 regression models, an untuned random forest was identified as the best-performing regression model with an acceptable computational cost (median: 7.4s per building). Furthermore, using one year of data from over 2400 single-family homes, it was shown that the best result (median CVRMSE: 0.13) can be obtained using only smart heat meters based regressors, increasing the applicability of the developed method. Furthermore, two tests were implemented, and it was successfully demonstrated that they identify situations where the regressors are distributed differently for hours with SH only and hours with SH and DHW, to identify possible training bias; thus, buildings where the disaggregation is potentially unreliable. Validation against data from three single-family houses with known SH and DHW use confirmed the good performance of the method and that the performance can be estimated without ground truth data via nested cross-validation.
[Display omitted]
•Calculation of space heating (SH) and domestic hot water (DHW) from total energy use.•Requires only hourly data from smart heat and water meters; is computationally fast.•Developed using one year’s data from over 2400 single-family houses.•Method validated against ground truth data from 3 single family houses.•Accuracy estimate can be obtained without labelled known data. |
|---|---|
| AbstractList | This paper develops a computationally fast algorithm to disaggregate the total energy use recorded by smart heat meters into space heating (SH) and domestic hot water (DHW). The algorithm trains a regression model on SH-only hours and predicts SH for all other hours with potential DHW use. Data from smart water meters were used to identify hours with only SH. Assessing 13 regression models, an untuned random forest was identified as the best-performing regression model with an acceptable computational cost (median: 7.4s per building). Furthermore, using one year of data from over 2400 single-family homes, it was shown that the best result (median CVRMSE: 0.13) can be obtained using only smart heat meters based regressors, increasing the applicability of the developed method. Furthermore, two tests were implemented, and it was successfully demonstrated that they identify situations where the regressors are distributed differently for hours with SH only and hours with SH and DHW, to identify possible training bias; thus, buildings where the disaggregation is potentially unreliable. Validation against data from three single-family houses with known SH and DHW use confirmed the good performance of the method and that the performance can be estimated without ground truth data via nested cross-validation. This paper develops a computationally fast algorithm to disaggregate the total energy use recorded by smart heat meters into space heating (SH) and domestic hot water (DHW). The algorithm trains a regression model on SH-only hours and predicts SH for all other hours with potential DHW use. Data from smart water meters were used to identify hours with only SH. Assessing 13 regression models, an untuned random forest was identified as the best-performing regression model with an acceptable computational cost (median: 7.4 s per building). Furthermore, using one year of data from over 2400 single-family homes, it was shown that the best result (median CVRMSE: 0.13) can be obtained using only smart heat meters based regressors, increasing the applicability of the developed method. Furthermore, two tests were implemented, and it was successfully demonstrated that they identify situations where the regressors are distributed differently for hours with SH only and hours with SH and DHW, to identify possible training bias; thus, buildings where the disaggregation is potentially unreliable. Validation against data from three single-family houses with known SH and DHW use confirmed the good performance of the method and that the performance can be estimated without ground truth data via nested cross-validation. This paper develops a computationally fast algorithm to disaggregate the total energy use recorded by smart heat meters into space heating (SH) and domestic hot water (DHW). The algorithm trains a regression model on SH-only hours and predicts SH for all other hours with potential DHW use. Data from smart water meters were used to identify hours with only SH. Assessing 13 regression models, an untuned random forest was identified as the best-performing regression model with an acceptable computational cost (median: 7.4s per building). Furthermore, using one year of data from over 2400 single-family homes, it was shown that the best result (median CVRMSE: 0.13) can be obtained using only smart heat meters based regressors, increasing the applicability of the developed method. Furthermore, two tests were implemented, and it was successfully demonstrated that they identify situations where the regressors are distributed differently for hours with SH only and hours with SH and DHW, to identify possible training bias; thus, buildings where the disaggregation is potentially unreliable. Validation against data from three single-family houses with known SH and DHW use confirmed the good performance of the method and that the performance can be estimated without ground truth data via nested cross-validation. [Display omitted] •Calculation of space heating (SH) and domestic hot water (DHW) from total energy use.•Requires only hourly data from smart heat and water meters; is computationally fast.•Developed using one year’s data from over 2400 single-family houses.•Method validated against ground truth data from 3 single family houses.•Accuracy estimate can be obtained without labelled known data. |
