Disaggregation of total energy use into space heating and domestic hot water: A city-scale suited approach

This paper develops a computationally fast algorithm to disaggregate the total energy use recorded by smart heat meters into space heating (SH) and domestic hot water (DHW). The algorithm trains a regression model on SH-only hours and predicts SH for all other hours with potential DHW use. Data from...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Energy (Oxford) Ročník 291; s. 130351
Hlavní autori: Schaffer, Markus, Widén, Joakim, Vera-Valdés, J. Eduardo, Marszal-Pomianowska, Anna, Larsen, Tine Steen
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 15.03.2024
Predmet:
ISSN:0360-5442, 1873-6785
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This paper develops a computationally fast algorithm to disaggregate the total energy use recorded by smart heat meters into space heating (SH) and domestic hot water (DHW). The algorithm trains a regression model on SH-only hours and predicts SH for all other hours with potential DHW use. Data from smart water meters were used to identify hours with only SH. Assessing 13 regression models, an untuned random forest was identified as the best-performing regression model with an acceptable computational cost (median: 7.4s per building). Furthermore, using one year of data from over 2400 single-family homes, it was shown that the best result (median CVRMSE: 0.13) can be obtained using only smart heat meters based regressors, increasing the applicability of the developed method. Furthermore, two tests were implemented, and it was successfully demonstrated that they identify situations where the regressors are distributed differently for hours with SH only and hours with SH and DHW, to identify possible training bias; thus, buildings where the disaggregation is potentially unreliable. Validation against data from three single-family houses with known SH and DHW use confirmed the good performance of the method and that the performance can be estimated without ground truth data via nested cross-validation. [Display omitted] •Calculation of space heating (SH) and domestic hot water (DHW) from total energy use.•Requires only hourly data from smart heat and water meters; is computationally fast.•Developed using one year’s data from over 2400 single-family houses.•Method validated against ground truth data from 3 single family houses.•Accuracy estimate can be obtained without labelled known data.
AbstractList This paper develops a computationally fast algorithm to disaggregate the total energy use recorded by smart heat meters into space heating (SH) and domestic hot water (DHW). The algorithm trains a regression model on SH-only hours and predicts SH for all other hours with potential DHW use. Data from smart water meters were used to identify hours with only SH. Assessing 13 regression models, an untuned random forest was identified as the best-performing regression model with an acceptable computational cost (median: 7.4s per building). Furthermore, using one year of data from over 2400 single-family homes, it was shown that the best result (median CVRMSE: 0.13) can be obtained using only smart heat meters based regressors, increasing the applicability of the developed method. Furthermore, two tests were implemented, and it was successfully demonstrated that they identify situations where the regressors are distributed differently for hours with SH only and hours with SH and DHW, to identify possible training bias; thus, buildings where the disaggregation is potentially unreliable. Validation against data from three single-family houses with known SH and DHW use confirmed the good performance of the method and that the performance can be estimated without ground truth data via nested cross-validation.
This paper develops a computationally fast algorithm to disaggregate the total energy use recorded by smart heat meters into space heating (SH) and domestic hot water (DHW). The algorithm trains a regression model on SH-only hours and predicts SH for all other hours with potential DHW use. Data from smart water meters were used to identify hours with only SH. Assessing 13 regression models, an untuned random forest was identified as the best-performing regression model with an acceptable computational cost (median: 7.4 s per building). Furthermore, using one year of data from over 2400 single-family homes, it was shown that the best result (median CVRMSE: 0.13) can be obtained using only smart heat meters based regressors, increasing the applicability of the developed method. Furthermore, two tests were implemented, and it was successfully demonstrated that they identify situations where the regressors are distributed differently for hours with SH only and hours with SH and DHW, to identify possible training bias; thus, buildings where the disaggregation is potentially unreliable. Validation against data from three single-family houses with known SH and DHW use confirmed the good performance of the method and that the performance can be estimated without ground truth data via nested cross-validation.
This paper develops a computationally fast algorithm to disaggregate the total energy use recorded by smart heat meters into space heating (SH) and domestic hot water (DHW). The algorithm trains a regression model on SH-only hours and predicts SH for all other hours with potential DHW use. Data from smart water meters were used to identify hours with only SH. Assessing 13 regression models, an untuned random forest was identified as the best-performing regression model with an acceptable computational cost (median: 7.4s per building). Furthermore, using one year of data from over 2400 single-family homes, it was shown that the best result (median CVRMSE: 0.13) can be obtained using only smart heat meters based regressors, increasing the applicability of the developed method. Furthermore, two tests were implemented, and it was successfully demonstrated that they identify situations where the regressors are distributed differently for hours with SH only and hours with SH and DHW, to identify possible training bias; thus, buildings where the disaggregation is potentially unreliable. Validation against data from three single-family houses with known SH and DHW use confirmed the good performance of the method and that the performance can be estimated without ground truth data via nested cross-validation. [Display omitted] •Calculation of space heating (SH) and domestic hot water (DHW) from total energy use.•Requires only hourly data from smart heat and water meters; is computationally fast.•Developed using one year’s data from over 2400 single-family houses.•Method validated against ground truth data from 3 single family houses.•Accuracy estimate can be obtained without labelled known data.
