Fuzzy-Based Pareto Optimality for Many-Objective Evolutionary Algorithms

Evolutionary algorithms have been effectively used to solve multiobjective optimization problems with a small number of objectives, two or three in general. However, when problems with many objectives are encountered, nearly all algorithms perform poorly due to loss of selection pressure in fitness...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on evolutionary computation Jg. 18; H. 2; S. 269 - 285
Hauptverfasser: He, Zhenan, Yen, Gary G., Zhang, Jun
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York, NY IEEE 01.04.2014
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1089-778X, 1941-0026
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Evolutionary algorithms have been effectively used to solve multiobjective optimization problems with a small number of objectives, two or three in general. However, when problems with many objectives are encountered, nearly all algorithms perform poorly due to loss of selection pressure in fitness evaluation solely based upon the Pareto optimality principle. In this paper, we introduce a new fitness evaluation mechanism to continuously differentiate individuals into different degrees of optimality beyond the classification of the original Pareto dominance. The concept of fuzzy logic is adopted to define a fuzzy Pareto domination relation. As a case study, the fuzzy concept is incorporated into the designs of NSGA-II and SPEA2. Experimental results show that the proposed methods exhibit better performance in both convergence and diversity than the original ones for solving many-objective optimization problems.
AbstractList Evolutionary algorithms have been effectively used to solve multiobjective optimization problems with a small number of objectives, two or three in general. However, when problems with many objectives are encountered, nearly all algorithms perform poorly due to loss of selection pressure in fitness evaluation solely based upon the Pareto optimality principle. In this paper, we introduce a new fitness evaluation mechanism to continuously differentiate individuals into different degrees of optimality beyond the classification of the original Pareto dominance. The concept of fuzzy logic is adopted to define a fuzzy Pareto domination relation. As a case study, the fuzzy concept is incorporated into the designs of NSGA-II and SPEA2. Experimental results show that the proposed methods exhibit better performance in both convergence and diversity than the original ones for solving many-objective optimization problems.
Author He, Zhenan
Yen, Gary G.
Zhang, Jun
Author_xml – sequence: 1
  givenname: Zhenan
  surname: He
  fullname: He, Zhenan
  email: gyen@okstate.edu
  organization: School of Electrical and Computer Engineering, Oklahoma State University, Stillwater, OK, USA
– sequence: 2
  givenname: Gary G.
  surname: Yen
  fullname: Yen, Gary G.
  email: zhenan@okstate.edu
  organization: School of Electrical and Computer Engineering, Oklahoma State University, Stillwater, OK, USA
– sequence: 3
  givenname: Jun
  surname: Zhang
  fullname: Zhang, Jun
  email: junzhanghk@mail.sysu.edu.cn
  organization: Department of Computer Science, Sun Yat-Sen University, Guangzhou, China
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28423936$$DView record in Pascal Francis
BookMark eNp9kc1qGzEUhUVJoYmTByjdDJRCN-Pob_SzdI0TBxxcSCjdDYrmTiszHrmSJjB--srYeJFFVrqL77tXnHOFLnrfA0KfCZ4SgvXt8-LXfEoxYVNKK4Vp9QFdEs1JiTEVF3nGSpdSqt-f0FWMG4wJr4i-RMu7Yb8fyx8mQlP8NAGSL9a75Lamc2ksWh-KR9OP5fplAza5VygWr74bkvO9CWMx6_744NLfbbxGH1vTRbg5vRP0dLd4ni_L1fr-YT5blZZTmkrScguMw4ulCleacM2xEFxIg22jG21pZRiIVtuGWjCUi0YxRlvaSNEyNkHfj1t3wf8bIKZ666KFrjM9-CHWpGJYa6G0yujXN-jGD6HPf8sUITKnxGWmvp0oE63p2mB662K9CzmBMNZUcco0E5kjR84GH2OA9owQXB8aqA8N1IcG6lMD2ZFvHOuSOUSXgnHdu-aXo-kA4HxJcC0rqdh_PEmUZQ
CODEN ITEVF5
CitedBy_id crossref_primary_10_1016_j_robot_2025_105106
crossref_primary_10_1109_TCYB_2021_3082200
crossref_primary_10_1109_TEVC_2018_2874465
crossref_primary_10_1007_s40747_021_00270_8
crossref_primary_10_1007_s41365_023_01284_2
crossref_primary_10_1007_s10586_024_04561_w
crossref_primary_10_1016_j_engstruct_2024_118987
crossref_primary_10_1109_ACCESS_2018_2890274
crossref_primary_10_1016_j_neucom_2021_12_069
crossref_primary_10_1016_j_swevo_2021_100943
crossref_primary_10_1016_j_eswa_2021_116126
crossref_primary_10_1016_j_swevo_2024_101515
crossref_primary_10_1109_TSMC_2019_2930737
crossref_primary_10_1016_j_asoc_2017_09_025
crossref_primary_10_1016_j_eswa_2022_117738
crossref_primary_10_1016_j_swevo_2020_100669
crossref_primary_10_1016_j_asoc_2019_105911
crossref_primary_10_1016_j_asoc_2024_111807
crossref_primary_10_1016_j_asoc_2022_108760
crossref_primary_10_1109_TCYB_2016_2548239
crossref_primary_10_1016_j_eswa_2023_121281
crossref_primary_10_1016_j_ins_2018_05_009
crossref_primary_10_1016_j_ejor_2017_08_022
crossref_primary_10_1109_TEVC_2016_2598687
crossref_primary_10_1016_j_neucom_2019_06_075
crossref_primary_10_1109_TEVC_2015_2472283
crossref_primary_10_1016_j_tra_2024_104353
crossref_primary_10_1109_ACCESS_2020_3020056
crossref_primary_10_3390_math9222837
crossref_primary_10_3390_pr12050869
crossref_primary_10_1016_j_swevo_2020_100776
crossref_primary_10_1016_j_swevo_2020_100775
crossref_primary_10_1007_s10489_017_0998_9
crossref_primary_10_1016_j_knosys_2022_108677
crossref_primary_10_3390_math12101431
crossref_primary_10_1016_j_apenergy_2017_12_096
crossref_primary_10_1007_s10489_020_01969_w
crossref_primary_10_1109_TCYB_2019_2955573
crossref_primary_10_1155_2018_5414869
crossref_primary_10_1109_TCYB_2019_2932451
crossref_primary_10_1109_TCYB_2018_2819360
crossref_primary_10_1109_TCYB_2020_2965230
crossref_primary_10_1016_j_asoc_2018_12_011
crossref_primary_10_1016_j_eswa_2019_05_032
crossref_primary_10_1016_j_ins_2023_01_018
crossref_primary_10_1155_2021_6614283
crossref_primary_10_1016_j_ins_2020_12_025
crossref_primary_10_3390_su151511939
crossref_primary_10_1016_j_swevo_2023_101272
crossref_primary_10_1109_TEVC_2018_2866927
crossref_primary_10_3389_fenrg_2022_953873
crossref_primary_10_1155_2020_5132803
crossref_primary_10_1109_TFUZZ_2025_3545442
crossref_primary_10_1016_j_engappai_2024_107870
crossref_primary_10_1007_s11227_025_07705_w
crossref_primary_10_1016_j_esd_2023_03_011
crossref_primary_10_1016_j_ins_2022_12_076
crossref_primary_10_1016_j_engappai_2016_12_020
crossref_primary_10_1016_j_asoc_2021_107869
crossref_primary_10_1007_s10489_019_01569_3
crossref_primary_10_1016_j_swevo_2017_09_011
crossref_primary_10_1007_s12293_017_0240_7
crossref_primary_10_1177_1550147718802259
crossref_primary_10_1016_j_asoc_2023_110232
crossref_primary_10_1007_s00500_020_05369_7
crossref_primary_10_1016_j_apenergy_2015_10_179
crossref_primary_10_26599_TST_2024_9010139
crossref_primary_10_1007_s40747_017_0058_4
crossref_primary_10_1109_TEVC_2018_2791283
crossref_primary_10_1016_j_swevo_2019_100568
crossref_primary_10_1016_j_jpdc_2022_06_016
crossref_primary_10_1007_s10489_022_03307_8
crossref_primary_10_1016_j_ins_2019_05_028
crossref_primary_10_1016_j_ins_2018_11_032
crossref_primary_10_1109_TASE_2023_3300922
crossref_primary_10_1007_s40747_025_01822_y
crossref_primary_10_1007_s10479_024_06117_y
crossref_primary_10_1007_s10462_021_10042_y
crossref_primary_10_1016_j_ins_2018_11_042
crossref_primary_10_1016_j_ins_2021_10_007
crossref_primary_10_1016_j_knosys_2022_108915
crossref_primary_10_1016_j_eswa_2018_09_025
crossref_primary_10_1007_s11227_024_06258_8
crossref_primary_10_3390_e25071015
crossref_primary_10_3390_pr11051564
crossref_primary_10_1016_j_swevo_2019_100592
crossref_primary_10_1109_TEVC_2022_3144880
crossref_primary_10_1109_TCYB_2017_2772250
crossref_primary_10_1109_ACCESS_2019_2916634
crossref_primary_10_1109_ACCESS_2019_2954542
crossref_primary_10_1007_s40747_024_01637_3
crossref_primary_10_1109_TCYB_2019_2899225
crossref_primary_10_1016_j_procs_2014_09_077
crossref_primary_10_1007_s11227_024_06553_4
crossref_primary_10_1007_s40747_017_0057_5
crossref_primary_10_3390_math11010010
crossref_primary_10_3390_su15129238
crossref_primary_10_1109_TCYB_2021_3102642
crossref_primary_10_3390_math13111757
crossref_primary_10_1109_TEVC_2015_2443001
crossref_primary_10_1016_j_asoc_2021_107737
crossref_primary_10_3390_systems12110476
crossref_primary_10_1109_TETCI_2018_2849380
crossref_primary_10_1016_j_swevo_2019_03_009
crossref_primary_10_1016_j_asoc_2019_02_026
crossref_primary_10_1016_j_rineng_2025_106941
crossref_primary_10_1007_s40747_023_01161_w
crossref_primary_10_1016_j_ins_2021_12_096
crossref_primary_10_1109_TCYB_2019_2960302
crossref_primary_10_1109_TEVC_2018_2866854
crossref_primary_10_1007_s40747_024_01505_0
crossref_primary_10_1109_JSYST_2019_2959664
crossref_primary_10_1109_TEVC_2014_2315442
crossref_primary_10_1016_j_swevo_2019_03_006
crossref_primary_10_1109_TCYB_2016_2638902
crossref_primary_10_1038_s41598_024_70145_8
crossref_primary_10_4018_IJSIR_323422
crossref_primary_10_1016_j_jpdc_2018_11_008
crossref_primary_10_1109_TETCI_2021_3067104
crossref_primary_10_1016_j_knosys_2017_06_021
crossref_primary_10_1109_TASE_2020_2971512
crossref_primary_10_1016_j_swevo_2024_101480
crossref_primary_10_1007_s11227_024_06821_3
crossref_primary_10_1016_j_asoc_2025_113669
crossref_primary_10_1016_j_rineng_2025_104372
crossref_primary_10_1007_s13369_020_04536_0
crossref_primary_10_1109_TEVC_2020_3035825
crossref_primary_10_1109_TEVC_2014_2332878
crossref_primary_10_1109_TCYB_2022_3178929
crossref_primary_10_1109_TEVC_2016_2639360
crossref_primary_10_1007_s12293_023_00398_9
crossref_primary_10_1109_TEVC_2016_2608507
crossref_primary_10_1016_j_ins_2021_03_008
crossref_primary_10_1093_comjnl_bxx077
crossref_primary_10_1007_s10489_024_05906_z
crossref_primary_10_1016_j_ins_2023_119016
crossref_primary_10_1016_j_isatra_2020_10_065
crossref_primary_10_1007_s00521_023_08850_0
crossref_primary_10_1109_TEVC_2015_2424921
crossref_primary_10_1177_03128962211066953
crossref_primary_10_1371_journal_pone_0222091
crossref_primary_10_1109_TII_2021_3128405
crossref_primary_10_3390_e27050524
crossref_primary_10_1007_s40747_022_00747_0
crossref_primary_10_1007_s10664_015_9399_z
crossref_primary_10_1016_j_swevo_2022_101225
crossref_primary_10_1109_TEVC_2015_2457616
crossref_primary_10_1007_s11047_017_9633_2
crossref_primary_10_1007_s10489_020_02053_z
crossref_primary_10_1109_TCYB_2021_3086501
crossref_primary_10_1109_TCC_2015_2487973
crossref_primary_10_1109_TCYB_2015_2490738
crossref_primary_10_1109_TEVC_2022_3211643
crossref_primary_10_1109_TEVC_2019_2933444
crossref_primary_10_1109_TEVC_2022_3212058
crossref_primary_10_1007_s41605_025_00577_x
crossref_primary_10_1088_1361_6560_ab083a
crossref_primary_10_1111_tgis_12876
crossref_primary_10_1016_j_swevo_2023_101410
crossref_primary_10_1016_j_asoc_2024_111505
crossref_primary_10_1109_ACCESS_2020_2991752
crossref_primary_10_1109_ACCESS_2020_3031002
crossref_primary_10_1007_s10489_019_01547_9
crossref_primary_10_1007_s10479_022_04641_3
crossref_primary_10_1016_j_artint_2015_06_007
crossref_primary_10_1109_TEVC_2016_2587808
crossref_primary_10_1007_s40747_024_01523_y
crossref_primary_10_1007_s10489_020_01976_x
crossref_primary_10_1109_ACCESS_2020_3032681
crossref_primary_10_1016_j_ins_2023_119115
crossref_primary_10_1371_journal_pone_0284110
crossref_primary_10_1109_ACCESS_2023_3274532
crossref_primary_10_1016_j_ins_2019_03_062
crossref_primary_10_1016_j_swevo_2018_11_003
crossref_primary_10_1109_TEVC_2018_2882166
crossref_primary_10_1109_TCYB_2020_3020630
crossref_primary_10_1007_s12065_022_00761_8
crossref_primary_10_1109_TCYB_2020_2971638
crossref_primary_10_1016_j_ins_2023_118996
crossref_primary_10_1002_int_22476
crossref_primary_10_1016_j_eswa_2024_124226
crossref_primary_10_1016_j_ins_2017_09_051
crossref_primary_10_1002_stc_3024
crossref_primary_10_1007_s10489_021_02707_6
crossref_primary_10_1007_s13748_019_00174_2
crossref_primary_10_1016_j_ins_2022_10_077
crossref_primary_10_1109_TCYB_2018_2856208
crossref_primary_10_1016_j_ins_2020_09_061
crossref_primary_10_1109_TGRS_2024_3390006
crossref_primary_10_1109_TEVC_2015_2457245
crossref_primary_10_1016_j_asoc_2017_07_052
crossref_primary_10_1109_TMC_2017_2708713
crossref_primary_10_1016_j_asoc_2023_110877
crossref_primary_10_1109_TEVC_2014_2373386
crossref_primary_10_1109_TITS_2020_2995622
crossref_primary_10_1093_jcde_qwae055
crossref_primary_10_1109_ACCESS_2019_2923422
crossref_primary_10_1109_TCYB_2020_3015998
crossref_primary_10_1016_j_ins_2022_03_030
crossref_primary_10_1109_ACCESS_2024_3398415
crossref_primary_10_1016_j_engappai_2023_105889
crossref_primary_10_1016_j_eswa_2022_119424
crossref_primary_10_1016_j_swevo_2021_100910
crossref_primary_10_3390_math11020413
crossref_primary_10_1109_TEVC_2015_2501315
crossref_primary_10_1109_TEVC_2015_2433266
crossref_primary_10_1016_j_swevo_2020_100737
crossref_primary_10_1109_ACCESS_2021_3107284
crossref_primary_10_1016_j_swevo_2022_101145
crossref_primary_10_1016_j_asoc_2018_03_028
crossref_primary_10_1016_j_eswa_2023_121244
crossref_primary_10_1016_j_swevo_2025_102139
crossref_primary_10_3390_math11030493
crossref_primary_10_1016_j_eswa_2025_128670
crossref_primary_10_1016_j_ins_2021_01_015
crossref_primary_10_1109_TEVC_2017_2655451
crossref_primary_10_1016_j_swevo_2023_101461
crossref_primary_10_1109_TEVC_2019_2926151
crossref_primary_10_7554_eLife_79665
crossref_primary_10_1007_s10489_017_0958_4
crossref_primary_10_1007_s10489_023_05106_1
crossref_primary_10_1049_iet_ipr_2019_0924
crossref_primary_10_3934_math_2025625
crossref_primary_10_1016_j_scitotenv_2018_10_063
crossref_primary_10_1109_TCYB_2019_2960039
crossref_primary_10_1109_TSMC_2022_3143657
crossref_primary_10_1016_j_swevo_2024_101539
crossref_primary_10_1016_j_ins_2020_03_104
crossref_primary_10_1016_j_asoc_2020_106641
crossref_primary_10_1371_journal_pone_0314584
crossref_primary_10_1109_TEVC_2015_2504730
crossref_primary_10_1109_TEVC_2020_3016049
crossref_primary_10_1016_j_swevo_2019_100641
crossref_primary_10_1109_JAS_2023_123495
crossref_primary_10_1007_s12065_021_00698_4
crossref_primary_10_1007_s00500_015_1955_3
crossref_primary_10_1016_j_ins_2020_08_118
crossref_primary_10_1016_j_eswa_2024_123949
crossref_primary_10_4018_IJSIR_2019010102
crossref_primary_10_1007_s10586_024_04739_2
crossref_primary_10_1109_TEVC_2016_2592479
crossref_primary_10_1016_j_ress_2023_109835
crossref_primary_10_1109_ACCESS_2023_3234226
crossref_primary_10_1109_TEVC_2021_3110780
crossref_primary_10_1016_j_ins_2019_03_016
crossref_primary_10_1093_jcde_qwae022
crossref_primary_10_1016_j_asoc_2019_105588
Cites_doi 10.1109/TEVC.2010.2041060
10.1109/GEFS.2008.4484566
10.1109/5.364485
10.1109/TEVC.2009.2033586
10.1007/978-3-540-30217-9_84
10.1109/CEC.2011.5949696
10.1109/TEVC.2008.2009031
10.1016/S0019-9958(65)90241-X
10.1109/4235.996017
10.1109/TEVC.2007.894202
10.1007/978-3-540-31880-4_28
10.1109/TEVC.2005.861417
10.1007/978-3-642-05258-3_56
10.1109/CEC.2002.1007032
10.1109/TEVC.2008.2009032
10.1007/978-3-540-72964-8_15
10.1109/TEVC.2010.2093579
10.1109/TSMCB.2010.2068046
10.1109/TEVC.2007.892759
10.1109/TEVC.2005.846817
10.1109/TSMCA.2004.824873
10.1162/evco.2009.17.2.135
10.1109/TEVC.2006.876362
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Apr 2014
Copyright_xml – notice: 2015 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Apr 2014
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
DOI 10.1109/TEVC.2013.2258025
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Technology Research Database

Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Applied Sciences
EISSN 1941-0026
EndPage 285
ExternalDocumentID 3262574771
28423936
10_1109_TEVC_2013_2258025
6497578
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IF
6IK
6IL
6IN
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ADZIZ
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
EBS
EJD
HZ~
H~9
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RIL
RNS
TN5
VH1
AAYXX
CITATION
AAYOK
IQODW
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
ID FETCH-LOGICAL-c422t-1f4ce34ebc280591494066467a0cd9d9c25a3e6f9cd2cea246d8332f2d76f33
IEDL.DBID RIE
ISICitedReferencesCount 306
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000334166600009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1089-778X
IngestDate Thu Oct 02 09:57:06 EDT 2025
Sun Nov 09 06:16:49 EST 2025
Wed Apr 02 07:46:50 EDT 2025
Sat Nov 29 07:43:19 EST 2025
Tue Nov 18 21:00:57 EST 2025
Wed Aug 27 02:13:22 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords NSGA-II
Pareto optimum
Evolutionary algorithm
Multiobjective programming
Dominance
SPEA2
multiobjective evolutionary algorithm
Fuzzy logic
Experimental result
Genetic algorithm
Classification
Fuzzy relation
Pareto optimality
Optimality principle
Mathematical programming
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c422t-1f4ce34ebc280591494066467a0cd9d9c25a3e6f9cd2cea246d8332f2d76f33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PQID 1511758047
PQPubID 85418
PageCount 17
ParticipantIDs ieee_primary_6497578
pascalfrancis_primary_28423936
proquest_journals_1511758047
proquest_miscellaneous_1530996898
crossref_primary_10_1109_TEVC_2013_2258025
crossref_citationtrail_10_1109_TEVC_2013_2258025
PublicationCentury 2000
PublicationDate 2014-04-01
PublicationDateYYYYMMDD 2014-04-01
PublicationDate_xml – month: 04
  year: 2014
  text: 2014-04-01
  day: 01
PublicationDecade 2010
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: New York
PublicationTitle IEEE transactions on evolutionary computation
PublicationTitleAbbrev TEVC
PublicationYear 2014
Publisher IEEE
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
ref15
ref14
ref31
ref30
ref32
ref10
robert (ref27) 1997
he (ref20) 0
ref2
ref1
ref17
ref16
ref19
ref18
schott (ref24) 1995
bader (ref26) 2008
ref22
ref21
ref29
ref8
ref7
knowles (ref28) 2005
batista (ref13) 2010
deb (ref4) 2005
ref3
ref6
ref5
zitzler (ref9) 2001
zhang (ref23) 2008; 12
karahan (ref25) 2010; 14
garza-fabre (ref11) 2009
References_xml – year: 2005
  ident: ref28
  publication-title: A Tutorial on the Performance Assessment of Stochastic Multiobjective Optimizers
– ident: ref6
  doi: 10.1109/TEVC.2010.2041060
– year: 0
  ident: ref20
  article-title: Performance metrics ensemble on multiobjective optimization algorithms
  publication-title: IEEE Trans Evol Comput
– ident: ref1
  doi: 10.1109/GEFS.2008.4484566
– ident: ref18
  doi: 10.1109/5.364485
– volume: 14
  start-page: 636
  year: 2010
  ident: ref25
  article-title: A territory defining multiobjective evolutionary algorithms and preference in corporation
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2009.2033586
– year: 2008
  ident: ref26
  publication-title: HypE An algorithm for fast hypervolume-based many-objective optimization
– year: 2005
  ident: ref4
  publication-title: On finding pareto-optimal solutions through dimensionality reduction for certain large-dimensional multiobjective optimization problems
– ident: ref14
  doi: 10.1007/978-3-540-30217-9_84
– ident: ref16
  doi: 10.1109/CEC.2011.5949696
– ident: ref32
  doi: 10.1109/TEVC.2008.2009031
– ident: ref7
  doi: 10.1016/S0019-9958(65)90241-X
– ident: ref8
  doi: 10.1109/4235.996017
– volume: 12
  start-page: 41
  year: 2008
  ident: ref23
  article-title: RM-MEDA: A regularity model based multiobjective estimation of distribution algorithm
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2007.894202
– start-page: 146
  year: 2009
  ident: ref11
  article-title: Alternative fitness assignment methods for many-objective optimization problems
  publication-title: Proc Artif Evol
– ident: ref17
  doi: 10.1007/978-3-540-31880-4_28
– ident: ref21
  doi: 10.1109/TEVC.2005.861417
– ident: ref10
  doi: 10.1007/978-3-642-05258-3_56
– year: 2001
  ident: ref9
  publication-title: SPEA2 Improving the strength Pareto evolutionary algorithm
– year: 1995
  ident: ref24
  publication-title: Fault tolerant design using single and multicriteria genetic algorithm optimization
– ident: ref2
  doi: 10.1109/CEC.2002.1007032
– ident: ref30
  doi: 10.1109/TEVC.2008.2009032
– ident: ref12
  doi: 10.1007/978-3-540-72964-8_15
– ident: ref5
  doi: 10.1109/TEVC.2010.2093579
– ident: ref31
  doi: 10.1109/TSMCB.2010.2068046
– ident: ref19
  doi: 10.1109/TEVC.2007.892759
– ident: ref29
  doi: 10.1109/TEVC.2005.846817
– start-page: 2359
  year: 2010
  ident: ref13
  article-title: A comparison of dominance criteria in many-objective optimization problems
  publication-title: Proc IEEE Congr Evol Comput
– ident: ref15
  doi: 10.1109/TSMCA.2004.824873
– ident: ref3
  doi: 10.1162/evco.2009.17.2.135
– year: 1997
  ident: ref27
  publication-title: Principles and Procedures of Statistics A Biometrical Approach
– ident: ref22
  doi: 10.1109/TEVC.2006.876362
SSID ssj0014519
Score 2.5685692
Snippet Evolutionary algorithms have been effectively used to solve multiobjective optimization problems with a small number of objectives, two or three in general....
SourceID proquest
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 269
SubjectTerms Algorithmics. Computability. Computer arithmetics
Algorithms
Applied sciences
Benchmark testing
Computer science; control theory; systems
Convergence
Evolutionary algorithms
Evolutionary computation
Exact sciences and technology
Fitness
Fuzzy
Fuzzy logic
Fuzzy set theory
Fuzzy sets
multiobjective evolutionary algorithm
NSGA-II
Object recognition
Optimization
Pareto optimality
Pareto optimization
Search problems
SPEA2
Theoretical computing
Vectors
Title Fuzzy-Based Pareto Optimality for Many-Objective Evolutionary Algorithms
URI https://ieeexplore.ieee.org/document/6497578
https://www.proquest.com/docview/1511758047
https://www.proquest.com/docview/1530996898
Volume 18
WOSCitedRecordID wos000334166600009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0026
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014519
  issn: 1089-778X
  databaseCode: RIE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NSxwxFH-oeKgHrVrpqJUUPJVGs0l2Jjla2cVDq0JF9jZk8tFadKfsh6B_vS8z2UGpCL0NJMOEvK9f5r28H8AhBh1XSS2pEsxQWQlGK1MZGliQfaudZw1p3_X34vxcjUb6cgm-dndhvPdN8Zk_io9NLt_Vdh5_lR3nUsf268uwXBR5e1eryxjENiltMb1GxKhGKYPZY_r4anB9Gou4xBEqr2KRFftZDGpIVWJJpJniroSWzuIfz9yEm-HG_y30PawnWElOWj3YhCU_3oKNBWUDSRa8BWvP-g9uw9lw_vj4QL9hJHPkMvLd1uQCfchdA84J4lnyA50Fvaj-tH6RDO6TqprJAzm5_VVPbma_76Yf4OdwcHV6RhO1ArWS8xntBWm9kL6yXCHAwmMSBvYcnaZh1mmnLe8b4fOgrePWGy5zp4TggbsiD0LswMq4HvuPQCqMgGhnwfS4k9zgeRo9aN_EFjghdpPLgC22urSp63gkv7gtm9MH02WUThmlUybpZPCle-Vv23Ljrcnbcfu7iWnnMzh4Ic9uHKNxbPqWZ7C_EHCZrHZaIvpBNKWYLDL43A2jvcUkihn7eh7nCATVudJq9_VP78E7XGCq7tmHldlk7j_Bqr2f3UwnB43SPgG_YOjN
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1baxQxFD7UKlgfrLYWR2uN4JOYNptkZ5PHWnZZcbstuJR9GzK5aKXdkb0U2l_vyUx2qCiCbwPJMCHn9mXOyfkA3mPQcaXUkirBDJWlYLQ0paGBBdm12nlWk_ZdjHrjsZpO9fkGfGzvwnjv6-Izfxgf61y-q-wq_io7yqWO7dcfwMOulJw1t7XanEFslNKU02vEjGqacpgdpo8m_YuTWMYlDlF9FYu82PeiUE2rEosizQL3JTSEFn_45jrgDLb_b6nP4GkCluS40YTnsOFnO7C9Jm0gyYZ34Mm9DoS7MBys7u5u6SeMZY6cR8bbipyhF7mu4TlBREtO0V3Qs_JH4xlJ_yYpq5nfkuOrb9X8cvn9evECvg76k5MhTeQK1ErOl7QTpPVC-tJyhRALD0oY2nN0m4ZZp522vGuEz4O2jltvuMydEoIH7np5EGIPNmfVzL8EUmIMREsLpsOd5AZP1OhDuyY2wQmxn1wGbL3VhU19xyP9xVVRnz-YLqJ0iiidIkkngw_tKz-bphv_mrwbt7-dmHY-g4Pf5NmOYzyObd_yDPbXAi6S3S4KxD-IpxSTvQzetcNocTGNYma-WsU5AmF1rrR69fdPv4XHw8npqBh9Hn95DVu42FTrsw-by_nKv4FH9mZ5uZgf1Ar8CwAs7BQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fuzzy-Based+Pareto+Optimality+for+Many-Objective+Evolutionary+Algorithms&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=He%2C+Zhenan&rft.au=Yen%2C+Gary+G.&rft.au=Zhang%2C+Jun&rft.date=2014-04-01&rft.issn=1089-778X&rft.eissn=1941-0026&rft.volume=18&rft.issue=2&rft.spage=269&rft.epage=285&rft_id=info:doi/10.1109%2FTEVC.2013.2258025&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TEVC_2013_2258025
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon