An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point Based Nondominated Sorting Approach, Part II: Handling Constraints and Extending to an Adaptive Approach

In the precursor paper, a many-objective optimization method (NSGA-III), based on the NSGA-II framework, was suggested and applied to a number of unconstrained test and practical problems with box constraints alone. In this paper, we extend NSGA-III to solve generic constrained many-objective optimi...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on evolutionary computation Ročník 18; číslo 4; s. 602 - 622
Hlavní autoři: Jain, Himanshu, Deb, Kalyanmoy
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York, NY IEEE 01.08.2014
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1089-778X, 1941-0026
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In the precursor paper, a many-objective optimization method (NSGA-III), based on the NSGA-II framework, was suggested and applied to a number of unconstrained test and practical problems with box constraints alone. In this paper, we extend NSGA-III to solve generic constrained many-objective optimization problems. In the process, we also suggest three types of constrained test problems that are scalable to any number of objectives and provide different types of challenges to a many-objective optimizer. A previously suggested MOEA/D algorithm is also extended to solve constrained problems. Results using constrained NSGA-III and constrained MOEA/D show an edge of the former, particularly in solving problems with a large number of objectives. Furthermore, the NSGA-III algorithm is made adaptive in updating and including new reference points on the fly. The resulting adaptive NSGA-III is shown to provide a denser representation of the Pareto-optimal front, compared to the original NSGA-III with an identical computational effort. This, and the original NSGA-III paper, together suggest and amply test a viable evolutionary many-objective optimization algorithm for handling constrained and unconstrained problems. These studies should encourage researchers to use and pay further attention in evolutionary many-objective optimization.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:1089-778X
1941-0026
DOI:10.1109/TEVC.2013.2281534