| ArticleNumber | 130351 |
| Author | Widén, Joakim Marszal-Pomianowska, Anna Schaffer, Markus Larsen, Tine Steen Vera-Valdés, J. Eduardo |
| Author_xml | – sequence: 1 givenname: Markus orcidid: 0000-0003-3972-413X surname: Schaffer fullname: Schaffer, Markus email: msch@build.aau.dk organization: Department of the Built Environment, Aalborg University, Aalborg, 9220, Denmark – sequence: 2 givenname: Joakim surname: Widén fullname: Widén, Joakim organization: Built Environment Energy Systems Group, Department of Civil and Industrial Engineering, Uppsala University, Uppsala, 752 37, Sweden – sequence: 3 givenname: J. Eduardo orcidid: 0000-0002-0337-8055 surname: Vera-Valdés fullname: Vera-Valdés, J. Eduardo organization: Department of Mathematical Sciences, Aalborg University, Aalborg, 9220, Denmark – sequence: 4 givenname: Anna orcidid: 0000-0002-3195-7388 surname: Marszal-Pomianowska fullname: Marszal-Pomianowska, Anna organization: Department of the Built Environment, Aalborg University, Aalborg, 9220, Denmark – sequence: 5 givenname: Tine Steen orcidid: 0000-0002-4704-6503 surname: Larsen fullname: Larsen, Tine Steen organization: Department of the Built Environment, Aalborg University, Aalborg, 9220, Denmark |
| BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-530032$$DView record from Swedish Publication Index (Uppsala universitet) |
| BookMark | eNqFkL1u2zAURjk4QP76Bhk4dohcUiQl00MBI0mbAgG6NFmJa-pKpiGTKkkl8NtXrooOGdqJy_kOLs8lWfjgkZAbzpac8erTfokeY3dclqyUSy6YUHxBLpioWKGkLM_JZUp7xphaaX1B9vcuQddF7CC74GloaQ4Zejpb6JiQOp8DTQNYpDucMN9R8A1twgFTdpbuQqZvkDGu6YZal49FstAjTaPL2FAYhhjA7q7JWQt9wg9_3ivy_OXhx91j8fT967e7zVNhZVnmQoEQpUYtRC3remtXUFei4igRqla1fGUlV7xuUXDNbS0t2zaCqa1ugWkOpbgit7M3veEwbs0Q3QHi0QRw5t69bEyInRlHowRj4oR_nPHpyp_j9CNzcMli34PHMCYjuBK80rLWEypn1MaQUsT2r5szc6pv9mbuZk71zVx_mq3fzaZIv3PnCK7_3_jzPMYp2avDaJJ16C02LqLNpgnu34JfmGineA |
| CitedBy_id | crossref_primary_10_1016_j_apenergy_2024_123586 crossref_primary_10_1016_j_applthermaleng_2025_125799 crossref_primary_10_1051_e3sconf_202560801014 crossref_primary_10_1016_j_applthermaleng_2024_125296 |
| Cites_doi | 10.1061/(ASCE)WR.1943-5452.0001360 10.1016/j.energy.2021.122318 10.1016/j.envsoft.2015.07.012 10.1016/j.energy.2020.119685 10.1016/j.rser.2013.08.023 10.1016/j.dib.2023.109964 10.1016/j.enbuild.2016.08.037 10.21105/joss.01903 10.1016/j.rser.2021.112035 10.1016/j.solener.2016.08.033 10.1051/e3sconf/202236210001 10.1088/1742-6596/2600/2/022017 10.3390/w13010036 10.1016/j.enconman.2012.11.002 10.1016/j.rser.2017.05.229 10.1016/j.enbuild.2008.08.008 10.1016/j.energy.2020.119440 10.1016/S0047-259X(03)00079-4 10.1016/j.segy.2021.100035 10.1016/j.energy.2022.125705 10.1016/j.enbuild.2013.11.001 10.1080/13241583.2021.1983968 10.18637/jss.v077.i01 10.35490/EC3.2023.208 10.3390/w12010294 10.1016/j.energy.2020.117687 10.3390/en14113314 10.5194/dwes-10-75-2017 10.3390/w14050826 10.1051/e3sconf/202017212001 10.1016/j.energy.2023.127569 10.1016/j.enbuild.2015.09.067 10.1016/j.enbuild.2018.11.035 10.1016/j.energy.2023.127713 10.1016/j.energy.2014.02.089 10.1016/j.energy.2021.120678 10.1016/j.watres.2022.119500 10.18637/jss.v039.i05 |
| ContentType | Journal Article |
| Copyright | 2024 The Author(s) |
| Copyright_xml | – notice: 2024 The Author(s) |
| DBID | 6I. AAFTH AAYXX CITATION 7S9 L.6 ACNBI ADTPV AOWAS D8T DF2 ZZAVC |
| DOI | 10.1016/j.energy.2024.130351 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef AGRICOLA AGRICOLA - Academic SWEPUB Uppsala universitet full text SwePub SwePub Articles SWEPUB Freely available online SWEPUB Uppsala universitet SwePub Articles full text |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Environmental Sciences |
| ExternalDocumentID | oai_DiVA_org_uu_530032 10_1016_j_energy_2024_130351 S0360544224001221 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAFTH AAHCO AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SES SEW SPC SPCBC SSR SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 6TJ 9DU AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABFNM ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AGQPQ AHHHB AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC WUQ ~HD 7S9 L.6 ACNBI ADTPV AOWAS D8T DF2 ZZAVC |
| ID | FETCH-LOGICAL-c422t-5a3329e9337477bc8a76361e4ea6f5f18c41517fe3191c74c0bd305b9fa091a23 |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001164884800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0360-5442 1873-6785 |
| IngestDate | Tue Nov 04 16:24:45 EST 2025 Thu Oct 02 14:58:39 EDT 2025 Sat Nov 29 06:35:49 EST 2025 Tue Nov 18 21:59:32 EST 2025 Sat May 25 15:41:21 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Data-driven algorithms Domestic hot water Smart heat meter District heating Space heating Smart water meter |
| Language | English |
| License | This is an open access article under the CC BY license. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c422t-5a3329e9337477bc8a76361e4ea6f5f18c41517fe3191c74c0bd305b9fa091a23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0003-3972-413X 0000-0002-3195-7388 0000-0002-0337-8055 0000-0002-4704-6503 |
| OpenAccessLink | https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-530032 |