ArticleNumber 130351
Author Widén, Joakim
Marszal-Pomianowska, Anna
Schaffer, Markus
Larsen, Tine Steen
Vera-Valdés, J. Eduardo
Author_xml – sequence: 1
  givenname: Markus
  orcidid: 0000-0003-3972-413X
  surname: Schaffer
  fullname: Schaffer, Markus
  email: msch@build.aau.dk
  organization: Department of the Built Environment, Aalborg University, Aalborg, 9220, Denmark
– sequence: 2
  givenname: Joakim
  surname: Widén
  fullname: Widén, Joakim
  organization: Built Environment Energy Systems Group, Department of Civil and Industrial Engineering, Uppsala University, Uppsala, 752 37, Sweden
– sequence: 3
  givenname: J. Eduardo
  orcidid: 0000-0002-0337-8055
  surname: Vera-Valdés
  fullname: Vera-Valdés, J. Eduardo
  organization: Department of Mathematical Sciences, Aalborg University, Aalborg, 9220, Denmark
– sequence: 4
  givenname: Anna
  orcidid: 0000-0002-3195-7388
  surname: Marszal-Pomianowska
  fullname: Marszal-Pomianowska, Anna
  organization: Department of the Built Environment, Aalborg University, Aalborg, 9220, Denmark
– sequence: 5
  givenname: Tine Steen
  orcidid: 0000-0002-4704-6503
  surname: Larsen
  fullname: Larsen, Tine Steen
  organization: Department of the Built Environment, Aalborg University, Aalborg, 9220, Denmark
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-530032$$DView record from Swedish Publication Index (Uppsala universitet)
BookMark eNqFkL1u2zAURjk4QP76Bhk4dohcUiQl00MBI0mbAgG6NFmJa-pKpiGTKkkl8NtXrooOGdqJy_kOLs8lWfjgkZAbzpac8erTfokeY3dclqyUSy6YUHxBLpioWKGkLM_JZUp7xphaaX1B9vcuQddF7CC74GloaQ4Zejpb6JiQOp8DTQNYpDucMN9R8A1twgFTdpbuQqZvkDGu6YZal49FstAjTaPL2FAYhhjA7q7JWQt9wg9_3ivy_OXhx91j8fT967e7zVNhZVnmQoEQpUYtRC3remtXUFei4igRqla1fGUlV7xuUXDNbS0t2zaCqa1ugWkOpbgit7M3veEwbs0Q3QHi0QRw5t69bEyInRlHowRj4oR_nPHpyp_j9CNzcMli34PHMCYjuBK80rLWEypn1MaQUsT2r5szc6pv9mbuZk71zVx_mq3fzaZIv3PnCK7_3_jzPMYp2avDaJJ16C02LqLNpgnu34JfmGineA
CitedBy_id crossref_primary_10_1016_j_apenergy_2024_123586
crossref_primary_10_1016_j_applthermaleng_2025_125799
crossref_primary_10_1051_e3sconf_202560801014
crossref_primary_10_1016_j_applthermaleng_2024_125296
Cites_doi 10.1061/(ASCE)WR.1943-5452.0001360
10.1016/j.energy.2021.122318
10.1016/j.envsoft.2015.07.012
10.1016/j.energy.2020.119685
10.1016/j.rser.2013.08.023
10.1016/j.dib.2023.109964
10.1016/j.enbuild.2016.08.037
10.21105/joss.01903
10.1016/j.rser.2021.112035
10.1016/j.solener.2016.08.033
10.1051/e3sconf/202236210001
10.1088/1742-6596/2600/2/022017
10.3390/w13010036
10.1016/j.enconman.2012.11.002
10.1016/j.rser.2017.05.229
10.1016/j.enbuild.2008.08.008
10.1016/j.energy.2020.119440
10.1016/S0047-259X(03)00079-4
10.1016/j.segy.2021.100035
10.1016/j.energy.2022.125705
10.1016/j.enbuild.2013.11.001
10.1080/13241583.2021.1983968
10.18637/jss.v077.i01
10.35490/EC3.2023.208
10.3390/w12010294
10.1016/j.energy.2020.117687
10.3390/en14113314
10.5194/dwes-10-75-2017
10.3390/w14050826
10.1051/e3sconf/202017212001
10.1016/j.energy.2023.127569
10.1016/j.enbuild.2015.09.067
10.1016/j.enbuild.2018.11.035
10.1016/j.energy.2023.127713
10.1016/j.energy.2014.02.089
10.1016/j.energy.2021.120678
10.1016/j.watres.2022.119500
10.18637/jss.v039.i05
ContentType Journal Article
Copyright 2024 The Author(s)
Copyright_xml – notice: 2024 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
7S9
L.6
ACNBI
ADTPV
AOWAS
D8T
DF2
ZZAVC
DOI 10.1016/j.energy.2024.130351
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
SWEPUB Uppsala universitet full text
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Uppsala universitet
SwePub Articles full text
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA


DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
ExternalDocumentID oai_DiVA_org_uu_530032
10_1016_j_energy_2024_130351
S0360544224001221
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAHCO
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSR
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABFNM
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AHHHB
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
WUQ
~HD
7S9
L.6
ACNBI
ADTPV
AOWAS
D8T
DF2
ZZAVC
ID FETCH-LOGICAL-c422t-5a3329e9337477bc8a76361e4ea6f5f18c41517fe3191c74c0bd305b9fa091a23
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001164884800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0360-5442
1873-6785
IngestDate Tue Nov 04 16:24:45 EST 2025
Thu Oct 02 14:58:39 EDT 2025
Sat Nov 29 06:35:49 EST 2025
Tue Nov 18 21:59:32 EST 2025
Sat May 25 15:41:21 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Data-driven algorithms
Domestic hot water
Smart heat meter
District heating
Space heating
Smart water meter
Language English
License This is an open access article under the CC BY license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c422t-5a3329e9337477bc8a76361e4ea6f5f18c41517fe3191c74c0bd305b9fa091a23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3972-413X
0000-0002-3195-7388
0000-0002-0337-8055
0000-0002-4704-6503
OpenAccessLink https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-530032
PQID 3153169479
PQPubID 24069
ParticipantIDs swepub_primary_oai_DiVA_org_uu_530032
proquest_miscellaneous_3153169479
crossref_primary_10_1016_j_energy_2024_130351
crossref_citationtrail_10_1016_j_energy_2024_130351
elsevier_sciencedirect_doi_10_1016_j_energy_2024_130351
PublicationCentury 2000
PublicationDate 2024-03-15
PublicationDateYYYYMMDD 2024-03-15
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-15
  day: 15
PublicationDecade 2020
PublicationTitle Energy (Oxford)
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Ahmed, Pylsy, Kurnitski (b39) 2016; 137
Leiria, Johra, Belias, Quaggiotto, Zarrella, Marszal-Pomianowska (b32) 2022; 362
Schaffer, Veit, Marszal-Pomianowska, Frandsen, Pomianowski, Dichmann (b36) 2024; 52
Bischl, Binder, Lang, Pielok, Richter, Coors (b49) 2023; 13
Meyer, Dimitriadou, Hornik, Weingessel, Leisch (b45) 2022
Ivanko, Sørensen, Nord (b26) 2021; 219
Becker, Lang, Richter, Bischl, Schalk (b53) 2023
Kim (b56) 2015; 22
Schaffer, Leiria, Vera-Valdés, Marszal-Pomianowska (b34) 2023
Efficiency Valuation Organization (EVO) (b61) 2014
Koech, Cardell-Oliver, Syme (b7) 2021; 25
Becker (b52) 2023
Rahim, Nguyen, Stewart, Giurco, Blumenstein (b16) 2020; 12
Li, Jamieson, DeSalvo, Rostamizadeh, Talwalkar (b47) 2018; 18
Chen, He, Benesty, Khotilovich, Tang, Cho (b46) 2023
Larsen, Daniels, Jensen, Andersen (b35) 2012
Neumayer, Stecher, Grimm, Maier, Bücker, Schmidt (b9) 2023; 276
Eurostat (b2) 2023
Leiria, Johra, Marszal-Pomianowska, Pomianowski (b31) 2023; 263
Commission, for Energy, Bacquet, Galindo Fernández, Oger, Themessl (b1) 2022
Lumbreras, Garay-Martinez, Arregi, Martin-Escudero, Diarce, Raud (b10) 2022; 239
George, Pearre, Swan (b27) 2015; 109
Mazzoni, Alvisi, Blokker, Buchberger, Castelletti, Cominola (b13) 2023; 230
Bøhm (b59) 2013; 67
Yliniemi, Delsing, van Deventer (b24) 2009; 41
Cominola, Giuliani, Piga, Castelletti, Rizzoli (b18) 2015; 72
Danish Meteorological Institute (b37) 2023
Simon, Friedman, Hastie, Tibshirani (b42) 2011; 39
Lang, Au, Coors, Schratz (b54) 2023
Wei, Jones, De Wilde (b19) 2014; 70
Marszal-Pomianowska, Jensen, Pomianowski, Larsen, Jørgensen, Knudsen (b60) 2021; 14
Averfalk, Benakopoulos, Best, Dammel, Engel, Geyer (b4) 2021
Fuentes, Arce, Salom (b20) 2018; 81
Cheifetz, Noumir, Samé, Sandraz, Féliers, Heim (b17) 2017; 10
Leiria, Schaffer, Johra, Marzsal-Pomianowska, Pomianowski (b33) 2023; 2600
R. Core Team (b40) 2023
Di Mauro, Cominola, Castelletti, Di Nardo (b14) 2020; 13
US DOE FEMP (b63) 2015
Boland, Huang, Ridley (b57) 2013; 28
Steffelbauer, Blokker, Buchberger, Knobbe, Abraham (b15) 2021; 147
Msamadya, Joo, Lee, Choi, Lee, Lee (b6) 2022; 14
Meireles, Sousa, Bleys, Poncelet (b21) 2022; 157
Kristensen, Hedegaard, Petersen (b12) 2020; 201
Schliep, Hechenbichler (b43) 2016
Lee, Yim (b28) 2021; 229
Wright, Ziegler (b44) 2017; 77
Baringhaus, Franz (b58) 2004; 88
Marszal-Pomianowska, Zhang, Pomianowski, Heiselberg, Gram-Hanssen, Hansen (b29) 2019; 184
Bischl, Binder, Lang, Pielok, Richter, Coors (b41) 2021
Binder, Pfisterer, Lang, Schneider, Kotthofi, Bischl (b51) 2021; 22
Lund, Werner, Wiltshire, Svendsen, Thorsen, Hvelplund (b5) 2014; 68
Guelpa, Verda (b22) 2021; 219
Fester, Østergaard, Bentsen, Nielsen (b8) 2023; 277
Becker, Gruber, Richter, Moosbauer, Bischl (b55) 2023
Leiria, Johra, Marszal-Pomianowska, Pomianowski, Kvols Heiselberg (b11) 2021; 3
Lien, Ivanko, Sartori (b25) 2020
European Parliament (b3) 2018
Jamieson, Talwalkar (b48) 2016; vol. 51
Lang, Binder, Richter, Schratz, Pfisterer, Coors (b50) 2019; 4
Bacher, de Saint-Aubain, Christiansen, Madsen (b23) 2016; 130
Hedegaard, Kristensen, Petersen (b30) 2020; 172
American Society of Heating Refrigerating and Air Conditioning Engineers, ASHRAE (b62) 2014
International Organization of Legal Metrology (b38) 2002
Binder (10.1016/j.energy.2024.130351_b51) 2021; 22
Msamadya (10.1016/j.energy.2024.130351_b6) 2022; 14
Di Mauro (10.1016/j.energy.2024.130351_b14) 2020; 13
George (10.1016/j.energy.2024.130351_b27) 2015; 109
R. Core Team (10.1016/j.energy.2024.130351_b40) 2023
Koech (10.1016/j.energy.2024.130351_b7) 2021; 25
Yliniemi (10.1016/j.energy.2024.130351_b24) 2009; 41
Lund (10.1016/j.energy.2024.130351_b5) 2014; 68
Baringhaus (10.1016/j.energy.2024.130351_b58) 2004; 88
Steffelbauer (10.1016/j.energy.2024.130351_b15) 2021; 147
Marszal-Pomianowska (10.1016/j.energy.2024.130351_b60) 2021; 14
Bischl (10.1016/j.energy.2024.130351_b41) 2021
Leiria (10.1016/j.energy.2024.130351_b32) 2022; 362
Leiria (10.1016/j.energy.2024.130351_b31) 2023; 263
Leiria (10.1016/j.energy.2024.130351_b11) 2021; 3
Meyer (10.1016/j.energy.2024.130351_b45) 2022
Becker (10.1016/j.energy.2024.130351_b52) 2023
Schaffer (10.1016/j.energy.2024.130351_b34) 2023
Bischl (10.1016/j.energy.2024.130351_b49) 2023; 13
Fester (10.1016/j.energy.2024.130351_b8) 2023; 277
Kristensen (10.1016/j.energy.2024.130351_b12) 2020; 201
Kim (10.1016/j.energy.2024.130351_b56) 2015; 22
Meireles (10.1016/j.energy.2024.130351_b21) 2022; 157
Rahim (10.1016/j.energy.2024.130351_b16) 2020; 12
Leiria (10.1016/j.energy.2024.130351_b33) 2023; 2600
Efficiency Valuation Organization (EVO) (10.1016/j.energy.2024.130351_b61) 2014
Wei (10.1016/j.energy.2024.130351_b19) 2014; 70
Guelpa (10.1016/j.energy.2024.130351_b22) 2021; 219
Averfalk (10.1016/j.energy.2024.130351_b4) 2021
Wright (10.1016/j.energy.2024.130351_b44) 2017; 77
Lee (10.1016/j.energy.2024.130351_b28) 2021; 229
Becker (10.1016/j.energy.2024.130351_b55) 2023
International Organization of Legal Metrology (10.1016/j.energy.2024.130351_b38) 2002
Bøhm (10.1016/j.energy.2024.130351_b59) 2013; 67
Lang (10.1016/j.energy.2024.130351_b54) 2023
Lien (10.1016/j.energy.2024.130351_b25) 2020
European Parliament (10.1016/j.energy.2024.130351_b3) 2018
Marszal-Pomianowska (10.1016/j.energy.2024.130351_b29) 2019; 184
Neumayer (10.1016/j.energy.2024.130351_b9) 2023; 276
Danish Meteorological Institute (10.1016/j.energy.2024.130351_b37) 2023
Bacher (10.1016/j.energy.2024.130351_b23) 2016; 130
Cominola (10.1016/j.energy.2024.130351_b18) 2015; 72
Commission (10.1016/j.energy.2024.130351_b1) 2022
Cheifetz (10.1016/j.energy.2024.130351_b17) 2017; 10
Schaffer (10.1016/j.energy.2024.130351_b36) 2024; 52
Ahmed (10.1016/j.energy.2024.130351_b39) 2016; 137
Lumbreras (10.1016/j.energy.2024.130351_b10) 2022; 239
Schliep (10.1016/j.energy.2024.130351_b43) 2016
Boland (10.1016/j.energy.2024.130351_b57) 2013; 28
Chen (10.1016/j.energy.2024.130351_b46) 2023
Ivanko (10.1016/j.energy.2024.130351_b26) 2021; 219
American Society of Heating Refrigerating and Air Conditioning Engineers (10.1016/j.energy.2024.130351_b62) 2014
US DOE FEMP (10.1016/j.energy.2024.130351_b63) 2015
Mazzoni (10.1016/j.energy.2024.130351_b13) 2023; 230
Fuentes (10.1016/j.energy.2024.130351_b20) 2018; 81
Jamieson (10.1016/j.energy.2024.130351_b48) 2016; vol. 51
Lang (10.1016/j.energy.2024.130351_b50) 2019; 4
Eurostat (10.1016/j.energy.2024.130351_b2) 2023
Simon (10.1016/j.energy.2024.130351_b42) 2011; 39
Li (10.1016/j.energy.2024.130351_b47) 2018; 18
Becker (10.1016/j.energy.2024.130351_b53) 2023
Hedegaard (10.1016/j.energy.2024.130351_b30) 2020; 172
Larsen (10.1016/j.energy.2024.130351_b35) 2012
References_xml – volume: 22
  start-page: 665
  year: 2015
  end-page: 674
  ident: b56
  article-title: ppcor: An R package for a fast calculation to semi-partial correlation coefficients
  publication-title: Commun Stat Appl Methods
– year: 2022
  ident: b1
  article-title: District heating and cooling in the European Union : Overview of markets and regulatory frameworks under the revised Renewable Energy Directive
– volume: 88
  start-page: 190
  year: 2004
  end-page: 206
  ident: b58
  article-title: On a new multivariate two-sample test
  publication-title: J Multivariate Anal
– volume: 130
  start-page: 107
  year: 2016
  end-page: 112
  ident: b23
  article-title: Non-parametric method for separating domestic hot water heating spikes and space heating
  publication-title: Energy Build
– volume: 277
  year: 2023
  ident: b8
  article-title: A data-driven method for heat loss estimation from district heating service pipes using heat meter- and GIS data
  publication-title: Energy
– year: 2015
  ident: b63
  article-title: M&V guidelines: Measurement and verification for performance-based contracts-version 4.0
– volume: 67
  start-page: 152
  year: 2013
  end-page: 159
  ident: b59
  article-title: Production and distribution of domestic hot water in selected Danish apartment buildings and institutions. Analysis of consumption, energy efficiency and the significance for energy design requirements of buildings
  publication-title: Energy Convers Manage
– volume: 2600
  year: 2023
  ident: b33
  article-title: Estimating residential space heating and domestic hot water from truncated smart heat data
  publication-title: J Phys Conf Ser
– volume: 14
  start-page: 826
  year: 2022
  ident: b6
  article-title: Role of water policies in the adoption of smart water metering and the future market
  publication-title: Water
– volume: 201
  year: 2020
  ident: b12
  article-title: Long-term forecasting of hourly district heating loads in urban areas using hierarchical archetype modeling
  publication-title: Energy
– year: 2016
  ident: b43
  article-title: kknn: Weighted k-nearest neighbors
– volume: 184
  start-page: 53
  year: 2019
  end-page: 64
  ident: b29
  article-title: Simple methodology to estimate the mean hourly and the daily profiles of domestic hot water demand from hourly total heating readings
  publication-title: Energy Build
– year: 2021
  ident: b4
  article-title: Low-temperature district heating implementation guidebook: Final report of IEA DHC Annex TS2. Implementation of low-temperature district heating systems
– start-page: 18
  year: 2002
  ident: b38
  article-title: OIML R 75-1
– volume: 13
  start-page: 1
  year: 2023
  end-page: 43
  ident: b49
  article-title: Hyperparameter optimization: Foundations, algorithms, best practices, and open challenges
  publication-title: WIREs Data Min Knowl Discov
– volume: 229
  year: 2021
  ident: b28
  article-title: Energy and flow demand analysis of domestic hot water in an apartment complex using a smart meter
  publication-title: Energy
– volume: 219
  year: 2021
  ident: b22
  article-title: Demand response and other demand side management techniques for district heating: A review
  publication-title: Energy
– volume: 22
  start-page: 1
  year: 2021
  end-page: 7
  ident: b51
  article-title: mlr3Pipelines - Flexible machine learning pipelines in R
  publication-title: J Mach Learn Res
– volume: 39
  start-page: 1
  year: 2011
  end-page: 13
  ident: b42
  article-title: Regularization paths for Cox’s proportional hazards model via coordinate descent
  publication-title: J Stat Softw
– year: 2014
  ident: b61
  article-title: International performance measurement and verification protocol: Concepts and options for determining energy and water savings
– volume: 137
  start-page: 516
  year: 2016
  end-page: 530
  ident: b39
  article-title: Hourly consumption profiles of domestic hot water for different occupant groups in dwellings
  publication-title: Sol Energy
– volume: 219
  year: 2021
  ident: b26
  article-title: Splitting measurements of the total heat demand in a hotel into domestic hot water and space heating heat use
  publication-title: Energy
– year: 2023
  ident: b2
  article-title: Disaggregated final energy consumption in households - quantities
– volume: vol. 51
  start-page: 240
  year: 2016
  end-page: 248
  ident: b48
  article-title: Non-stochastic best arm identification and hyperparameter optimization
  publication-title: Proceedings of the 19th international conference on artificial intelligence and statistics
– volume: 25
  start-page: 173
  year: 2021
  end-page: 182
  ident: b7
  article-title: Smart water metering: Adoption, regulatory and social considerations
  publication-title: Australas J Water Resour
– volume: 172
  start-page: 1
  year: 2020
  end-page: 8
  ident: b30
  article-title: Experimental validation of a model-based method for separating the space heating and domestic hot water components from smart-meter consumption data
  publication-title: E3S Web Conf
– volume: 18
  start-page: 1
  year: 2018
  end-page: 52
  ident: b47
  article-title: Hyperband: A novel bandit-based approach to hyperparameter optimization
  publication-title: J Mach Learn Res
– volume: 72
  start-page: 198
  year: 2015
  end-page: 214
  ident: b18
  article-title: Benefits and challenges of using smart meters for advancing residential water demand modeling and management: A review
  publication-title: Environ Model Softw
– year: 2023
  ident: b52
  article-title: mlr3tuningspaces: Search spaces for ’mlr3’
– volume: 10
  start-page: 75
  year: 2017
  end-page: 82
  ident: b17
  article-title: Modeling and clustering water demand patterns from real-world smart meter data
  publication-title: Drink Water Eng Sci
– volume: 263
  year: 2023
  ident: b31
  article-title: A methodology to estimate space heating and domestic hot water energy demand profile in residential buildings from low-resolution heat meter data
  publication-title: Energy
– year: 2023
  ident: b53
  article-title: mlr3tuning: Hyperparameter optimization for ’mlr3’
– year: 2023
  ident: b37
  article-title: Danish Meteorological Institute - Open data
– volume: 14
  year: 2021
  ident: b60
  article-title: Comfort of domestic water in residential buildings: Flow, temperature and energy in draw-off points: Field study in two Danish detached houses
  publication-title: Energies
– year: 2023
  ident: b55
  article-title: mlr3hyperband: Hyperband for ’mlr3’
– volume: 12
  start-page: 294
  year: 2020
  ident: b16
  article-title: Machine learning and data analytic techniques in digitalwater metering: A review
  publication-title: Water
– volume: 52
  year: 2024
  ident: b36
  article-title: Dataset of smart heat and water meter data with accompanying building characteristics
  publication-title: Data Brief
– year: 2023
  ident: b54
  article-title: mlr3learners: Recommended learners for ’mlr3’
– start-page: 244
  year: 2020
  end-page: 251
  ident: b25
  article-title: Domestic hot water decomposition from measured total heat load in Norwegian buildings
  publication-title: BuildSim-Nordic 2020, volume 13
– volume: 70
  start-page: 36
  year: 2014
  end-page: 44
  ident: b19
  article-title: Driving factors for occupant-controlled space heating in residential buildings
  publication-title: Energy Build
– volume: 157
  year: 2022
  ident: b21
  article-title: Domestic hot water consumption pattern: Relation with total water consumption and air temperature
  publication-title: Renew Sustain Energy Rev
– volume: 28
  start-page: 749
  year: 2013
  end-page: 756
  ident: b57
  article-title: Decomposing global solar radiation into its direct and diffuse components
  publication-title: Renew Sustain Energy Rev
– volume: 109
  start-page: 304
  year: 2015
  end-page: 315
  ident: b27
  article-title: High resolution measured domestic hot water consumption of Canadian homes
  publication-title: Energy Build
– volume: 13
  start-page: 36
  year: 2020
  ident: b14
  article-title: Urban water consumption at multiple spatial and temporal scales. A review of existing datasets
  publication-title: Water
– year: 2023
  ident: b46
  article-title: xgboost: Extreme gradient boosting
– volume: 4
  start-page: 1903
  year: 2019
  ident: b50
  article-title: mlr3: A modern object-oriented machine learning framework in R
  publication-title: J Open Source Softw
– volume: 147
  start-page: 1
  year: 2021
  end-page: 12
  ident: b15
  article-title: Dynamic time warping clustering to discover socioeconomic characteristics in smart water meter data
  publication-title: J Water Resour Plan Manag
– volume: 77
  year: 2017
  ident: b44
  article-title: ranger: A fast implementation of random forests for high dimensional data in C++ and R
  publication-title: J Stat Softw
– year: 2022
  ident: b45
  article-title: e1071: Misc Functions of the Department of Statistics
– volume: 81
  start-page: 1530
  year: 2018
  end-page: 1547
  ident: b20
  article-title: A review of domestic hot water consumption profiles for application in systems and buildings energy performance analysis
  publication-title: Renew Sustain Energy Rev
– year: 2021
  ident: b41
  article-title: Hyperparameter optimization: Foundations, algorithms, best practices and open challenges
– year: 2018
  ident: b3
  article-title: Directive (EU) 2018/2002 amending Directive 2012/27/EU on energy efficiency
  publication-title: Off J Eur Union
– volume: 239
  year: 2022
  ident: b10
  article-title: Data driven model for heat load prediction in buildings connected to District Heating by using smart heat meters
  publication-title: Energy
– year: 2023
  ident: b34
  article-title: Increasing the accuracy of low-resolution commercial smart heat meter data and analysing its error
  publication-title: Proceedings of the European conference on computing in construction
– volume: 230
  year: 2023
  ident: b13
  article-title: Investigating the characteristics of residential end uses of water: A worldwide review
  publication-title: Water Res
– year: 2012
  ident: b35
  article-title: EnergiParcel-Projektet: Målinger og analyse af energiforbrug og indeklima i 4 danske parcelhusrenoveringer 2008–2011
– volume: 41
  start-page: 169
  year: 2009
  end-page: 174
  ident: b24
  article-title: Experimental verification of a method for estimating energy for domestic hot water production in a 2-stage district heating substation
  publication-title: Energy Build
– year: 2023
  ident: b40
  article-title: R: A language and environment for statistical computing
– start-page: 1
  year: 2014
  end-page: 150
  ident: b62
  article-title: Measurement of energy, demand, and water savings (ASHRAE Guideline 14-2014)
– volume: 276
  year: 2023
  ident: b9
  article-title: Fault and anomaly detection in district heating substations: A survey on methodology and data sets
  publication-title: Energy
– volume: 3
  year: 2021
  ident: b11
  article-title: Using data from smart energy meters to gain knowledge about households connected to the district heating network: A Danish case
  publication-title: Smart Energy
– volume: 68
  start-page: 1
  year: 2014
  end-page: 11
  ident: b5
  article-title: 4th generation district heating (4GDH). Integrating smart thermal grids into future sustainable energy systems
  publication-title: Energy
– volume: 362
  year: 2022
  ident: b32
  article-title: Validation of a new method to estimate energy use for space heating and hot water production from low-resolution heat meter data
  publication-title: E3S Web Conf
– volume: 147
  start-page: 1
  year: 2021
  ident: 10.1016/j.energy.2024.130351_b15
  article-title: Dynamic time warping clustering to discover socioeconomic characteristics in smart water meter data
  publication-title: J Water Resour Plan Manag
  doi: 10.1061/(ASCE)WR.1943-5452.0001360
– volume: 239
  year: 2022
  ident: 10.1016/j.energy.2024.130351_b10
  article-title: Data driven model for heat load prediction in buildings connected to District Heating by using smart heat meters
  publication-title: Energy
  doi: 10.1016/j.energy.2021.122318
– volume: 72
  start-page: 198
  year: 2015
  ident: 10.1016/j.energy.2024.130351_b18
  article-title: Benefits and challenges of using smart meters for advancing residential water demand modeling and management: A review
  publication-title: Environ Model Softw
  doi: 10.1016/j.envsoft.2015.07.012
– volume: 219
  year: 2021
  ident: 10.1016/j.energy.2024.130351_b26
  article-title: Splitting measurements of the total heat demand in a hotel into domestic hot water and space heating heat use
  publication-title: Energy
  doi: 10.1016/j.energy.2020.119685
– volume: 28
  start-page: 749
  year: 2013
  ident: 10.1016/j.energy.2024.130351_b57
  article-title: Decomposing global solar radiation into its direct and diffuse components
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2013.08.023
– volume: 52
  year: 2024
  ident: 10.1016/j.energy.2024.130351_b36
  article-title: Dataset of smart heat and water meter data with accompanying building characteristics
  publication-title: Data Brief
  doi: 10.1016/j.dib.2023.109964
– volume: 130
  start-page: 107
  year: 2016
  ident: 10.1016/j.energy.2024.130351_b23
  article-title: Non-parametric method for separating domestic hot water heating spikes and space heating
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2016.08.037
– volume: 22
  start-page: 665
  year: 2015
  ident: 10.1016/j.energy.2024.130351_b56
  article-title: ppcor: An R package for a fast calculation to semi-partial correlation coefficients
  publication-title: Commun Stat Appl Methods
– volume: 4
  start-page: 1903
  year: 2019
  ident: 10.1016/j.energy.2024.130351_b50
  article-title: mlr3: A modern object-oriented machine learning framework in R
  publication-title: J Open Source Softw
  doi: 10.21105/joss.01903
– year: 2023
  ident: 10.1016/j.energy.2024.130351_b54
– volume: 157
  year: 2022
  ident: 10.1016/j.energy.2024.130351_b21
  article-title: Domestic hot water consumption pattern: Relation with total water consumption and air temperature
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2021.112035
– year: 2014
  ident: 10.1016/j.energy.2024.130351_b61
– volume: 137
  start-page: 516
  year: 2016
  ident: 10.1016/j.energy.2024.130351_b39
  article-title: Hourly consumption profiles of domestic hot water for different occupant groups in dwellings
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2016.08.033
– volume: 362
  year: 2022
  ident: 10.1016/j.energy.2024.130351_b32
  article-title: Validation of a new method to estimate energy use for space heating and hot water production from low-resolution heat meter data
  publication-title: E3S Web Conf
  doi: 10.1051/e3sconf/202236210001
– year: 2022
  ident: 10.1016/j.energy.2024.130351_b45
– volume: 2600
  year: 2023
  ident: 10.1016/j.energy.2024.130351_b33
  article-title: Estimating residential space heating and domestic hot water from truncated smart heat data
  publication-title: J Phys Conf Ser
  doi: 10.1088/1742-6596/2600/2/022017
– start-page: 1
  year: 2014
  ident: 10.1016/j.energy.2024.130351_b62
– volume: 13
  start-page: 36
  year: 2020
  ident: 10.1016/j.energy.2024.130351_b14
  article-title: Urban water consumption at multiple spatial and temporal scales. A review of existing datasets
  publication-title: Water
  doi: 10.3390/w13010036
– year: 2023
  ident: 10.1016/j.energy.2024.130351_b55
– year: 2023
  ident: 10.1016/j.energy.2024.130351_b37
– volume: vol. 51
  start-page: 240
  year: 2016
  ident: 10.1016/j.energy.2024.130351_b48
  article-title: Non-stochastic best arm identification and hyperparameter optimization
– year: 2018
  ident: 10.1016/j.energy.2024.130351_b3
  article-title: Directive (EU) 2018/2002 amending Directive 2012/27/EU on energy efficiency
  publication-title: Off J Eur Union
– year: 2023
  ident: 10.1016/j.energy.2024.130351_b46
– year: 2023
  ident: 10.1016/j.energy.2024.130351_b53
– volume: 67
  start-page: 152
  year: 2013
  ident: 10.1016/j.energy.2024.130351_b59
  article-title: Production and distribution of domestic hot water in selected Danish apartment buildings and institutions. Analysis of consumption, energy efficiency and the significance for energy design requirements of buildings
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2012.11.002
– volume: 18
  start-page: 1
  year: 2018
  ident: 10.1016/j.energy.2024.130351_b47
  article-title: Hyperband: A novel bandit-based approach to hyperparameter optimization
  publication-title: J Mach Learn Res
– volume: 81
  start-page: 1530
  year: 2018
  ident: 10.1016/j.energy.2024.130351_b20
  article-title: A review of domestic hot water consumption profiles for application in systems and buildings energy performance analysis
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2017.05.229
– volume: 41
  start-page: 169
  year: 2009
  ident: 10.1016/j.energy.2024.130351_b24
  article-title: Experimental verification of a method for estimating energy for domestic hot water production in a 2-stage district heating substation
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2008.08.008
– year: 2021
  ident: 10.1016/j.energy.2024.130351_b4
– volume: 219
  year: 2021
  ident: 10.1016/j.energy.2024.130351_b22
  article-title: Demand response and other demand side management techniques for district heating: A review
  publication-title: Energy
  doi: 10.1016/j.energy.2020.119440
– year: 2021
  ident: 10.1016/j.energy.2024.130351_b41
– volume: 88
  start-page: 190
  year: 2004
  ident: 10.1016/j.energy.2024.130351_b58
  article-title: On a new multivariate two-sample test
  publication-title: J Multivariate Anal
  doi: 10.1016/S0047-259X(03)00079-4
– start-page: 244
  year: 2020
  ident: 10.1016/j.energy.2024.130351_b25
  article-title: Domestic hot water decomposition from measured total heat load in Norwegian buildings
– start-page: 18
  year: 2002
  ident: 10.1016/j.energy.2024.130351_b38
– volume: 3
  year: 2021
  ident: 10.1016/j.energy.2024.130351_b11
  article-title: Using data from smart energy meters to gain knowledge about households connected to the district heating network: A Danish case
  publication-title: Smart Energy
  doi: 10.1016/j.segy.2021.100035
– volume: 22
  start-page: 1
  year: 2021
  ident: 10.1016/j.energy.2024.130351_b51
  article-title: mlr3Pipelines - Flexible machine learning pipelines in R
  publication-title: J Mach Learn Res
– year: 2022
  ident: 10.1016/j.energy.2024.130351_b1
– volume: 263
  year: 2023
  ident: 10.1016/j.energy.2024.130351_b31
  article-title: A methodology to estimate space heating and domestic hot water energy demand profile in residential buildings from low-resolution heat meter data
  publication-title: Energy
  doi: 10.1016/j.energy.2022.125705
– year: 2023
  ident: 10.1016/j.energy.2024.130351_b2
– volume: 13
  start-page: 1
  year: 2023
  ident: 10.1016/j.energy.2024.130351_b49
  article-title: Hyperparameter optimization: Foundations, algorithms, best practices, and open challenges
  publication-title: WIREs Data Min Knowl Discov
– year: 2016
  ident: 10.1016/j.energy.2024.130351_b43
– volume: 70
  start-page: 36
  year: 2014
  ident: 10.1016/j.energy.2024.130351_b19
  article-title: Driving factors for occupant-controlled space heating in residential buildings
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2013.11.001
– volume: 25
  start-page: 173
  year: 2021
  ident: 10.1016/j.energy.2024.130351_b7
  article-title: Smart water metering: Adoption, regulatory and social considerations
  publication-title: Australas J Water Resour
  doi: 10.1080/13241583.2021.1983968
– volume: 77
  year: 2017
  ident: 10.1016/j.energy.2024.130351_b44
  article-title: ranger: A fast implementation of random forests for high dimensional data in C++ and R
  publication-title: J Stat Softw
  doi: 10.18637/jss.v077.i01
– year: 2023
  ident: 10.1016/j.energy.2024.130351_b34
  article-title: Increasing the accuracy of low-resolution commercial smart heat meter data and analysing its error
  doi: 10.35490/EC3.2023.208
– volume: 12
  start-page: 294
  year: 2020
  ident: 10.1016/j.energy.2024.130351_b16
  article-title: Machine learning and data analytic techniques in digitalwater metering: A review
  publication-title: Water
  doi: 10.3390/w12010294
– volume: 201
  year: 2020
  ident: 10.1016/j.energy.2024.130351_b12
  article-title: Long-term forecasting of hourly district heating loads in urban areas using hierarchical archetype modeling
  publication-title: Energy
  doi: 10.1016/j.energy.2020.117687
– year: 2012
  ident: 10.1016/j.energy.2024.130351_b35
– volume: 14
  year: 2021
  ident: 10.1016/j.energy.2024.130351_b60
  article-title: Comfort of domestic water in residential buildings: Flow, temperature and energy in draw-off points: Field study in two Danish detached houses
