Sulfhydrated Sirtuin-1 Increasing Its Deacetylation Activity Is an Essential Epigenetics Mechanism of Anti-Atherogenesis by Hydrogen Sulfide
Hydrogen sulfide (H2S) has a protective role in the pathogenesis of atherosclerosis by multiple pathways. Sirtuin-1 ( ) is a histone deacetylase, as an essential mediated longevity gene, and has an anti-atherogenic effect by regulating the acetylation of some functional proteins. Whether is involved...
Uloženo v:
| Vydáno v: | Antioxidants & redox signaling Ročník 30; číslo 2; s. 184 |
|---|---|
| Hlavní autoři: | , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
10.01.2019
|
| Témata: | |
| ISSN: | 1557-7716, 1557-7716 |
| On-line přístup: | Zjistit podrobnosti o přístupu |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Hydrogen sulfide (H2S) has a protective role in the pathogenesis of atherosclerosis by multiple pathways. Sirtuin-1 (
) is a histone deacetylase, as an essential mediated longevity gene, and has an anti-atherogenic effect by regulating the acetylation of some functional proteins. Whether
is involved in protecting H2S in atherosclerosis and its mechanism remains unclear.
In ApoE-knockout atherosclerosis mice, treatment with an H2S donor (NaHS or GYY4137) reduced atherosclerotic plaque area, macrophage infiltration, aortic inflammation, and plasma lipid level. H2S treatment increased aorta and liver
mRNA expression. Overexpression or slicing cystathionine gamma lyase (CSE) also changed intracellular
expression. CSE/H2S treatment increased
deacetylation in endothelium and hepatocytes and macrophages, then induced deacetylation of its target proteins (P53, P65, and sterol response element binding protein), thereby reducing endothelial and macrophage inflammation and inhibiting macrophage cholesterol uptake and cholesterol
synthesis of liver. Also, CSE/H2S induced
sulfhydration at its two zinc finger domains, increased its zinc ion binding activity to stabilize the alpha-helix structure, lowered its ubiquitination, and reduced its degradation.
H2S is a novel
activator by direct sulfhydration. Because
has a role in longevity, H2S may be a protector for aging-related diseases.
Endogenous CSE/H2S directly sulfhydrated
, enhanced
binding to zinc ion, then promoted its deacetylation activity, and increased
stability, thus reducing atherosclerotic plaque formation. |
|---|---|
| AbstractList | Aims: Hydrogen sulfide (H2S) has a protective role in the pathogenesis of atherosclerosis by multiple pathways. Sirtuin-1 (SIRT1) is a histone deacetylase, as an essential mediated longevity gene, and has an anti-atherogenic effect by regulating the acetylation of some functional proteins. Whether SIRT1 is involved in protecting H2S in atherosclerosis and its mechanism remains unclear. Results: In ApoE-knockout atherosclerosis mice, treatment with an H2S donor (NaHS or GYY4137) reduced atherosclerotic plaque area, macrophage infiltration, aortic inflammation, and plasma lipid level. H2S treatment increased aorta and liver SIRT1 mRNA expression. Overexpression or slicing cystathionine gamma lyase (CSE) also changed intracellular SIRT1 expression. CSE/H2S treatment increased SIRT1 deacetylation in endothelium and hepatocytes and macrophages, then induced deacetylation of its target proteins (P53, P65, and sterol response element binding protein), thereby reducing endothelial and macrophage inflammation and inhibiting macrophage cholesterol uptake and cholesterol de novo synthesis of liver. Also, CSE/H2S induced SIRT1 sulfhydration at its two zinc finger domains, increased its zinc ion binding activity to stabilize the alpha-helix structure, lowered its ubiquitination, and reduced its degradation. Innovation: H2S is a novel SIRT1 activator by direct sulfhydration. Because SIRT1 has a role in longevity, H2S may be a protector for aging-related diseases. Conclusion: Endogenous CSE/H2S directly sulfhydrated SIRT1, enhanced SIRT1 binding to zinc ion, then promoted its deacetylation activity, and increased SIRT1 stability, thus reducing atherosclerotic plaque formation.Aims: Hydrogen sulfide (H2S) has a protective role in the pathogenesis of atherosclerosis by multiple pathways. Sirtuin-1 (SIRT1) is a histone deacetylase, as an essential mediated longevity gene, and has an anti-atherogenic effect by regulating the acetylation of some functional proteins. Whether SIRT1 is involved in protecting H2S in atherosclerosis and its mechanism remains unclear. Results: In ApoE-knockout atherosclerosis mice, treatment with an H2S donor (NaHS or GYY4137) reduced atherosclerotic plaque area, macrophage infiltration, aortic inflammation, and plasma lipid level. H2S treatment increased aorta and liver SIRT1 mRNA expression. Overexpression or slicing cystathionine gamma lyase (CSE) also changed intracellular SIRT1 expression. CSE/H2S treatment increased SIRT1 deacetylation in endothelium and hepatocytes and macrophages, then induced deacetylation of its target proteins (P53, P65, and sterol response element binding protein), thereby reducing endothelial and macrophage inflammation and inhibiting macrophage cholesterol uptake and cholesterol de novo synthesis of liver. Also, CSE/H2S induced SIRT1 sulfhydration at its two zinc finger domains, increased its zinc ion binding activity to stabilize the alpha-helix structure, lowered its ubiquitination, and reduced its degradation. Innovation: H2S is a novel SIRT1 activator by direct sulfhydration. Because SIRT1 has a role in longevity, H2S may be a protector for aging-related diseases. Conclusion: Endogenous CSE/H2S directly sulfhydrated SIRT1, enhanced SIRT1 binding to zinc ion, then promoted its deacetylation activity, and increased SIRT1 stability, thus reducing atherosclerotic plaque formation. Hydrogen sulfide (H2S) has a protective role in the pathogenesis of atherosclerosis by multiple pathways. Sirtuin-1 ( ) is a histone deacetylase, as an essential mediated longevity gene, and has an anti-atherogenic effect by regulating the acetylation of some functional proteins. Whether is involved in protecting H2S in atherosclerosis and its mechanism remains unclear. In ApoE-knockout atherosclerosis mice, treatment with an H2S donor (NaHS or GYY4137) reduced atherosclerotic plaque area, macrophage infiltration, aortic inflammation, and plasma lipid level. H2S treatment increased aorta and liver mRNA expression. Overexpression or slicing cystathionine gamma lyase (CSE) also changed intracellular expression. CSE/H2S treatment increased deacetylation in endothelium and hepatocytes and macrophages, then induced deacetylation of its target proteins (P53, P65, and sterol response element binding protein), thereby reducing endothelial and macrophage inflammation and inhibiting macrophage cholesterol uptake and cholesterol synthesis of liver. Also, CSE/H2S induced sulfhydration at its two zinc finger domains, increased its zinc ion binding activity to stabilize the alpha-helix structure, lowered its ubiquitination, and reduced its degradation. H2S is a novel activator by direct sulfhydration. Because has a role in longevity, H2S may be a protector for aging-related diseases. Endogenous CSE/H2S directly sulfhydrated , enhanced binding to zinc ion, then promoted its deacetylation activity, and increased stability, thus reducing atherosclerotic plaque formation. |
| Author | Geng, Bin Xu, Guoheng Cai, Junyan Zheng, Fengjiao Cai, Jun Cui, Qinghua Du, Congkuo Xu, Wenjing Lin, Xianjuan Yang, Jichun Tang, Chaoshu |
| Author_xml | – sequence: 1 givenname: Congkuo surname: Du fullname: Du, Congkuo organization: 1 MOE Key Lab of Cardiovascular Sciences, Department of Physiology and Pathophysiology, Department of Biomedical Informatics, Center for Noncoding RNA Medicine, School of Basic Medical Science, Peking University Health Science Center. Beijing , People's Republic of China – sequence: 2 givenname: Xianjuan surname: Lin fullname: Lin, Xianjuan organization: 1 MOE Key Lab of Cardiovascular Sciences, Department of Physiology and Pathophysiology, Department of Biomedical Informatics, Center for Noncoding RNA Medicine, School of Basic Medical Science, Peking University Health Science Center. Beijing , People's Republic of China – sequence: 3 givenname: Wenjing surname: Xu fullname: Xu, Wenjing organization: 1 MOE Key Lab of Cardiovascular Sciences, Department of Physiology and Pathophysiology, Department of Biomedical Informatics, Center for Noncoding RNA Medicine, School of Basic Medical Science, Peking University Health Science Center. Beijing , People's Republic of China – sequence: 4 givenname: Fengjiao surname: Zheng fullname: Zheng, Fengjiao organization: 1 MOE Key Lab of Cardiovascular Sciences, Department of Physiology and Pathophysiology, Department of Biomedical Informatics, Center for Noncoding RNA Medicine, School of Basic Medical Science, Peking University Health Science Center. Beijing , People's Republic of China – sequence: 5 givenname: Junyan surname: Cai fullname: Cai, Junyan organization: 1 MOE Key Lab of Cardiovascular Sciences, Department of Physiology and Pathophysiology, Department of Biomedical Informatics, Center for Noncoding RNA Medicine, School of Basic Medical Science, Peking University Health Science Center. Beijing , People's Republic of China – sequence: 6 givenname: Jichun surname: Yang fullname: Yang, Jichun organization: 1 MOE Key Lab of Cardiovascular Sciences, Department of Physiology and Pathophysiology, Department of Biomedical Informatics, Center for Noncoding RNA Medicine, School of Basic Medical Science, Peking University Health Science Center. Beijing , People's Republic of China – sequence: 7 givenname: Qinghua surname: Cui fullname: Cui, Qinghua organization: 1 MOE Key Lab of Cardiovascular Sciences, Department of Physiology and Pathophysiology, Department of Biomedical Informatics, Center for Noncoding RNA Medicine, School of Basic Medical Science, Peking University Health Science Center. Beijing , People's Republic of China – sequence: 8 givenname: Chaoshu surname: Tang fullname: Tang, Chaoshu organization: 1 MOE Key Lab of Cardiovascular Sciences, Department of Physiology and Pathophysiology, Department of Biomedical Informatics, Center for Noncoding RNA Medicine, School of Basic Medical Science, Peking University Health Science Center. Beijing , People's Republic of China – sequence: 9 givenname: Jun surname: Cai fullname: Cai, Jun organization: 2 State Key Laboratory of Cardiovascular Disease, Hypertension Center , Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China – sequence: 10 givenname: Guoheng surname: Xu fullname: Xu, Guoheng organization: 1 MOE Key Lab of Cardiovascular Sciences, Department of Physiology and Pathophysiology, Department of Biomedical Informatics, Center for Noncoding RNA Medicine, School of Basic Medical Science, Peking University Health Science Center. Beijing , People's Republic of China – sequence: 11 givenname: Bin surname: Geng fullname: Geng, Bin organization: 2 State Key Laboratory of Cardiovascular Disease, Hypertension Center , Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29343087$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkM1OwzAQhC1URH_gyBX5yCXF69R1fKxKoZWKOBTOkWNvWqPUKbGDlHfgoWlFkTjNrObT7mqGpOdrj4TcAhsDy9SDbsKYM5BjCUpckAEIIRMpYdr75_tkGMIHY4wDsCvS5yqdpCyTA_K9aaty19lGR7R045rYOp8AXXnToA7Ob-kqBvqI2mDsKh1d7enMRPflYkdXgWpPFyGgj05XdHFwW_QYnQn0Bc1Oexf2tC7p7Jgns7jDpj4BwQVadHR5vHua6ekJZ_GaXJa6Cnhz1hF5f1q8zZfJ-vV5NZ-tEzPhPCYppKAKnnENYmKFFczoqbCFSFEUXJTAOZMqs0oCMm6t5kXBC0BjlLCZLPmI3P_uPTT1Z4sh5nsXDFaV9li3IQeVqSmbKAZH9O6MtsUebX5o3F43Xf7XIP8B1F12bw |
| CitedBy_id | crossref_primary_10_3389_fphar_2018_01066 crossref_primary_10_1080_13813455_2021_1976209 crossref_primary_10_1007_s11010_022_04443_y crossref_primary_10_1186_s40001_023_01520_w crossref_primary_10_4103_2221_1691_326097 crossref_primary_10_1007_s11883_023_01165_4 crossref_primary_10_1007_s12272_019_01135_y crossref_primary_10_1111_bph_16083 crossref_primary_10_1161_CIRCULATIONAHA_120_051877 crossref_primary_10_1002_anie_202401003 crossref_primary_10_3390_antiox11122356 crossref_primary_10_3390_antiox10030429 crossref_primary_10_1016_j_cbpa_2023_102329 crossref_primary_10_1002_ptr_6923 crossref_primary_10_1089_ars_2023_0401 crossref_primary_10_1136_openhrt_2021_001801 crossref_primary_10_1016_j_redox_2025_103852 crossref_primary_10_1089_ars_2023_0404 crossref_primary_10_3390_antiox14070827 crossref_primary_10_3389_fphar_2019_01568 crossref_primary_10_1080_15384101_2020_1804179 crossref_primary_10_3389_fphar_2022_838248 crossref_primary_10_1016_j_cbpa_2019_01_023 crossref_primary_10_1016_j_phrs_2020_105119 crossref_primary_10_1038_s41392_023_01439_y crossref_primary_10_1038_s41401_024_01322_8 crossref_primary_10_3389_fphar_2024_1393333 crossref_primary_10_3390_ijms26136430 crossref_primary_10_1097_CM9_0000000000003056 crossref_primary_10_1016_j_phrs_2023_106788 crossref_primary_10_3389_fphar_2021_677212 crossref_primary_10_1016_j_redox_2025_103645 crossref_primary_10_1155_2018_4579140 crossref_primary_10_3389_fchem_2020_592688 crossref_primary_10_1089_ars_2022_0028 crossref_primary_10_1096_fj_201900393RR crossref_primary_10_1111_jcmm_16423 crossref_primary_10_3389_fphar_2023_1303465 crossref_primary_10_3390_antiox10030486 crossref_primary_10_1016_j_freeradbiomed_2020_12_440 crossref_primary_10_1016_j_redox_2025_103631 crossref_primary_10_1007_s00253_022_12236_y crossref_primary_10_3390_antiox9121303 crossref_primary_10_1016_j_freeradbiomed_2021_03_044 crossref_primary_10_3390_antiox13050543 crossref_primary_10_3390_ijms24129955 crossref_primary_10_1097_FJC_0000000000001154 crossref_primary_10_1097_MCA_0000000000000804 crossref_primary_10_3389_fphys_2020_623665 crossref_primary_10_1016_j_micres_2022_126992 crossref_primary_10_1074_jbc_RA119_011988 crossref_primary_10_3892_mmr_2023_13016 crossref_primary_10_1097_FJC_0000000000001714 crossref_primary_10_1186_s40104_019_0372_3 crossref_primary_10_1016_j_bcp_2023_115444 crossref_primary_10_1089_ars_2024_0602 crossref_primary_10_1016_j_arr_2023_102122 crossref_primary_10_3390_ijms232315107 crossref_primary_10_1096_fj_202402042R crossref_primary_10_3389_fchbi_2024_1503390 crossref_primary_10_3389_fendo_2022_934231 crossref_primary_10_1016_j_niox_2020_07_002 crossref_primary_10_3389_fendo_2020_568861 crossref_primary_10_3390_antiox7100129 crossref_primary_10_1002_mco2_661 crossref_primary_10_3389_fphar_2025_1510275 crossref_primary_10_3390_biomedicines9091107 crossref_primary_10_1002_ange_202401003 crossref_primary_10_3390_life13061420 crossref_primary_10_1161_CIRCULATIONAHA_118_034757 crossref_primary_10_3389_fphys_2021_763417 crossref_primary_10_3390_antiox11091788 crossref_primary_10_1080_15548627_2022_2026097 crossref_primary_10_1016_j_taap_2025_117338 crossref_primary_10_1016_j_ejmech_2020_112665 crossref_primary_10_1016_j_intimp_2021_107545 crossref_primary_10_3389_fnagi_2021_674135 crossref_primary_10_3390_ph17111495 crossref_primary_10_1089_ars_2019_7896 crossref_primary_10_1007_s00018_022_04636_0 crossref_primary_10_3390_cells13171469 crossref_primary_10_1016_j_cej_2022_139089 crossref_primary_10_1136_openhrt_2022_002171 crossref_primary_10_3390_cells10020220 crossref_primary_10_3390_ijms22042194 crossref_primary_10_1002_hep_32577 crossref_primary_10_1016_j_phrs_2020_105125 crossref_primary_10_1111_1440_1681_13298 crossref_primary_10_1089_ars_2023_0425 crossref_primary_10_1186_s12882_019_1550_4 crossref_primary_10_1016_j_niox_2024_09_006 crossref_primary_10_3390_ijms232113624 crossref_primary_10_1080_1354750X_2023_2198680 crossref_primary_10_3389_fphys_2020_00596 crossref_primary_10_1089_ars_2019_7889 crossref_primary_10_1016_j_freeradbiomed_2021_01_010 crossref_primary_10_1089_ars_2022_0064 crossref_primary_10_1016_j_arr_2022_101579 crossref_primary_10_3389_fmolb_2022_928287 crossref_primary_10_3390_ijms22147588 crossref_primary_10_1016_j_niox_2022_08_003 crossref_primary_10_3233_CH_190747 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1089/ars.2017.7195 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Medicine Chemistry |
| EISSN | 1557-7716 |
| ExternalDocumentID | 29343087 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- 0R~ 23M 4.4 5GY 5RE ABBKN ABJNI ACGFS ACPRK ADBBV AENEX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS BNQNF CGR CS3 CUY CVF EBS ECM EIF EJD F5P IER IHR IM4 MV1 NPM NQHIM O9- P2P RML UE5 7X8 SCNPE |
| ID | FETCH-LOGICAL-c422t-31319b282a154d5d50ca65db53e5b25f1220798d971e02dda2bb2b1ecc95d87f2 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 131 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000426653000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1557-7716 |
| IngestDate | Fri Sep 05 07:13:04 EDT 2025 Thu Jan 02 22:58:36 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | atherosclerosis sirtuin1 sulfhydration hydrogen sulfide cystathionine gamma lyase |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c422t-31319b282a154d5d50ca65db53e5b25f1220798d971e02dda2bb2b1ecc95d87f2 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 29343087 |
| PQID | 1989604901 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_1989604901 pubmed_primary_29343087 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-01-10 |
| PublicationDateYYYYMMDD | 2019-01-10 |
| PublicationDate_xml | – month: 01 year: 2019 text: 2019-01-10 day: 10 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Antioxidants & redox signaling |
| PublicationTitleAlternate | Antioxid Redox Signal |
| PublicationYear | 2019 |
| SSID | ssj0002110 |
| Score | 2.5917678 |
| Snippet | Hydrogen sulfide (H2S) has a protective role in the pathogenesis of atherosclerosis by multiple pathways. Sirtuin-1 (
) is a histone deacetylase, as an... Aims: Hydrogen sulfide (H2S) has a protective role in the pathogenesis of atherosclerosis by multiple pathways. Sirtuin-1 (SIRT1) is a histone deacetylase, as... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 184 |
| SubjectTerms | Acetylation Animals Apolipoproteins E - deficiency Atherosclerosis - drug therapy Atherosclerosis - etiology Atherosclerosis - metabolism Atherosclerosis - pathology Biomarkers Cell Line Cholesterol - metabolism Disease Models, Animal Endothelium - metabolism Epigenesis, Genetic Foam Cells - metabolism Foam Cells - pathology Gene Expression Humans Hydrogen Sulfide - pharmacology Immunohistochemistry Mice Mice, Knockout Plaque, Atherosclerotic - drug therapy Plaque, Atherosclerotic - etiology Plaque, Atherosclerotic - metabolism Plaque, Atherosclerotic - pathology Protein Processing, Post-Translational Sirtuin 1 - genetics Sirtuin 1 - metabolism Ubiquitination |
| Title | Sulfhydrated Sirtuin-1 Increasing Its Deacetylation Activity Is an Essential Epigenetics Mechanism of Anti-Atherogenesis by Hydrogen Sulfide |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/29343087 https://www.proquest.com/docview/1989604901 |
| Volume | 30 |
| WOSCitedRecordID | wos000426653000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9tAEF7apDS5pK2T5tkygV5VSyutVzoF4zgkB5tAGvDN7EtEkEhuVi74P-RHd0aS8SkQyEUgJKFldnb2m52Zbxj7RRFBmwuJMzBQQRJbhWsuHgQqkTy21igd5k2zCTmdprNZdtsduPkurXJtExtDbStDZ-R9yu0ZUJgqulj8DahrFEVXuxYaH9l2jFCGtFrONmzh5Nw0fKk4FomOQcexGaZZH71GyuuSv2WUidfRZbPLXH157_i-sr0OX8KwVYhv7IMre2xntG7r1mOfJ100fZ-93C0f84eVJbYIC3fFc70syiACtBmUqo6bGtzUHi7Rarp61SbNwdC0_SbgxoMqYeypegmVGMYLIvakmkgPE0cFxYV_giqHIT4PhgQ0K3rBFx70Cq7xv3QPNIjCugN2fzX-M7oOuu4MgUk4r9F44-rV6LEpRGFWWBEaNRBWi9gJzUUecR7KLLWZjFzIrVVca64jVJlM2FTm_DvbKqvSHTHIktQlJtUROleJoVpeoxG4mFBppbkVx-x8LfM5SotCGqp01dLPN1I_ZoftxM0XLU3HHIFMQnyHJ2_4-pTtojZQ5hjuS2dsO8e1736wT-ZfXfjnn41a4XV6O_kPA4HZWA |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sulfhydrated+Sirtuin-1+Increasing+Its+Deacetylation+Activity+Is+an+Essential+Epigenetics+Mechanism+of+Anti-Atherogenesis+by+Hydrogen+Sulfide&rft.jtitle=Antioxidants+%26+redox+signaling&rft.au=Du%2C+Congkuo&rft.au=Lin%2C+Xianjuan&rft.au=Xu%2C+Wenjing&rft.au=Zheng%2C+Fengjiao&rft.date=2019-01-10&rft.eissn=1557-7716&rft.volume=30&rft.issue=2&rft.spage=184&rft_id=info:doi/10.1089%2Fars.2017.7195&rft_id=info%3Apmid%2F29343087&rft_id=info%3Apmid%2F29343087&rft.externalDocID=29343087 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1557-7716&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1557-7716&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1557-7716&client=summon |