| PQID | 3153169479 |
| PQPubID | 24069 |
| ParticipantIDs | swepub_primary_oai_DiVA_org_uu_530032 proquest_miscellaneous_3153169479 crossref_primary_10_1016_j_energy_2024_130351 crossref_citationtrail_10_1016_j_energy_2024_130351 elsevier_sciencedirect_doi_10_1016_j_energy_2024_130351 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-03-15 |
| PublicationDateYYYYMMDD | 2024-03-15 |
| PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Energy (Oxford) |
| PublicationYear | 2024 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Ahmed, Pylsy, Kurnitski (b39) 2016; 137 Leiria, Johra, Belias, Quaggiotto, Zarrella, Marszal-Pomianowska (b32) 2022; 362 Schaffer, Veit, Marszal-Pomianowska, Frandsen, Pomianowski, Dichmann (b36) 2024; 52 Bischl, Binder, Lang, Pielok, Richter, Coors (b49) 2023; 13 Meyer, Dimitriadou, Hornik, Weingessel, Leisch (b45) 2022 Ivanko, Sørensen, Nord (b26) 2021; 219 Becker, Lang, Richter, Bischl, Schalk (b53) 2023 Kim (b56) 2015; 22 Schaffer, Leiria, Vera-Valdés, Marszal-Pomianowska (b34) 2023 Efficiency Valuation Organization (EVO) (b61) 2014 Koech, Cardell-Oliver, Syme (b7) 2021; 25 Becker (b52) 2023 Rahim, Nguyen, Stewart, Giurco, Blumenstein (b16) 2020; 12 Li, Jamieson, DeSalvo, Rostamizadeh, Talwalkar (b47) 2018; 18 Chen, He, Benesty, Khotilovich, Tang, Cho (b46) 2023 Larsen, Daniels, Jensen, Andersen (b35) 2012 Neumayer, Stecher, Grimm, Maier, Bücker, Schmidt (b9) 2023; 276 Eurostat (b2) 2023 Leiria, Johra, Marszal-Pomianowska, Pomianowski (b31) 2023; 263 Commission, for Energy, Bacquet, Galindo Fernández, Oger, Themessl (b1) 2022 Lumbreras, Garay-Martinez, Arregi, Martin-Escudero, Diarce, Raud (b10) 2022; 239 George, Pearre, Swan (b27) 2015; 109 Mazzoni, Alvisi, Blokker, Buchberger, Castelletti, Cominola (b13) 2023; 230 Bøhm (b59) 2013; 67 Yliniemi, Delsing, van Deventer (b24) 2009; 41 Cominola, Giuliani, Piga, Castelletti, Rizzoli (b18) 2015; 72 Danish Meteorological Institute (b37) 2023 Simon, Friedman, Hastie, Tibshirani (b42) 2011; 39 Lang, Au, Coors, Schratz (b54) 2023 Wei, Jones, De Wilde (b19) 2014; 70 Marszal-Pomianowska, Jensen, Pomianowski, Larsen, Jørgensen, Knudsen (b60) 2021; 14 Averfalk, Benakopoulos, Best, Dammel, Engel, Geyer (b4) 2021 Fuentes, Arce, Salom (b20) 2018; 81 Cheifetz, Noumir, Samé, Sandraz, Féliers, Heim (b17) 2017; 10 Leiria, Schaffer, Johra, Marzsal-Pomianowska, Pomianowski (b33) 2023; 2600 R. Core Team (b40) 2023 Di Mauro, Cominola, Castelletti, Di Nardo (b14) 2020; 13 US DOE FEMP (b63) 2015 Boland, Huang, Ridley (b57) 2013; 28 Steffelbauer, Blokker, Buchberger, Knobbe, Abraham (b15) 2021; 147 Msamadya, Joo, Lee, Choi, Lee, Lee (b6) 2022; 14 Meireles, Sousa, Bleys, Poncelet (b21) 2022; 157 Kristensen, Hedegaard, Petersen (b12) 2020; 201 Schliep, Hechenbichler (b43) 2016 Lee, Yim (b28) 2021; 229 Wright, Ziegler (b44) 2017; 77 Baringhaus, Franz (b58) 2004; 88 Marszal-Pomianowska, Zhang, Pomianowski, Heiselberg, Gram-Hanssen, Hansen (b29) 2019; 184 Bischl, Binder, Lang, Pielok, Richter, Coors (b41) 2021 Binder, Pfisterer, Lang, Schneider, Kotthofi, Bischl (b51) 2021; 22 Lund, Werner, Wiltshire, Svendsen, Thorsen, Hvelplund (b5) 2014; 68 Guelpa, Verda (b22) 2021; 219 Fester, Østergaard, Bentsen, Nielsen (b8) 2023; 277 Becker, Gruber, Richter, Moosbauer, Bischl (b55) 2023 Leiria, Johra, Marszal-Pomianowska, Pomianowski, Kvols Heiselberg (b11) 2021; 3 Lien, Ivanko, Sartori (b25) 2020 European Parliament (b3) 2018 Jamieson, Talwalkar (b48) 2016; vol. 51 Lang, Binder, Richter, Schratz, Pfisterer, Coors (b50) 2019; 4 Bacher, de Saint-Aubain, Christiansen, Madsen (b23) 2016; 130 Hedegaard, Kristensen, Petersen (b30) 2020; 172 American Society of Heating Refrigerating and Air Conditioning Engineers, ASHRAE (b62) 2014 International Organization of Legal Metrology (b38) 2002 Binder (10.1016/j.energy.2024.130351_b51) 2021; 22 Msamadya (10.1016/j.energy.2024.130351_b6) 2022; 14 Di Mauro (10.1016/j.energy.2024.130351_b14) 2020; 13 George (10.1016/j.energy.2024.130351_b27) 2015; 109 R. Core Team (10.1016/j.energy.2024.130351_b40) 2023 Koech (10.1016/j.energy.2024.130351_b7) 2021; 25 Yliniemi (10.1016/j.energy.2024.130351_b24) 2009; 41 Lund (10.1016/j.energy.2024.130351_b5) 2014; 68 Baringhaus (10.1016/j.energy.2024.130351_b58) 2004; 88 Steffelbauer (10.1016/j.energy.2024.130351_b15) 2021; 147 Marszal-Pomianowska (10.1016/j.energy.2024.130351_b60) 2021; 14 Bischl (10.1016/j.energy.2024.130351_b41) 2021 Leiria (10.1016/j.energy.2024.130351_b32) 2022; 362 Leiria (10.1016/j.energy.2024.130351_b31) 2023; 263 Leiria (10.1016/j.energy.2024.130351_b11) 2021; 3 Meyer (10.1016/j.energy.2024.130351_b45) 2022 Becker (10.1016/j.energy.2024.130351_b52) 2023 Schaffer (10.1016/j.energy.2024.130351_b34) 2023 Bischl (10.1016/j.energy.2024.130351_b49) 2023; 13 Fester (10.1016/j.energy.2024.130351_b8) 2023; 277 Kristensen (10.1016/j.energy.2024.130351_b12) 2020; 201 Kim (10.1016/j.energy.2024.130351_b56) 2015; 22 Meireles (10.1016/j.energy.2024.130351_b21) 2022; 157 Rahim (10.1016/j.energy.2024.130351_b16) 2020; 12 Leiria (10.1016/j.energy.2024.130351_b33) 2023; 2600 Efficiency Valuation Organization (EVO) (10.1016/j.energy.2024.130351_b61) 2014 Wei (10.1016/j.energy.2024.130351_b19) 2014; 70 Guelpa (10.1016/j.energy.2024.130351_b22) 2021; 219 Averfalk (10.1016/j.energy.2024.130351_b4) 2021 Wright (10.1016/j.energy.2024.130351_b44) 2017; 77 Lee (10.1016/j.energy.2024.130351_b28) 2021; 229 Becker (10.1016/j.energy.2024.130351_b55) 