  publication-title: Energies
  doi: 10.3390/en14113314
– year: 2023
  ident: 10.1016/j.energy.2024.130351_b40
– year: 2023
  ident: 10.1016/j.energy.2024.130351_b52
– volume: 10
  start-page: 75
  year: 2017
  ident: 10.1016/j.energy.2024.130351_b17
  article-title: Modeling and clustering water demand patterns from real-world smart meter data
  publication-title: Drink Water Eng Sci
  doi: 10.5194/dwes-10-75-2017
– volume: 14
  start-page: 826
  year: 2022
  ident: 10.1016/j.energy.2024.130351_b6
  article-title: Role of water policies in the adoption of smart water metering and the future market
  publication-title: Water
  doi: 10.3390/w14050826
– volume: 172
  start-page: 1
  year: 2020
  ident: 10.1016/j.energy.2024.130351_b30
  article-title: Experimental validation of a model-based method for separating the space heating and domestic hot water components from smart-meter consumption data
  publication-title: E3S Web Conf
  doi: 10.1051/e3sconf/202017212001
– volume: 276
  year: 2023
  ident: 10.1016/j.energy.2024.130351_b9
  article-title: Fault and anomaly detection in district heating substations: A survey on methodology and data sets
  publication-title: Energy
  doi: 10.1016/j.energy.2023.127569
– volume: 109
  start-page: 304
  year: 2015
  ident: 10.1016/j.energy.2024.130351_b27
  article-title: High resolution measured domestic hot water consumption of Canadian homes
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2015.09.067
– volume: 184
  start-page: 53
  year: 2019
  ident: 10.1016/j.energy.2024.130351_b29
  article-title: Simple methodology to estimate the mean hourly and the daily profiles of domestic hot water demand from hourly total heating readings
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2018.11.035
– volume: 277
  year: 2023
  ident: 10.1016/j.energy.2024.130351_b8
  article-title: A data-driven method for heat loss estimation from district heating service pipes using heat meter- and GIS data
  publication-title: Energy
  doi: 10.1016/j.energy.2023.127713
– volume: 68
  start-page: 1
  year: 2014
  ident: 10.1016/j.energy.2024.130351_b5
  article-title: 4th generation district heating (4GDH). Integrating smart thermal grids into future sustainable energy systems
  publication-title: Energy
  doi: 10.1016/j.energy.2014.02.089
– volume: 229
  year: 2021
  ident: 10.1016/j.energy.2024.130351_b28
  article-title: Energy and flow demand analysis of domestic hot water in an apartment complex using a smart meter
  publication-title: Energy
  doi: 10.1016/j.energy.2021.120678
– volume: 230
  year: 2023
  ident: 10.1016/j.energy.2024.130351_b13
  article-title: Investigating the characteristics of residential end uses of water: A worldwide review
  publication-title: Water Res
  doi: 10.1016/j.watres.2022.119500
– year: 2015
  ident: 10.1016/j.energy.2024.130351_b63
– volume: 39
  start-page: 1
  year: 2011
  ident: 10.1016/j.energy.2024.130351_b42
  article-title: Regularization paths for Cox’s proportional hazards model via coordinate descent
  publication-title: J Stat Softw
  doi: 10.18637/jss.v039.i05
SSID ssj0005899
Score 2.457938
Snippet This paper develops a computationally fast algorithm to disaggregate the total energy use recorded by smart heat meters into space heating (SH) and domestic...
SourceID swepub
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 130351
SubjectTerms algorithms
Data-driven algorithms
District heating
Domestic hot water
energy
heat
regression analysis
Smart heat meter
Smart water meter
Space heating
Title Disaggregation of total energy use into space heating and domestic hot water: A city-scale suited approach
URI https://dx.doi.org/10.1016/j.energy.2024.130351
https://www.proquest.com/docview/3153169479
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-530032
Volume 291
WOSCitedRecordID wos001164884800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0360-5442
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0005899
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1db9MwFLXKhgQvCAbTugEyEjxVrprvmLeKFQFC0yRG6ZvlOE7X0iZT02wVP4lfybUdJysTjD3wElWp41i5J77HN_dcI_Q6hAlPSMchNKAB8XkYwzvHByTzwszhXkK5Ll88_hydnMSTCT3tdH5aLczlIsrzeLOhF__V1HAOjK2ks3cwd9MpnIDfYHQ4gtnh-E-GP56VfAqr6GlDBteFUjxKo_KrSlUmBBgnTCXwTqu52OoU02Kpam6I3nmx7l1x9Rld69YFMHVSgjFlr6w0RbWVyLfi-qZ_Vb50YzLmmxjDF3HO1T4sVhxUNUT-Gzwe_aneSEQK4LNL-99YrjgZq8i1bmEA11cpKYDqog2lr8offEFOiyUgvbgqv5tIcW62BbcRDddXKV1G09kouQYk8P2tWdo1m3rV86zyvKZQ7Q0XYKIR8755qn11g37bfLvi9m-esMlPtKlvc2Z6YaoXZnq5h3bdKKDgBHaHH0eTT21CUax3K21Gb4WaOpvw5mj-RISuL3SuF6_VhOfsMXpUr1Tw0CDsCerIfA89sEL2cg_tj1qRJDSsvUT5FM23IYiLDGsIYjM8DBDECoJYQxDXEMQAQWwhiAGCWEPwLR7iFoDYABBbAD5DX9-Pzt59IPWeHkT4rrsmAfc8l0rqebCOjRIRc3BwoSN9ycMsyJxYAKN0okyCa3BE5ItBkoJLSmjGgdly19tHO3mRywOEaTpIZZZGMk0yn0ciHojEixIgzDLhPne6yLMPmIm64L3ad2XB_mbeLiLNVRem4Mst7SNrO1aTVkNGGQDylitfWVMzmNPVhzqey6IqmQc0xAmpH9EuemMw0IxFlYM_no2HrFhNWVWxwAO_7B7ecdRH6GH75j1HO-tVJV-g--JyPStXL2tk_wIXYNPo
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Disaggregation+of+total+energy+use+into+space+heating+and+domestic+hot+water%3A+A+city-scale+suited+approach&rft.jtitle=Energy+%28Oxford%29&rft.au=Schaffer%2C+Markus&rft.au=Wid%C3%A9n%2C+Joakim&rft.au=Vera-Vald%C3%A9s%2C+J.+Eduardo&rft.au=Marszal-Pomianowska%2C+Anna&rft.date=2024-03-15&rft.issn=0360-5442&rft.volume=291&rft.spage=130351&rft_id=info:doi/10.1016%2Fj.energy.2024.130351&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_energy_2024_130351
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon