Sulfhydrated Sirtuin-1 Increasing Its Deacetylation Activity Is an Essential Epigenetics Mechanism of Anti-Atherogenesis by Hydrogen Sulfide

Hydrogen sulfide (H2S) has a protective role in the pathogenesis of atherosclerosis by multiple pathways. Sirtuin-1 ( ) is a histone deacetylase, as an essential mediated longevity gene, and has an anti-atherogenic effect by regulating the acetylation of some functional proteins. Whether is involved...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Antioxidants & redox signaling Ročník 30; číslo 2; s. 184
Hlavní autori: Du, Congkuo, Lin, Xianjuan, Xu, Wenjing, Zheng, Fengjiao, Cai, Junyan, Yang, Jichun, Cui, Qinghua, Tang, Chaoshu, Cai, Jun, Xu, Guoheng, Geng, Bin
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States 10.01.2019
Predmet:
ISSN:1557-7716, 1557-7716
On-line prístup:Zistit podrobnosti o prístupe
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Hydrogen sulfide (H2S) has a protective role in the pathogenesis of atherosclerosis by multiple pathways. Sirtuin-1 ( ) is a histone deacetylase, as an essential mediated longevity gene, and has an anti-atherogenic effect by regulating the acetylation of some functional proteins. Whether is involved in protecting H2S in atherosclerosis and its mechanism remains unclear. In ApoE-knockout atherosclerosis mice, treatment with an H2S donor (NaHS or GYY4137) reduced atherosclerotic plaque area, macrophage infiltration, aortic inflammation, and plasma lipid level. H2S treatment increased aorta and liver mRNA expression. Overexpression or slicing cystathionine gamma lyase (CSE) also changed intracellular expression. CSE/H2S treatment increased deacetylation in endothelium and hepatocytes and macrophages, then induced deacetylation of its target proteins (P53, P65, and sterol response element binding protein), thereby reducing endothelial and macrophage inflammation and inhibiting macrophage cholesterol uptake and cholesterol synthesis of liver. Also, CSE/H2S induced sulfhydration at its two zinc finger domains, increased its zinc ion binding activity to stabilize the alpha-helix structure, lowered its ubiquitination, and reduced its degradation. H2S is a novel activator by direct sulfhydration. Because has a role in longevity, H2S may be a protector for aging-related diseases. Endogenous CSE/H2S directly sulfhydrated , enhanced binding to zinc ion, then promoted its deacetylation activity, and increased stability, thus reducing atherosclerotic plaque formation.
AbstractList Hydrogen sulfide (H2S) has a protective role in the pathogenesis of atherosclerosis by multiple pathways. Sirtuin-1 ( ) is a histone deacetylase, as an essential mediated longevity gene, and has an anti-atherogenic effect by regulating the acetylation of some functional proteins. Whether is involved in protecting H2S in atherosclerosis and its mechanism remains unclear. In ApoE-knockout atherosclerosis mice, treatment with an H2S donor (NaHS or GYY4137) reduced atherosclerotic plaque area, macrophage infiltration, aortic inflammation, and plasma lipid level. H2S treatment increased aorta and liver mRNA expression. Overexpression or slicing cystathionine gamma lyase (CSE) also changed intracellular expression. CSE/H2S treatment increased deacetylation in endothelium and hepatocytes and macrophages, then induced deacetylation of its target proteins (P53, P65, and sterol response element binding protein), thereby reducing endothelial and macrophage inflammation and inhibiting macrophage cholesterol uptake and cholesterol synthesis of liver. Also, CSE/H2S induced sulfhydration at its two zinc finger domains, increased its zinc ion binding activity to stabilize the alpha-helix structure, lowered its ubiquitination, and reduced its degradation. H2S is a novel activator by direct sulfhydration. Because has a role in longevity, H2S may be a protector for aging-related diseases. Endogenous CSE/H2S directly sulfhydrated , enhanced binding to zinc ion, then promoted its deacetylation activity, and increased stability, thus reducing atherosclerotic plaque formation.
Aims: Hydrogen sulfide (H2S) has a protective role in the pathogenesis of atherosclerosis by multiple pathways. Sirtuin-1 (SIRT1) is a histone deacetylase, as an essential mediated longevity gene, and has an anti-atherogenic effect by regulating the acetylation of some functional proteins. Whether SIRT1 is involved in protecting H2S in atherosclerosis and its mechanism remains unclear. Results: In ApoE-knockout atherosclerosis mice, treatment with an H2S donor (NaHS or GYY4137) reduced atherosclerotic plaque area, macrophage infiltration, aortic inflammation, and plasma lipid level. H2S treatment increased aorta and liver SIRT1 mRNA expression. Overexpression or slicing cystathionine gamma lyase (CSE) also changed intracellular SIRT1 expression. CSE/H2S treatment increased SIRT1 deacetylation in endothelium and hepatocytes and macrophages, then induced deacetylation of its target proteins (P53, P65, and sterol response element binding protein), thereby reducing endothelial and macrophage inflammation and inhibiting macrophage cholesterol uptake and cholesterol de novo synthesis of liver. Also, CSE/H2S induced SIRT1 sulfhydration at its two zinc finger domains, increased its zinc ion binding activity to stabilize the alpha-helix structure, lowered its ubiquitination, and reduced its degradation. Innovation: H2S is a novel SIRT1 activator by direct sulfhydration. Because SIRT1 has a role in longevity, H2S may be a protector for aging-related diseases. Conclusion: Endogenous CSE/H2S directly sulfhydrated SIRT1, enhanced SIRT1 binding to zinc ion, then promoted its deacetylation activity, and increased SIRT1 stability, thus reducing atherosclerotic plaque formation.Aims: Hydrogen sulfide (H2S) has a protective role in the pathogenesis of atherosclerosis by multiple pathways. Sirtuin-1 (SIRT1) is a histone deacetylase, as an essential mediated longevity gene, and has an anti-atherogenic effect by regulating the acetylation of some functional proteins. Whether SIRT1 is involved in protecting H2S in atherosclerosis and its mechanism remains unclear. Results: In ApoE-knockout atherosclerosis mice, treatment with an H2S donor (NaHS or GYY4137) reduced atherosclerotic plaque area, macrophage infiltration, aortic inflammation, and plasma lipid level. H2S treatment increased aorta and liver SIRT1 mRNA expression. Overexpression or slicing cystathionine gamma lyase (CSE) also changed intracellular SIRT1 expression. CSE/H2S treatment increased SIRT1 deacetylation in endothelium and hepatocytes and macrophages, then induced deacetylation of its target proteins (P53, P65, and sterol response element binding protein), thereby reducing endothelial and macrophage inflammation and inhibiting macrophage cholesterol uptake and cholesterol de novo synthesis of liver. Also, CSE/H2S induced SIRT1 sulfhydration at its two zinc finger domains, increased its zinc ion binding activity to stabilize the alpha-helix structure, lowered its ubiquitination, and reduced its degradation. Innovation: H2S is a novel SIRT1 activator by direct sulfhydration. Because SIRT1 has a role in longevity, H2S may be a protector for aging-related diseases. Conclusion: Endogenous CSE/H2S directly sulfhydrated SIRT1, enhanced SIRT1 binding to zinc ion, then promoted its deacetylation activity, and increased SIRT1 stability, thus reducing atherosclerotic plaque formation.
Author Geng, Bin
Xu, Guoheng
Cai, Junyan
Zheng, Fengjiao
Cai, Jun
Cui, Qinghua
Du, Congkuo
Xu, Wenjing
Lin, Xianjuan
Yang, Jichun
Tang, Chaoshu
Author_xml – sequence: 1
  givenname: Congkuo
  surname: Du
  fullname: Du, Congkuo
  organization: 1 MOE Key Lab of Cardiovascular Sciences, Department of Physiology and Pathophysiology, Department of Biomedical Informatics, Center for Noncoding RNA Medicine, School of Basic Medical Science, Peking University Health Science Center. Beijing , People's Republic of China
– sequence: 2
  givenname: Xianjuan
  surname: Lin
  fullname: Lin, Xianjuan
  organization: 1 MOE Key Lab of Cardiovascular Sciences, Department of Physiology and Pathophysiology, Department of Biomedical Informatics, Center for Noncoding RNA Medicine, School of Basic Medical Science, Peking University Health Science Center. Beijing , People's Republic of China
– sequence: 3
  givenname: Wenjing
  surname: Xu
  fullname: Xu, Wenjing
  organization: 1 MOE Key Lab of Cardiovascular Sciences, Department of Physiology and Pathophysiology, Department of Biomedical Informatics, Center for Noncoding RNA Medicine, School of Basic Medical Science, Peking University Health Science Center. Beijing , People's Republic of China
– sequence: 4
  givenname: Fengjiao
  surname: Zheng
  fullname: Zheng, Fengjiao
  organization: 1 MOE Key Lab of Cardiovascular Sciences, Department of Physiology and Pathophysiology, Department of Biomedical Informatics, Center for Noncoding RNA Medicine, School of Basic Medical Science, Peking University Health Science Center. Beijing , People's Republic of China
– sequence: 5
  givenname: Junyan
  surname: Cai
  fullname: Cai, Junyan
  organization: 1 MOE Key Lab of Cardiovascular Sciences, Department of Physiology and Pathophysiology, Department of Biomedical Informatics, Center for Noncoding RNA Medicine, School of Basic Medical Science, Peking University Health Science Center. Beijing , People's Republic of China
– sequence: 6
  givenname: Jichun
  surname: Yang
  fullname: Yang, Jichun
  organization: 1 MOE Key Lab of Cardiovascular Sciences, Department of Physiology and Pathophysiology, Department of Biomedical Informatics, Center for Noncoding RNA Medicine, School of Basic Medical Science, Peking University Health Science Center. Beijing , People's Republic of China
– sequence: 7
  givenname: Qinghua
  surname: Cui
  fullname: Cui, Qinghua
  organization: 1 MOE Key Lab of Cardiovascular Sciences, Department of Physiology and Pathophysiology, Department of Biomedical Informatics, Center for Noncoding RNA Medicine, School of Basic Medical Science, Peking University Health Science Center. Beijing , People's Republic of China
– sequence: 8
  givenname: Chaoshu
  surname: Tang
  fullname: Tang, Chaoshu
  organization: 1 MOE Key Lab of Cardiovascular Sciences, Department of Physiology and Pathophysiology, Department of Biomedical Informatics, Center for Noncoding RNA Medicine, School of Basic Medical Science, Peking University Health Science Center. Beijing , People's Republic of China
– sequence: 9
  givenname: Jun
  surname: Cai
  fullname: Cai, Jun
  organization: 2 State Key Laboratory of Cardiovascular Disease, Hypertension Center , Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
– sequence: 10
  givenname: Guoheng
  surname: Xu
  fullname: Xu, Guoheng
  organization: 1 MOE Key Lab of Cardiovascular Sciences, Department of Physiology and Pathophysiology, Department of Biomedical Informatics, Center for Noncoding RNA Medicine, School of Basic Medical Science, Peking University Health Science Center. Beijing , People's Republic of China
– sequence: 11
  givenname: Bin
  surname: Geng
  fullname: Geng, Bin
  organization: 2 State Key Laboratory of Cardiovascular Disease, Hypertension Center , Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29343087$$D View this record in MEDLINE/PubMed
BookMark eNpNkM1OwzAQhC1URH_gyBX5yCXF69R1fKxKoZWKOBTOkWNvWqPUKbGDlHfgoWlFkTjNrObT7mqGpOdrj4TcAhsDy9SDbsKYM5BjCUpckAEIIRMpYdr75_tkGMIHY4wDsCvS5yqdpCyTA_K9aaty19lGR7R045rYOp8AXXnToA7Ob-kqBvqI2mDsKh1d7enMRPflYkdXgWpPFyGgj05XdHFwW_QYnQn0Bc1Oexf2tC7p7Jgns7jDpj4BwQVadHR5vHua6ekJZ_GaXJa6Cnhz1hF5f1q8zZfJ-vV5NZ-tEzPhPCYppKAKnnENYmKFFczoqbCFSFEUXJTAOZMqs0oCMm6t5kXBC0BjlLCZLPmI3P_uPTT1Z4sh5nsXDFaV9li3IQeVqSmbKAZH9O6MtsUebX5o3F43Xf7XIP8B1F12bw
CitedBy_id crossref_primary_10_3389_fphar_2018_01066
crossref_primary_10_1080_13813455_2021_1976209
crossref_primary_10_1007_s11010_022_04443_y
crossref_primary_10_1186_s40001_023_01520_w
crossref_primary_10_4103_2221_1691_326097
crossref_primary_10_1007_s11883_023_01165_4
crossref_primary_10_1007_s12272_019_01135_y
crossref_primary_10_1111_bph_16083
crossref_primary_10_1161_CIRCULATIONAHA_120_051877
crossref_primary_10_1002_anie_202401003
crossref_primary_10_3390_antiox11122356
crossref_primary_10_3390_antiox10030429
crossref_primary_10_1016_j_cbpa_2023_102329
crossref_primary_10_1002_ptr_6923
crossref_primary_10_1089_ars_2023_0401
crossref_primary_10_1136_openhrt_2021_001801
crossref_primary_10_1016_j_redox_2025_103852
crossref_primary_10_1089_ars_2023_0404
crossref_primary_10_3390_antiox14070827
crossref_primary_10_3389_fphar_2019_01568
crossref_primary_10_1080_15384101_2020_1804179
crossref_primary_10_3389_fphar_2022_838248
crossref_primary_10_1016_j_cbpa_2019_01_023
crossref_primary_10_1016_j_phrs_2020_105119
crossref_primary_10_1038_s41392_023_01439_y
crossref_primary_10_1038_s41401_024_01322_8
crossref_primary_10_3389_fphar_2024_1393333
crossref_primary_10_3390_ijms26136430
crossref_primary_10_1097_CM9_0000000000003056
crossref_primary_10_1016_j_phrs_2023_106788
crossref_primary_10_3389_fphar_2021_677212
crossref_primary_10_1016_j_redox_2025_103645
crossref_primary_10_1155_2018_4579140
crossref_primary_10_3389_fchem_2020_592688
crossref_primary_10_1089_ars_2022_0028
crossref_primary_10_1096_fj_201900393RR
crossref_primary_10_1111_jcmm_16423
crossref_primary_10_3389_fphar_2023_1303465
crossref_primary_10_3390_antiox10030486
crossref_primary_10_1016_j_freeradbiomed_2020_12_440
crossref_primary_10_1016_j_redox_2025_103631
crossref_primary_10_1007_s00253_022_12236_y
crossref_primary_10_3390_antiox9121303
crossref_primary_10_1016_j_freeradbiomed_2021_03_044
crossref_primary_10_3390_antiox13050543
crossref_primary_10_3390_ijms24129955
crossref_primary_10_1097_FJC_0000000000001154
crossref_primary_10_1097_MCA_0000000000000804
crossref_primary_10_3389_fphys_2020_623665
crossref_primary_10_1016_j_micres_2022_126992
crossref_primary_10_1074_jbc_RA119_011988
crossref_primary_10_3892_mmr_2023_13016
crossref_primary_10_1097_FJC_0000000000001714
crossref_primary_10_1186_s40104_019_0372_3
crossref_primary_10_1016_j_bcp_2023_115444
crossref_primary_10_1089_ars_2024_0602
crossref_primary_10_1016_j_arr_2023_102122
crossref_primary_10_3390_ijms232315107
crossref_primary_10_1096_fj_202402042R
crossref_primary_10_3389_fchbi_2024_1503390
crossref_primary_10_3389_fendo_2022_934231
crossref_primary_10_1016_j_niox_2020_07_002
crossref_primary_10_3389_fendo_2020_568861
crossref_primary_10_3390_antiox7100129
crossref_primary_10_1002_mco2_661
crossref_primary_10_3389_fphar_2025_1510275
crossref_primary_10_3390_biomedicines9091107
crossref_primary_10_1002_ange_202401003
crossref_primary_10_3390_life13061420
crossref_primary_10_1161_CIRCULATIONAHA_118_034757
crossref_primary_10_3389_fphys_2021_763417
crossref_primary_10_3390_antiox11091788
crossref_primary_10_1080_15548627_2022_2026097
crossref_primary_10_1016_j_taap_2025_117338
crossref_primary_10_1016_j_ejmech_2020_112665
crossref_primary_10_1016_j_intimp_2021_107545
crossref_primary_10_3389_fnagi_2021_674135
crossref_primary_10_3390_ph17111495
crossref_primary_10_1089_ars_2019_7896
crossref_primary_10_1007_s00018_022_04636_0
crossref_primary_10_3390_cells13171469
crossref_primary_10_1016_j_cej_2022_139089
crossref_primary_10_1136_openhrt_2022_002171
crossref_primary_10_3390_cells10020220
crossref_primary_10_3390_ijms22042194
crossref_primary_10_1002_hep_32577
crossref_primary_10_1016_j_phrs_2020_105125
crossref_primary_10_1111_1440_1681_13298
crossref_primary_10_1089_ars_2023_0425
crossref_primary_10_1186_s12882_019_1550_4
crossref_primary_10_1016_j_niox_2024_09_006
crossref_primary_10_3390_ijms232113624
crossref_primary_10_1080_1354750X_2023_2198680
crossref_primary_10_3389_fphys_2020_00596
crossref_primary_10_1089_ars_2019_7889
crossref_primary_10_1016_j_freeradbiomed_2021_01_010
crossref_primary_10_1089_ars_2022_0064
crossref_primary_10_1016_j_arr_2022_101579
crossref_primary_10_3389_fmolb_2022_928287
crossref_primary_10_3390_ijms22147588
crossref_primary_10_1016_j_niox_2022_08_003
crossref_primary_10_3233_CH_190747
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1089/ars.2017.7195
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Medicine
Chemistry
EISSN 1557-7716
ExternalDocumentID 29343087
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
0R~
23M
4.4
5GY
5RE
ABBKN
ABJNI
ACGFS
ACPRK
ADBBV
AENEX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BNQNF
CGR
CS3
CUY
CVF
EBS
ECM
EIF
EJD
F5P
IER
IHR
IM4
MV1
NPM
NQHIM
O9-
P2P
RML
UE5
7X8
SCNPE
ID FETCH-LOGICAL-c422t-31319b282a154d5d50ca65db53e5b25f1220798d971e02dda2bb2b1ecc95d87f2
IEDL.DBID 7X8
ISICitedReferencesCount 131
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000426653000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1557-7716
IngestDate Fri Sep 05 07:13:04 EDT 2025
Thu Jan 02 22:58:36 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords atherosclerosis
sirtuin1
sulfhydration
hydrogen sulfide
cystathionine gamma lyase
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c422t-31319b282a154d5d50ca65db53e5b25f1220798d971e02dda2bb2b1ecc95d87f2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 29343087
PQID 1989604901
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1989604901
pubmed_primary_29343087
PublicationCentury 2000
PublicationDate 2019-01-10
PublicationDateYYYYMMDD 2019-01-10
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-01-10
  day: 10
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Antioxidants & redox signaling
PublicationTitleAlternate Antioxid Redox Signal
PublicationYear 2019
SSID ssj0002110
Score 2.5917678
Snippet Hydrogen sulfide (H2S) has a protective role in the pathogenesis of atherosclerosis by multiple pathways. Sirtuin-1 ( ) is a histone deacetylase, as an...
Aims: Hydrogen sulfide (H2S) has a protective role in the pathogenesis of atherosclerosis by multiple pathways. Sirtuin-1 (SIRT1) is a histone deacetylase, as...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 184
SubjectTerms Acetylation
Animals
Apolipoproteins E - deficiency
Atherosclerosis - drug therapy
Atherosclerosis - etiology
Atherosclerosis - metabolism
Atherosclerosis - pathology
Biomarkers
Cell Line
Cholesterol - metabolism
Disease Models, Animal
Endothelium - metabolism
Epigenesis, Genetic
Foam Cells - metabolism
Foam Cells - pathology
Gene Expression
Humans
Hydrogen Sulfide - pharmacology
Immunohistochemistry
Mice
Mice, Knockout
Plaque, Atherosclerotic - drug therapy
Plaque, Atherosclerotic - etiology
Plaque, Atherosclerotic - metabolism
Plaque, Atherosclerotic - pathology
Protein Processing, Post-Translational
Sirtuin 1 - genetics
Sirtuin 1 - metabolism
Ubiquitination
Title Sulfhydrated Sirtuin-1 Increasing Its Deacetylation Activity Is an Essential Epigenetics Mechanism of Anti-Atherogenesis by Hydrogen Sulfide
URI https://www.ncbi.nlm.nih.gov/pubmed/29343087
https://www.proquest.com/docview/1989604901
Volume 30
WOSCitedRecordID wos000426653000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fa9swEBZdO9a-rFv6c1vLDfaqxVYsy3oqIUtpHxIK3SBvwbYkamjttHIK-R_6R_fOdshTobAXg7GNhXS6-6Q7fR9jv2SQyYFOA64wnPJoEFueukhzjOSkbY2AxLlGbEJNp8lspm-6DTfflVWufWLjqE2V0x55n2p7YkpThReLR06qUZRd7SQ0PrCdAUIZsmo127CF0-Km4UuVClFkGHccm0Gi-7hqpLou9VuFWr6NLpsoc7n_v-37wj53-BKGrUF8ZVu27LHd0VrWrcc-Tbps-gF7uV3eu7uVIbYIA7fFU70sSh4C-gwqVcegBte1hz_oNW29aovmYJi3ehNw7SEtYezp9BIaMYwXROxJZyI9TCwdKC78A1QOhvicDwloVvSCLzxkK7jC_9I9UCMKYw_Zv8vx39EV79QZeB4JUaPzxtmb4YotRRRmpJFBnsbS4NBbmQnpQiECpROjVWgDYUwqskxkIZqMliZRThyx7bIq7QkDYeLMOImGohGeuVirwCY2TRAbmoG00Sn7ue7zOfYWpTTS0lZLP9_0-ik7bgduvmhpOuYIZCLiO_z2jq-_sz20Bqocw7j0g-04nPv2jH3Mn-vCP503ZoXX6c3kFaPi2Gs
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sulfhydrated+Sirtuin-1+Increasing+Its+Deacetylation+Activity+Is+an+Essential+Epigenetics+Mechanism+of+Anti-Atherogenesis+by+Hydrogen+Sulfide&rft.jtitle=Antioxidants+%26+redox+signaling&rft.au=Du%2C+Congkuo&rft.au=Lin%2C+Xianjuan&rft.au=Xu%2C+Wenjing&rft.au=Zheng%2C+Fengjiao&rft.date=2019-01-10&rft.eissn=1557-7716&rft.volume=30&rft.issue=2&rft.spage=184&rft_id=info:doi/10.1089%2Fars.2017.7195&rft_id=info%3Apmid%2F29343087&rft_id=info%3Apmid%2F29343087&rft.externalDocID=29343087
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1557-7716&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1557-7716&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1557-7716&client=summon