2023 International Organization of Legal Metrology (10.1016/j.energy.2024.130351_b38) 2002 Bøhm (10.1016/j.energy.2024.130351_b59) 2013; 67 Lang (10.1016/j.energy.2024.130351_b54) 2023 Lien (10.1016/j.energy.2024.130351_b25) 2020 European Parliament (10.1016/j.energy.2024.130351_b3) 2018 Marszal-Pomianowska (10.1016/j.energy.2024.130351_b29) 2019; 184 Neumayer (10.1016/j.energy.2024.130351_b9) 2023; 276 Danish Meteorological Institute (10.1016/j.energy.2024.130351_b37) 2023 Bacher (10.1016/j.energy.2024.130351_b23) 2016; 130 Cominola (10.1016/j.energy.2024.130351_b18) 2015; 72 Commission (10.1016/j.energy.2024.130351_b1) 2022 Cheifetz (10.1016/j.energy.2024.130351_b17) 2017; 10 Schaffer (10.1016/j.energy.2024.130351_b36) 2024; 52 Ahmed (10.1016/j.energy.2024.130351_b39) 2016; 137 Lumbreras (10.1016/j.energy.2024.130351_b10) 2022; 239 Schliep (10.1016/j.energy.2024.130351_b43) 2016 Boland (10.1016/j.energy.2024.130351_b57) 2013; 28 Chen (10.1016/j.energy.2024.130351_b46) 2023 Ivanko (10.1016/j.energy.2024.130351_b26) 2021; 219 American Society of Heating Refrigerating and Air Conditioning Engineers (10.1016/j.energy.2024.130351_b62) 2014 US DOE FEMP (10.1016/j.energy.2024.130351_b63) 2015 Mazzoni (10.1016/j.energy.2024.130351_b13) 2023; 230 Fuentes (10.1016/j.energy.2024.130351_b20) 2018; 81 Jamieson (10.1016/j.energy.2024.130351_b48) 2016; vol. 51 Lang (10.1016/j.energy.2024.130351_b50) 2019; 4 Eurostat (10.1016/j.energy.2024.130351_b2) 2023 Simon (10.1016/j.energy.2024.130351_b42) 2011; 39 Li (10.1016/j.energy.2024.130351_b47) 2018; 18 Becker (10.1016/j.energy.2024.130351_b53) 2023 Hedegaard (10.1016/j.energy.2024.130351_b30) 2020; 172 Larsen (10.1016/j.energy.2024.130351_b35) 2012 |
| References_xml | – volume: 22 start-page: 665 year: 2015 end-page: 674 ident: b56 article-title: ppcor: An R package for a fast calculation to semi-partial correlation coefficients publication-title: Commun Stat Appl Methods – year: 2022 ident: b1 article-title: District heating and cooling in the European Union : Overview of markets and regulatory frameworks under the revised Renewable Energy Directive – volume: 88 start-page: 190 year: 2004 end-page: 206 ident: b58 article-title: On a new multivariate two-sample test publication-title: J Multivariate Anal – volume: 130 start-page: 107 year: 2016 end-page: 112 ident: b23 article-title: Non-parametric method for separating domestic hot water heating spikes and space heating publication-title: Energy Build – volume: 277 year: 2023 ident: b8 article-title: A data-driven method for heat loss estimation from district heating service pipes using heat meter- and GIS data publication-title: Energy – year: 2015 ident: b63 article-title: M&V guidelines: Measurement and verification for performance-based contracts-version 4.0 – volume: 67 start-page: 152 year: 2013 end-page: 159 ident: b59 article-title: Production and distribution of domestic hot water in selected Danish apartment buildings and institutions. Analysis of consumption, energy efficiency and the significance for energy design requirements of buildings publication-title: Energy Convers Manage – volume: 2600 year: 2023 ident: b33 article-title: Estimating residential space heating and domestic hot water from truncated smart heat data publication-title: J Phys Conf Ser – volume: 14 start-page: 826 year: 2022 ident: b6 article-title: Role of water policies in the adoption of smart water metering and the future market publication-title: Water – volume: 201 year: 2020 ident: b12 article-title: Long-term forecasting of hourly district heating loads in urban areas using hierarchical archetype modeling publication-title: Energy – year: 2016 ident: b43 article-title: kknn: Weighted k-nearest neighbors – volume: 184 start-page: 53 year: 2019 end-page: 64 ident: b29 article-title: Simple methodology to estimate the mean hourly and the daily profiles of domestic hot water demand from hourly total heating readings publication-title: Energy Build – year: 2021 ident: b4 article-title: Low-temperature district heating implementation guidebook: Final report of IEA DHC Annex TS2. Implementation of low-temperature district heating systems – start-page: 18 year: 2002 ident: b38 article-title: OIML R 75-1 – volume: 13 start-page: 1 year: 2023 end-page: 43 ident: b49 article-title: Hyperparameter optimization: Foundations, algorithms, best practices, and open challenges publication-title: WIREs Data Min Knowl Discov – volume: 229 year: 2021 ident: b28 article-title: Energy and flow demand analysis of domestic hot water in an apartment complex using a smart meter publication-title: Energy – volume: 219 year: 2021 ident: b22 article-title: Demand response and other demand side management techniques for district heating: A review publication-title: Energy – volume: 22 start-page: 1 year: 2021 end-page: 7 ident: b51 article-title: mlr3Pipelines - Flexible machine learning pipelines in R publication-title: J Mach Learn Res – volume: 39 start-page: 1 year: 2011 end-page: 13 ident: b42 article-title: Regularization paths for Cox’s proportional hazards model via coordinate descent publication-title: J Stat Softw – year: 2014 ident: b61 article-title: International performance measurement and verification protocol: Concepts and options for determining energy and water savings – volume: 137 start-page: 516 year: 2016 end-page: 530 ident: b39 article-title: Hourly consumption profiles of domestic hot water for different occupant groups in dwellings publication-title: Sol Energy – volume: 219 year: 2021 ident: b26 article-title: Splitting measurements of the total heat demand in a hotel into domestic hot water and space heating heat use publication-title: Energy – year: 2023 ident: b2 article-title: Disaggregated final energy consumption in households - quantities – volume: vol. 51 start-page: 240 year: 2016 end-page: 248 ident: b48 article-title: Non-stochastic best arm identification and hyperparameter optimization publication-title: Proceedings of the 19th international conference on artificial intelligence and statistics – volume: 25 start-page: 173 year: 2021 end-page: 182 ident: b7 article-title: Smart water metering: Adoption, regulatory and social considerations publication-title: Australas J Water Resour – volume: 172 start-page: 1 year: 2020 end-page: 8 ident: b30 article-title: Experimental validation of a model-based method for separating the space heating and domestic hot water components from smart-meter consumption data publication-title: E3S Web Conf – volume: 18 start-page: 1 year: 2018 end-page: 52 ident: b47 article-title: Hyperband: A novel bandit-based approach to hyperparameter optimization publication-title: J Mach Learn Res – volume: 72 start-page: 198 year: 2015 end-page: 214 ident: b18 article-title: Benefits and challenges of using smart meters for advancing residential water demand modeling and management: A review publication-title: Environ Model Softw – year: 2023 ident: b52 article-title: mlr3tuningspaces: Search spaces for ’mlr3’ – volume: 10 start-page: 75 year: 2017 end-page: 82 ident: b17 article-title: Modeling and clustering water demand patterns from real-world smart meter data publication-title: Drink Water Eng Sci – volume: 263 year: 2023 ident: b31 article-title: A methodology to estimate space heating and domestic hot water energy demand profile in residential buildings from low-resolution heat meter data publication-title: Energy – year: 2023 ident: b53 article-title: mlr3tuning: Hyperparameter optimization for ’mlr3’ – year: 2023 ident: b37 article-title: Danish Meteorological Institute - Open data – volume: 14 year: 2021 ident: b60 article-title: Comfort of domestic water in residential buildings: Flow, temperature and energy in draw-off points: Field study in two Danish detached houses publication-title: Energies – year: 2023 ident: b55 article-title: mlr3hyperband: Hyperband for ’mlr3’ – volume: 12 start-page: 294 year: 2020 ident: b16 article-title: Machine learning and data analytic techniques in digitalwater metering: A review publication-title: Water – volume: 52 year: 2024 ident: b36 article-title: Dataset of smart heat and water meter data with accompanying building characteristics publication-title: Data Brief – year: 2023 ident: b54 article-title: mlr3learners: Recommended learners for ’mlr3’ – start-page: 244 year: 2020 end-page: 251 ident: b25 article-title: Domestic hot water decomposition from measured total heat load in Norwegian buildings publication-title: BuildSim-Nordic 2020, volume 13 – volume: 70 start-page: 36 year: 2014 end-page: 44 ident: b19 article-title: Driving factors for occupant-controlled space heating in residential buildings publication-title: Energy Build – volume: 157 year: 2022 ident: b21 article-title: Domestic hot water consumption pattern: Relation with total water consumption and air temperature publication-title: Renew Sustain Energy Rev – volume: 28 start-page: 749 year: 2013 end-page: 756 ident: b57 article-title: Decomposing global solar radiation into its direct and diffuse components publication-title: Renew Sustain Energy Rev – volume: 109 start-page: 304 year: 2015 end-page: 315 ident: b27 article-title: High resolution measured domestic hot water consumption of Canadian homes publication-title: Energy Build – volume: 13 start-page: 36 year: 2020 ident: b14 article-title: Urban water consumption at multiple spatial and temporal scales. A review of existing datasets publication-title: Water – year: 2023 ident: b46 article-title: xgboost: Extreme gradient boosting – volume: 4 start-page: 1903 year: 2019 ident: b50 article-title: mlr3: A modern object-oriented machine learning framework in R publication-title: J Open Source Softw – volume: 147 start-page: 1 year: 2021 end-page: 12 ident: b15 article-title: Dynamic time warping clustering to discover socioeconomic characteristics in smart water meter data publication-title: J Water Resour Plan Manag – volume: 77 year: 2017 ident: b44 article-title: ranger: A fast implementation of random forests for high dimensional data in C++ and R publication-title: J Stat Softw – year: 2022 ident: b45 article-title: e1071: Misc Functions of the Department of Statistics – volume: 81 start-page: 1530 year: 2018 end-page: 1547 ident: b20 article-title: A review of domestic hot water consumption profiles for application in systems and buildings energy performance analysis publication-title: Renew Sustain Energy Rev – year: 2021 ident: b41 article-title: Hyperparameter optimization: Foundations, algorithms, best practices and open challenges – year: 2018 ident: b3 article-title: Directive (EU) 2018/2002 amending Directive 2012/27/EU on energy efficiency publication-title: Off J Eur Union – volume: 239 year: 2022 ident: b10 article-title: Data driven model for heat load prediction in buildings connected to District Heating by using smart heat meters publication-title: Energy – year: 2023 ident: b34 article-title: Increasing the accuracy of low-resolution commercial smart heat meter data and analysing its error publication-title: Proceedings of the European conference on computing in construction – volume: 230 year: 2023 ident: b13 article-title: Investigating the characteristics of residential end uses of water: A worldwide review publication-title: Water Res – year: 2012 ident: b35 article-title: EnergiParcel-Projektet: Målinger og analyse af energiforbrug og indeklima i 4 danske parcelhusrenoveringer 2008–2011 – volume: 41 start-page: 169 year: 2009 end-page: 174 ident: b24 article-title: Experimental verification of a method for estimating energy for domestic hot water production in a 2-stage district heating substation publication-title: Energy Build – year: 2023 ident: b40 article-title: R: A language and environment for statistical computing – start-page: 1 year: 2014 end-page: 150 ident: b62 article-title: Measurement of energy, demand, and water savings (ASHRAE Guideline 14-2014) – volume: 276 year: 2023 ident: b9 article-title: Fault and anomaly detection in district heating substations: A survey on methodology and data sets publication-title: Energy – volume: 3 year: 2021 ident: b11 article-title: Using data from smart energy meters to gain knowledge about households connected to the district heating network: A Danish case publication-title: Smart Energy – volume: 68 start-page: 1 year: 2014 end-page: 11 ident: b5 article-title: 4th generation district heating (4GDH). Integrating smart thermal grids into future sustainable energy systems publication-title: Energy – volume: 362 year: 2022 ident: b32 article-title: Validation of a new method to estimate energy use for space heating and hot water production from low-resolution heat meter data publication-title: E3S Web Conf – volume: 147 start-page: 1 year: 2021 ident: 10.1016/j.energy.2024.130351_b15 article-title: Dynamic time warping clustering to discover socioeconomic characteristics in smart water meter data publication-title: J Water Resour Plan Manag doi: 10.1061/(ASCE)WR.1943-5452.0001360 – volume: 239 year: 2022 ident: 10.1016/j.energy.2024.130351_b10 article-title: Data driven model for heat load prediction in buildings connected to District Heating by using smart heat meters publication-title: Energy doi: 10.1016/j.energy.2021.122318 – volume: 72 start-page: 198 year: 2015 ident: 10.1016/j.energy.2024.130351_b18 article-title: Benefits and challenges of using smart meters for advancing residential water demand modeling and management: A review publication-title: Environ Model Softw doi: 10.1016/j.envsoft.2015.07.012 – volume: 219 year: 2021 ident: 10.1016/j.energy.2024.130351_b26 article-title: Splitting measurements of the total heat demand in a hotel into domestic hot water and space heating heat use publication-title: Energy doi: 10.1016/j.energy.2020.119685 – volume: 28 start-page: 749 year: 2013 ident: 10.1016/j.energy.2024.130351_b57 article-title: Decomposing global solar radiation into its direct and diffuse components publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2013.08.023 – volume: 52 year: 2024 ident: 10.1016/j.energy.2024.130351_b36 article-title: Dataset of smart heat and water meter data with accompanying building characteristics publication-title: Data Brief doi: 10.1016/j.dib.2023.109964 – volume: 130 start-page: 107 year: 2016 ident: 10.1016/j.energy.2024.130351_b23 article-title: Non-parametric method for separating domestic hot water heating spikes and space heating publication-title: Energy Build doi: 10.1016/j.enbuild.2016.08.037 – volume: 22 start-page: 665 year: 2015 ident: 10.1016/j.energy.2024.130351_b56 article-title: ppcor: An R package for a fast calculation to semi-partial correlation coefficients publication-title: Commun Stat Appl Methods – volume: 4 start-page: 1903 year: 2019 ident: 10.1016/j.energy.2024.130351_b50 article-title: mlr3: A modern object-oriented machine learning framework in R publication-title: J Open Source Softw doi: 10.21105/joss.01903 – year: 2023 ident: 10.1016/j.energy.2024.130351_b54 – volume: 157 year: 2022 ident: 10.1016/j.energy.2024.130351_b21 article-title: Domestic hot water consumption pattern: Relation with total water consumption and air temperature publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2021.112035 – year: 2014 ident: 10.1016/j.energy.2024.130351_b61 – volume: 137 start-page: 516 year: 2016 ident: 10.1016/j.energy.2024.130351_b39 article-title: Hourly consumption profiles of domestic hot water for different occupant groups in dwellings publication-title: Sol Energy doi: 10.1016/j.solener.2016.08.033 – volume: 362 year: 2022 ident: 10.1016/j.energy.2024.130351_b32 article-title: Validation of a new method to estimate energy use for space heating and hot water production from low-resolution heat meter data publication-title: E3S Web Conf doi: 10.1051/e3sconf/202236210001 – year: 2022 ident: 10.1016/j.energy.2024.130351_b45 – volume: 2600 year: 2023 ident: 10.1016/j.energy.2024.130351_b33 article-title: Estimating residential space heating and domestic hot water from truncated smart heat data publication-title: J Phys Conf Ser doi: 10.1088/1742-6596/2600/2/022017 – start-page: 1 year: 2014 ident: 10.1016/j.energy.2024.130351_b62 – volume: 13 start-page: 36 year: 2020 ident: 10.1016/j.energy.2024.130351_b14 article-title: Urban water consumption at multiple spatial and temporal scales. A review of existing datasets publication-title: Water doi: 10.3390/w13010036 – year: 2023 ident: 10.1016/j.energy.2024.130351_b55 – year: 2023 ident: 10.1016/j.energy.2024.130351_b37 – volume: vol. 51 start-page: 240 year: 2016 ident: 10.1016/j.energy.2024.130351_b48 article-title: Non-stochastic best arm identification and hyperparameter optimization – year: 2018 ident: 10.1016/j.energy.2024.130351_b3 article-title: Directive (EU) 2018/2002 amending Directive 2012/27/EU on energy efficiency publication-title: Off J Eur Union – year: 2023 ident: 10.1016/j.energy.2024.130351_b46 – year: 2023 ident: 10.1016/j.energy.2024.130351_b53 – volume: 67 start-page: 152 year: 2013 ident: 10.1016/j.energy.2024.130351_b59 article-title: Production and distribution of domestic hot water in selected Danish apartment buildings and institutions. Analysis of consumption, energy efficiency and the significance for energy design requirements of buildings publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2012.11.002 – volume: 18 start-page: 1 year: 2018 ident: 10.1016/j.energy.2024.130351_b47 article-title: Hyperband: A novel bandit-based approach to hyperparameter optimization publication-title: J Mach Learn Res – volume: 81 start-page: 1530 year: 2018 ident: 10.1016/j.energy.2024.130351_b20 article-title: A review of domestic hot water consumption profiles for application in systems and buildings energy performance analysis publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2017.05.229 – volume: 41 start-page: 169 year: 2009 ident: 10.1016/j.energy.2024.130351_b24 article-title: Experimental verification of a method for estimating energy for domestic hot water production in a 2-stage district heating substation publication-title: Energy Build doi: 10.1016/j.enbuild.2008.08.008 – year: 2021 ident: 10.1016/j.energy.2024.130351_b4 – volume: 219 year: 2021 ident: 10.1016/j.energy.2024.130351_b22 article-title: Demand response and other demand side management techniques for district heating: A review publication-title: Energy doi: 10.1016/j.energy.2020.119440 – year: 2021 ident: 10.1016/j.energy.2024.130351_b41 – volume: 88 start-page: 190 year: 2004 ident: 10.1016/j.energy.2024.130351_b58 article-title: On a new multivariate two-sample test publication-title: J Multivariate Anal doi: 10.1016/S0047-259X(03)00079-4 – start-page: 244 year: 2020 ident: 10.1016/j.energy.2024.130351_b25 article-title: Domestic hot water decomposition from measured total heat load in Norwegian buildings – start-page: 18 year: 2002 ident: 10.1016/j.energy.2024.130351_b38 – volume: 3 year: 2021 ident: 10.1016/j.energy.2024.130351_b11 article-title: Using data from smart energy meters to gain knowledge about households connected to the district heating network: A Danish case publication-title: Smart Energy doi: 10.1016/j.segy.2021.100035 – volume: 22 start-page: 1 year: 2021 ident: 10.1016/j.energy.2024.130351_b51 article-title: mlr3Pipelines - Flexible machine learning pipelines in R publication-title: J Mach Learn Res – year: 2022 ident: 10.1016/j.energy.2024.130351_b1 – volume: 263 year: 2023 ident: 10.1016/j.energy.2024.130351_b31 article-title: A methodology to estimate space heating and domestic hot water energy demand profile in residential buildings from low-resolution heat meter data publication-title: Energy doi: 10.1016/j.energy.2022.125705 – year: 2023 ident: 10.1016/j.energy.2024.130351_b2 – volume: 13 start-page: 1 year: 2023 ident: 10.1016/j.energy.2024.130351_b49 article-title: Hyperparameter optimization: Foundations, algorithms, best practices, and open challenges publication-title: WIREs Data Min Knowl Discov – year: 2016 ident: 10.1016/j.energy.2024.130351_b43 – volume: 70 start-page: 36 year: 2014 ident: 10.1016/j.energy.2024.130351_b19 article-title: Driving factors for occupant-controlled space heating in residential buildings publication-title: Energy Build doi: 10.1016/j.enbuild.2013.11.001 – volume: 25 start-page: 173 year: 2021 ident: 10.1016/j.energy.2024.130351_b7 article-title: Smart water metering: Adoption, regulatory and social considerations publication-title: Australas J Water Resour doi: 10.1080/13241583.2021.1983968 – volume: 77 year: 2017 ident: 10.1016/j.energy.2024.130351_b44 article-title: ranger: A fast implementation of random forests for high dimensional data in C++ and R publication-title: J Stat Softw doi: 10.18637/jss.v077.i01 – year: 2023 ident: 10.1016/j.energy.2024.130351_b34 article-title: Increasing the accuracy of low-resolution commercial smart heat meter data and analysing its error doi: 10.35490/EC3.2023.208 – volume: 12 start-page: 294 year: 2020 ident: 10.1016/j.energy.2024.130351_b16 article-title: Machine learning and data analytic techniques in digitalwater metering: A review publication-title: Water doi: 10.3390/w12010294 – volume: 201 year: 2020 ident: 10.1016/j.energy.2024.130351_b12 article-title: Long-term forecasting of hourly district heating loads in urban areas using hierarchical archetype modeling publication-title: Energy doi: 10.1016/j.energy.2020.117687 – year: 2012 ident: 10.1016/j.energy.2024.130351_b35 – volume: 14 year: 2021 ident: 10.1016/j.energy.2024.130351_b60 article-title: Comfort of domestic water in residential buildings: Flow, temperature and energy in draw-off points: Field study in two Danish detached houses publication-title: Energies doi: 10.3390/en14113314 – year: 2023 ident: 10.1016/j.energy.2024.130351_b40 – year: 2023 ident: 10.1016/j.energy.2024.130351_b52 – volume: 10 start-page: 75 year: 2017 ident: 10.1016/j.energy.2024.130351_b17 article-title: Modeling and clustering water demand patterns from real-world smart meter data publication-title: Drink Water Eng Sci doi: 10.5194/dwes-10-75-2017 – volume: 14 start-page: 826 year: 2022 ident: 10.1016/j.energy.2024.130351_b6 article-title: Role of water policies in the adoption of smart water metering and the future market publication-title: Water doi: 10.3390/w14050826 – volume: 172 start-page: 1 year: 2020 ident: 10.1016/j.energy.2024.130351_b30 article-title: Experimental validation of a model-based method for separating the space heating and domestic hot water components from smart-meter consumption data publication-title: E3S Web Conf doi: 10.1051/e3sconf/202017212001 – volume: 276 year: 2023 ident: 10.1016/j.energy.2024.130351_b9 article-title: Fault and anomaly detection in district heating substations: A survey on methodology and data sets publication-title: Energy doi: 10.1016/j.energy.2023.127569 – volume: 109 start-page: 304 year: 2015 ident: 10.1016/j.energy.2024.130351_b27 article-title: High resolution measured domestic hot water consumption of Canadian homes publication-title: Energy Build doi: 10.1016/j.enbuild.2015.09.067 – volume: 184 start-page: 53 year: 2019 ident: 10.1016/j.energy.2024.130351_b29 article-title: Simple methodology to estimate the mean hourly and the daily profiles of domestic hot water demand from hourly total heating readings publication-title: Energy Build doi: 10.1016/j.enbuild.2018.11.035 – volume: 277 year: 2023 ident: 10.1016/j.energy.2024.130351_b8 article-title: A data-driven method for heat loss estimation from district heating service pipes using heat meter- and GIS data publication-title: Energy doi: 10.1016/j.energy.2023.127713 – volume: 68 start-page: 1 year: 2014 ident: 10.1016/j.energy.2024.130351_b5 article-title: 4th generation district heating (4GDH). Integrating smart thermal grids into future sustainable energy systems publication-title: Energy doi: 10.1016/j.energy.2014.02.089 – volume: 229 year: 2021 ident: 10.1016/j.energy.2024.130351_b28 article-title: Energy and flow demand analysis of domestic hot water in an apartment complex using a smart meter publication-title: Energy doi: 10.1016/j.energy.2021.120678 – volume: 230 year: 2023 ident: 10.1016/j.energy.2024.130351_b13 article-title: Investigating the characteristics of residential end uses of water: A worldwide review publication-title: Water Res doi: 10.1016/j.watres.2022.119500 – year: 2015 ident: 10.1016/j.energy.2024.130351_b63 – volume: 39 start-page: 1 year: 2011 ident: 10.1016/j.energy.2024.130351_b42 article-title: Regularization paths for Cox’s proportional hazards model via coordinate descent publication-title: J Stat Softw doi: 10.18637/jss.v039.i05 |
| SSID | ssj0005899 |
| Score | 2.457938 |
| Snippet | This paper develops a computationally fast algorithm to disaggregate the total energy use recorded by smart heat meters into space heating (SH) and domestic... |
| SourceID | swepub proquest crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 130351 |
| SubjectTerms | algorithms Data-driven algorithms District heating Domestic hot water energy heat regression analysis Smart heat meter Smart water meter Space heating |
| Title | Disaggregation of total energy use into space heating and domestic hot water: A city-scale suited approach |
| URI | https://dx.doi.org/10.1016/j.energy.2024.130351 https://www.proquest.com/docview/3153169479 https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-530032 |
| Volume | 291 |
| WOSCitedRecordID | wos001164884800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0360-5442 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0005899 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1db9MwFLXKhgQvCAbTugEyEjxVrprvmLeKFQFC0yRG6ZvlOE7X0iZT02wVP4lfybUdJysTjD3wElWp41i5J77HN_dcI_Q6hAlPSMchNKAB8XkYwzvHByTzwszhXkK5Ll88_hydnMSTCT3tdH5aLczlIsrzeLOhF__V1HAOjK2ks3cwd9MpnIDfYHQ4gtnh-E-GP56VfAqr6GlDBteFUjxKo_KrSlUmBBgnTCXwTqu52OoU02Kpam6I3nmx7l1x9Rld69YFMHVSgjFlr6w0RbWVyLfi-qZ_Vb50YzLmmxjDF3HO1T4sVhxUNUT-Gzwe_aneSEQK4LNL-99YrjgZq8i1bmEA11cpKYDqog2lr8offEFOiyUgvbgqv5tIcW62BbcRDddXKV1G09kouQYk8P2tWdo1m3rV86zyvKZQ7Q0XYKIR8755qn11g37bfLvi9m-esMlPtKlvc2Z6YaoXZnq5h3bdKKDgBHaHH0eTT21CUax3K21Gb4WaOpvw5mj-RISuL3SuF6_VhOfsMXpUr1Tw0CDsCerIfA89sEL2cg_tj1qRJDSsvUT5FM23IYiLDGsIYjM8DBDECoJYQxDXEMQAQWwhiAGCWEPwLR7iFoDYABBbAD5DX9-Pzt59IPWeHkT4rrsmAfc8l0rqebCOjRIRc3BwoSN9ycMsyJxYAKN0okyCa3BE5ItBkoJLSmjGgdly19tHO3mRywOEaTpIZZZGMk0yn0ciHojEixIgzDLhPne6yLMPmIm64L3ad2XB_mbeLiLNVRem4Mst7SNrO1aTVkNGGQDylitfWVMzmNPVhzqey6IqmQc0xAmpH9EuemMw0IxFlYM_no2HrFhNWVWxwAO_7B7ecdRH6GH75j1HO-tVJV-g--JyPStXL2tk_wIXYNPo |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Disaggregation+of+total+energy+use+into+space+heating+and+domestic+hot+water%3A+A+city-scale+suited+approach&rft.jtitle=Energy+%28Oxford%29&rft.au=Schaffer%2C+Markus&rft.au=Wid%C3%A9n%2C+Joakim&rft.au=Vera-Vald%C3%A9s%2C+J.+Eduardo&rft.au=Marszal-Pomianowska%2C+Anna&rft.date=2024-03-15&rft.issn=0360-5442&rft.volume=291&rft.spage=130351&rft_id=info:doi/10.1016%2Fj.energy.2024.130351&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_energy_2024_130351 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon |