A performance comparison of multi-objective optimization algorithms for solving nearly-zero-energy-building design problems

•Integrated building design is inherently a multi-objective optimization problem.•Recently, many multi-objective optimization algorithms have been developed.•The performance of seven multi-objective evolutionary are tested in solving a nZEB design case.•The performance of studied algorithms is ranke...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Energy and buildings Ročník 121; s. 57 - 71
Hlavní autoři: Hamdy, Mohamed, Nguyen, Anh-Tuan, Hensen, Jan L.M.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.06.2016
Témata:
ISSN:0378-7788
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •Integrated building design is inherently a multi-objective optimization problem.•Recently, many multi-objective optimization algorithms have been developed.•The performance of seven multi-objective evolutionary are tested in solving a nZEB design case.•The performance of studied algorithms is ranked using six comparison criteria (two are novel).•1400–1800 were minimum required number of evaluations to stabilize optimization results. Integrated building design is inherently a multi-objective optimization problem where two or more conflicting objectives must be minimized and/or maximized concurrently. Many multi-objective optimization algorithms have been developed; however few of them are tested in solving building design problems. This paper compares performance of seven commonly-used multi-objective evolutionary optimization algorithms in solving the design problem of a nearly zero energy building (nZEB) where more than 1.610 solutions would be possible. The compared algorithms include a controlled non-dominated sorting genetic algorithm with a passive archive (pNSGA-II), a multi-objective particle swarm optimization (MOPSO), a two-phase optimization using the genetic algorithm (PR_GA), an elitist non-dominated sorting evolution strategy (ENSES), a multi-objective evolutionary algorithm based on the concept of epsilon dominance (evMOGA), a multi-objective differential evolution algorithm (spMODE-II), and a multi-objective dragonfly algorithm (MODA). Several criteria was used to compare performance of these algorithms. In most cases, the quality of the obtained solutions was improved when the number of generations was increased. The optimization results of running each algorithm 20 times with gradually increasing number of evaluations indicated that the PR_GA algorithm had a high repeatability to explore a large area of the solution-space and achieved close-to-optimal solutions with a good diversity, followed by the pNSGA-II, evMOGA and spMODE-II. Uncompetitive results were achieved by the ENSES, MOPSO and MODA in most running cases. The study also found that 1400–1800 were minimum required number of evaluations to stabilize optimization results of the building energy model.
AbstractList Integrated building design is inherently a multi-objective optimization problem where two or more conflicting objectives must be minimized and/or maximized concurrently. Many multi-objective optimization algorithms have been developed; however few of them are tested in solving building design problems. This paper compares performance of seven commonly-used multi-objective evolutionary optimization algorithms in solving the design problem of a nearly zero energy building (nZEB) where more than 1.6 super(10) solutions would be possible. The compared algorithms include a controlled non-dominated sorting genetic algorithm with a passive archive (pNSGA-II), a multi-objective particle swarm optimization (MOPSO), a two-phase optimization using the genetic algorithm (PR_GA), an elitist non-dominated sorting evolution strategy (ENSES), a multi-objective evolutionary algorithm based on the concept of epsilon dominance (evMOGA), a multi-objective differential evolution algorithm (spMODE-II), and a multi-objective dragonfly algorithm (MODA). Several criteria was used to compare performance of these algorithms. In most cases, the quality of the obtained solutions was improved when the number of generations was increased. The optimization results of running each algorithm 20 times with gradually increasing number of evaluations indicated that the PR_GA algorithm had a high repeatability to explore a large area of the solution-space and achieved close-to-optimal solutions with a good diversity, followed by the pNSGA-II, evMOGA and spMODE-II. Uncompetitive results were achieved by the ENSES, MOPSO and MODA in most running cases. The study also found that 1400-1800 were minimum required number of evaluations to stabilize optimization results of the building energy model.
•Integrated building design is inherently a multi-objective optimization problem.•Recently, many multi-objective optimization algorithms have been developed.•The performance of seven multi-objective evolutionary are tested in solving a nZEB design case.•The performance of studied algorithms is ranked using six comparison criteria (two are novel).•1400–1800 were minimum required number of evaluations to stabilize optimization results. Integrated building design is inherently a multi-objective optimization problem where two or more conflicting objectives must be minimized and/or maximized concurrently. Many multi-objective optimization algorithms have been developed; however few of them are tested in solving building design problems. This paper compares performance of seven commonly-used multi-objective evolutionary optimization algorithms in solving the design problem of a nearly zero energy building (nZEB) where more than 1.610 solutions would be possible. The compared algorithms include a controlled non-dominated sorting genetic algorithm with a passive archive (pNSGA-II), a multi-objective particle swarm optimization (MOPSO), a two-phase optimization using the genetic algorithm (PR_GA), an elitist non-dominated sorting evolution strategy (ENSES), a multi-objective evolutionary algorithm based on the concept of epsilon dominance (evMOGA), a multi-objective differential evolution algorithm (spMODE-II), and a multi-objective dragonfly algorithm (MODA). Several criteria was used to compare performance of these algorithms. In most cases, the quality of the obtained solutions was improved when the number of generations was increased. The optimization results of running each algorithm 20 times with gradually increasing number of evaluations indicated that the PR_GA algorithm had a high repeatability to explore a large area of the solution-space and achieved close-to-optimal solutions with a good diversity, followed by the pNSGA-II, evMOGA and spMODE-II. Uncompetitive results were achieved by the ENSES, MOPSO and MODA in most running cases. The study also found that 1400–1800 were minimum required number of evaluations to stabilize optimization results of the building energy model.
Author Hensen, Jan L.M.
Nguyen, Anh-Tuan
Hamdy, Mohamed
Author_xml – sequence: 1
  givenname: Mohamed
  surname: Hamdy
  fullname: Hamdy, Mohamed
  email: m.h.hassan.mohamed@tue.nl, DSc.M.Hamdy@gmail.com
  organization: Department of the Built Environment, Building Physics and Services, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
– sequence: 2
  givenname: Anh-Tuan
  surname: Nguyen
  fullname: Nguyen, Anh-Tuan
  organization: Faculty of Architecture, The University of Danang—University of Science and Technology, 54 Nguyen Luong Bang, Danang, Viet Nam
– sequence: 3
  givenname: Jan L.M.
  surname: Hensen
  fullname: Hensen, Jan L.M.
  organization: Department of the Built Environment, Building Physics and Services, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
BookMark eNqFkU1rJCEQhj0ksPn6CQse99IT7W67W3JYQtiPQCCXzVlsu5ytwdaOOgOT_fPrZHLKZaBApN6nlHouyZkPHgj5ytmKM97dblbgxy26aVWX64o1pcQZuWBNP1R9PwxfyGVKG8ZYJ3p-Qf7d0wWiDXHW3gA1YV50xBQ8DZbOW5exCuMGTMYd0LBknPFNZyx97dYhYv47J1pwmoLboV9TDzq6ffUGMVTgIa731ft_Dr0JEq49XWIYHczpmpxb7RLcfJxX5OXnjz8Pv6un51-PD_dPlWnrOlfcGAb1KG0H3DAjbDsy25jesHowjbSC91o0YgQtx7btgcuJTy1YbuwwdtY0V-TbcW55-HULKasZkwHntIewTYoPvGOC8VqejvaSSSFlK0pUHKMmhpQiWLVEnHXcK87UwYXaqA8X6uBCsabUgbv7xBnM7yvNUaM7SX8_0lAWtkOIKhmEom7CWCypKeCJCf8BtR-xhg
CitedBy_id crossref_primary_10_1016_j_rser_2018_04_080
crossref_primary_10_1080_19401493_2019_1671897
crossref_primary_10_1016_j_buildenv_2021_107855
crossref_primary_10_1016_j_jobe_2025_113809
crossref_primary_10_1016_j_buildenv_2021_107973
crossref_primary_10_1016_j_enbenv_2025_05_005
crossref_primary_10_1080_23744731_2021_1991177
crossref_primary_10_1016_j_jobe_2021_102225
crossref_primary_10_3390_en10020245
crossref_primary_10_1016_j_enbuild_2017_08_018
crossref_primary_10_1016_j_apenergy_2023_122423
crossref_primary_10_1016_j_enbuild_2018_03_039
crossref_primary_10_3390_su17094090
crossref_primary_10_3390_app14093760
crossref_primary_10_1177_1420326X231180422
crossref_primary_10_3390_en10122158
crossref_primary_10_1016_j_jobe_2022_104487
crossref_primary_10_1049_ntw2_12059
crossref_primary_10_1016_j_enbuild_2021_111693
crossref_primary_10_1016_j_enbuild_2022_112020
crossref_primary_10_1016_j_apenergy_2017_08_204
crossref_primary_10_3390_en11010097
crossref_primary_10_1016_j_solener_2019_11_055
crossref_primary_10_1016_j_enbuild_2022_111863
crossref_primary_10_1088_1755_1315_505_1_012010
crossref_primary_10_3390_buildings10050088
crossref_primary_10_3390_s23063293
crossref_primary_10_1016_j_enbuild_2019_01_048
crossref_primary_10_1016_j_scs_2018_11_027
crossref_primary_10_1080_15567036_2021_1980153
crossref_primary_10_1111_ffe_14233
crossref_primary_10_1016_j_autcon_2025_106463
crossref_primary_10_1016_j_enbuild_2016_12_072
crossref_primary_10_1016_j_jhydrol_2020_124977
crossref_primary_10_1016_j_buildenv_2021_108142
crossref_primary_10_3390_en10071016
crossref_primary_10_3390_su11010018
crossref_primary_10_1016_j_buildenv_2024_112143
crossref_primary_10_1016_j_enbuild_2017_08_002
crossref_primary_10_1016_j_jclepro_2017_11_130
crossref_primary_10_1088_1755_1315_520_1_012025
crossref_primary_10_1007_s12273_019_0586_5
crossref_primary_10_1016_j_apenergy_2019_114289
crossref_primary_10_1016_j_enbuild_2017_08_004
crossref_primary_10_1016_j_jobe_2020_101546
crossref_primary_10_1680_jinam_23_00040
crossref_primary_10_1007_s40747_021_00521_8
crossref_primary_10_1016_j_prime_2025_100946
crossref_primary_10_1016_j_autcon_2019_103009
crossref_primary_10_1016_j_buildenv_2019_106372
crossref_primary_10_1016_j_jobe_2024_111449
crossref_primary_10_1007_s40314_016_0410_0
crossref_primary_10_1016_j_energy_2017_03_142
crossref_primary_10_1016_j_enbuild_2016_11_020
crossref_primary_10_1016_j_heliyon_2025_e42480
crossref_primary_10_1016_j_enbuild_2025_116126
crossref_primary_10_1016_j_buildenv_2021_107948
crossref_primary_10_3233_JIFS_190228
crossref_primary_10_3390_en15228543
crossref_primary_10_1016_j_ejor_2019_01_039
crossref_primary_10_1016_j_buildenv_2020_107422
crossref_primary_10_1016_j_buildenv_2025_113156
crossref_primary_10_1016_j_energy_2018_09_019
crossref_primary_10_1016_j_buildenv_2023_110006
crossref_primary_10_1016_j_scs_2019_101672
crossref_primary_10_1007_s10479_021_04232_8
crossref_primary_10_1007_s40012_018_0201_4
crossref_primary_10_1016_j_apenergy_2021_117787
crossref_primary_10_1016_j_enbuild_2021_111776
crossref_primary_10_1016_j_enbuild_2017_04_047
crossref_primary_10_1016_j_energy_2016_07_058
crossref_primary_10_3390_su13105739
crossref_primary_10_1061__ASCE_AE_1943_5568_0000474
crossref_primary_10_1016_j_renene_2018_09_057
crossref_primary_10_3390_en11061478
crossref_primary_10_1016_j_enconman_2020_112868
crossref_primary_10_1016_j_enbuild_2024_114922
crossref_primary_10_1016_j_compchemeng_2019_05_023
crossref_primary_10_1016_j_rser_2025_115578
crossref_primary_10_1016_j_solener_2019_04_048
crossref_primary_10_1016_j_buildenv_2022_108990
crossref_primary_10_1016_j_enbuild_2024_114123
crossref_primary_10_1002_adts_201900092
crossref_primary_10_3390_en17246372
crossref_primary_10_1080_19401493_2020_1865459
crossref_primary_10_1007_s12065_021_00659_x
crossref_primary_10_1016_j_applthermaleng_2020_114916
crossref_primary_10_3390_buildings14061688
crossref_primary_10_1016_j_apenergy_2018_01_099
crossref_primary_10_1016_j_enbuild_2023_113304
crossref_primary_10_1016_j_enbuild_2025_115727
crossref_primary_10_1016_j_buildenv_2019_106543
crossref_primary_10_1016_j_enbuild_2022_111946
crossref_primary_10_1016_j_autcon_2022_104147
crossref_primary_10_1088_1742_6596_2042_1_012077
crossref_primary_10_1016_j_buildenv_2024_111377
crossref_primary_10_1016_j_buildenv_2017_05_006
crossref_primary_10_1016_j_jobe_2020_101505
crossref_primary_10_1016_j_knosys_2018_08_003
crossref_primary_10_1016_j_enbuild_2020_110170
crossref_primary_10_1080_19401493_2019_1680733
crossref_primary_10_3390_sym9100241
crossref_primary_10_1080_24751448_2017_1354615
crossref_primary_10_1016_j_enbuild_2018_02_053
crossref_primary_10_1007_s12273_024_1108_7
crossref_primary_10_1016_j_apenergy_2020_115984
crossref_primary_10_1016_j_autcon_2025_106539
crossref_primary_10_1016_j_enbuild_2023_113417
crossref_primary_10_1016_j_mineng_2020_106422
crossref_primary_10_1016_j_engappai_2021_104448
crossref_primary_10_1007_s00158_023_03510_2
crossref_primary_10_1016_j_enbuild_2024_114102
crossref_primary_10_1016_j_buildenv_2023_110336
crossref_primary_10_1016_j_enbuild_2025_115750
crossref_primary_10_1016_j_rineng_2025_106012
crossref_primary_10_1016_j_apenergy_2018_04_129
crossref_primary_10_3390_buildings15081240
crossref_primary_10_1016_j_solener_2025_113746
crossref_primary_10_3390_en15145192
crossref_primary_10_3390_drones7080487
crossref_primary_10_1016_j_enbuild_2024_114460
crossref_primary_10_1016_j_enbuild_2019_06_001
crossref_primary_10_1016_j_enconman_2025_120069
crossref_primary_10_1016_j_enbuild_2020_109963
crossref_primary_10_1016_j_scs_2019_101597
crossref_primary_10_1016_j_buildenv_2025_113071
crossref_primary_10_1016_j_apenergy_2019_04_033
crossref_primary_10_1016_j_jobe_2023_108298
crossref_primary_10_3390_buildings14061877
crossref_primary_10_1007_s10706_021_01782_3
crossref_primary_10_1016_j_fraope_2025_100286
crossref_primary_10_1080_15732479_2018_1436571
crossref_primary_10_1007_s00500_022_07466_1
crossref_primary_10_1016_j_energy_2020_117121
crossref_primary_10_1016_j_buildenv_2018_08_003
crossref_primary_10_1016_j_jobe_2023_107879
crossref_primary_10_3390_buildings11110507
crossref_primary_10_1016_j_enbuild_2020_109942
crossref_primary_10_1007_s12053_019_09812_z
crossref_primary_10_3390_app9050858
crossref_primary_10_1016_j_energy_2016_11_125
crossref_primary_10_1016_j_solener_2022_08_035
crossref_primary_10_3390_su9040508
crossref_primary_10_1016_j_apenergy_2018_03_083
crossref_primary_10_1016_j_ijpvp_2023_105059
crossref_primary_10_1080_10286608_2019_1576646
crossref_primary_10_1016_j_autcon_2020_103522
crossref_primary_10_1016_j_energy_2021_122777
crossref_primary_10_1016_j_enbuild_2020_109945
crossref_primary_10_1016_j_jobe_2017_12_003
crossref_primary_10_1016_j_rser_2020_109933
crossref_primary_10_1016_j_enbuild_2021_111513
crossref_primary_10_1016_j_enbuild_2017_04_069
crossref_primary_10_1007_s40745_021_00334_z
crossref_primary_10_1109_TSMC_2022_3225443
crossref_primary_10_1016_j_enbuild_2019_109576
crossref_primary_10_3390_en17071539
crossref_primary_10_1016_j_enbuild_2017_11_022
crossref_primary_10_1016_j_enbuild_2020_110340
crossref_primary_10_1016_j_asoc_2022_109476
crossref_primary_10_1016_j_enbuild_2017_08_071
crossref_primary_10_1016_j_buildenv_2025_113670
crossref_primary_10_1016_j_rser_2019_109243
crossref_primary_10_1007_s12273_018_0448_6
crossref_primary_10_1016_j_swevo_2019_04_001
crossref_primary_10_1177_14780771211039078
crossref_primary_10_1016_j_enbuild_2017_03_056
crossref_primary_10_1016_j_energy_2018_07_023
crossref_primary_10_1016_j_jksuci_2016_11_002
crossref_primary_10_1016_j_aei_2019_03_006
crossref_primary_10_1016_j_rser_2017_06_018
crossref_primary_10_1016_j_aei_2018_01_003
crossref_primary_10_3390_en10050637
crossref_primary_10_1038_s41598_025_09995_9
crossref_primary_10_3390_su12052027
crossref_primary_10_1016_j_enbuild_2019_109690
crossref_primary_10_2298_TSCI210402306G
crossref_primary_10_1007_s12393_018_9186_x
crossref_primary_10_1016_j_enbuild_2024_115242
crossref_primary_10_1108_CI_12_2019_0143
crossref_primary_10_1155_2021_5510362
crossref_primary_10_1088_1755_1315_1003_1_012035
crossref_primary_10_1177_01436244231161944
crossref_primary_10_1016_j_apenergy_2019_03_028
crossref_primary_10_1109_LCOMM_2019_2914440
crossref_primary_10_3390_buildings14113405
crossref_primary_10_1016_j_desal_2025_118773
crossref_primary_10_1016_j_jobe_2024_110322
crossref_primary_10_1016_j_enbuild_2019_109707
crossref_primary_10_1016_j_apenergy_2020_115932
crossref_primary_10_1016_j_enbuild_2021_110839
crossref_primary_10_1016_j_compbiomed_2019_04_013
crossref_primary_10_1016_j_eti_2025_104219
crossref_primary_10_1016_j_buildenv_2021_107780
crossref_primary_10_1016_j_buildenv_2021_108061
crossref_primary_10_1016_j_buildenv_2021_108185
crossref_primary_10_1016_j_jclepro_2017_03_191
crossref_primary_10_1016_j_buildenv_2023_110268
crossref_primary_10_1007_s11277_019_06780_6
crossref_primary_10_1002_er_6331
crossref_primary_10_1016_j_buildenv_2024_111776
crossref_primary_10_1155_2019_7561398
crossref_primary_10_1007_s42417_019_00102_7
crossref_primary_10_1016_j_enbuild_2025_115562
crossref_primary_10_1016_j_enbuild_2025_115561
crossref_primary_10_1016_j_ress_2025_111275
crossref_primary_10_1016_j_ijhydene_2022_03_248
crossref_primary_10_1016_j_ijthermalsci_2019_106184
crossref_primary_10_1016_j_epsr_2020_106285
crossref_primary_10_1016_j_powtec_2020_12_056
crossref_primary_10_1016_j_buildenv_2025_113124
crossref_primary_10_1016_j_enbuild_2025_115913
crossref_primary_10_1016_j_enbuild_2019_109378
crossref_primary_10_1155_2019_8418369
crossref_primary_10_1016_j_jobe_2020_102089
crossref_primary_10_3390_en18133361
crossref_primary_10_1109_JBHI_2017_2715078
crossref_primary_10_1007_s00521_018_3872_8
crossref_primary_10_3390_buildings13010167
crossref_primary_10_1016_j_enbuild_2020_110313
crossref_primary_10_1016_j_enbuild_2021_110851
crossref_primary_10_1016_j_scs_2022_104101
crossref_primary_10_1177_14780771241296263
crossref_primary_10_1016_j_energy_2019_116424
crossref_primary_10_1080_23744731_2020_1840217
crossref_primary_10_1016_j_enbuild_2021_111385
crossref_primary_10_1016_j_jobe_2019_100838
crossref_primary_10_1080_13467581_2024_2358195
Cites_doi 10.1016/j.rser.2013.02.004
10.1109/4235.996017
10.1016/j.buildenv.2004.01.022
10.2172/962948
10.1162/106365602760234108
10.1016/j.enbuild.2011.08.031
10.1016/j.enbuild.2011.11.031
10.1007/s10489-014-0613-2
10.1016/j.enbuild.2012.08.023
10.1016/j.enbuild.2011.04.006
10.1080/19401490903494597
10.1016/j.enbuild.2010.10.028
10.3844/ajeassp.2015.185.201
10.1023/A:1008202821328
10.1007/s00521-015-1920-1
10.1016/j.apenergy.2013.08.061
10.1080/19401493.2012.762808
10.1016/j.buildenv.2010.01.005
10.1016/j.buildenv.2009.08.016
10.1016/j.enbuild.2010.01.010
10.1109/4235.585893
10.1109/TEVC.2004.826067
10.1016/j.buildenv.2004.11.017
10.1093/ijlct/ctq010
10.1016/j.engappai.2008.10.018
10.1016/j.buildenv.2008.03.014
10.1016/j.enbuild.2015.08.044
ContentType Journal Article
Copyright 2016 Elsevier B.V.
Copyright_xml – notice: 2016 Elsevier B.V.
DBID AAYXX
CITATION
7ST
C1K
SOI
8FD
F28
FR3
KR7
DOI 10.1016/j.enbuild.2016.03.035
DatabaseName CrossRef
Environment Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Environment Abstracts
Environmental Sciences and Pollution Management
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Civil Engineering Abstracts
Environment Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 71
ExternalDocumentID 10_1016_j_enbuild_2016_03_035
S0378778816301724
GroupedDBID --M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KCYFY
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
SDF
SDG
SES
SPC
SPCBC
SSJ
SSR
SST
SSZ
T5K
~02
~G-
--K
29G
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
RPZ
SAC
SET
SEW
WUQ
ZMT
ZY4
~HD
7ST
C1K
SOI
8FD
F28
FR3
KR7
ID FETCH-LOGICAL-c422t-1cc0e2b9f6e1c0c5f4b0f3c7c028c39f517a535bea9b447e19d1d4ef1cf8b6fc3
ISICitedReferencesCount 255
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000376697400006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0378-7788
IngestDate Mon Sep 29 05:19:33 EDT 2025
Tue Oct 07 07:52:40 EDT 2025
Tue Nov 18 20:43:05 EST 2025
Sat Nov 29 02:27:27 EST 2025
Fri Feb 23 02:30:46 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords DMn
ENSES
Building simulation
pNSGA-II
EPBD
MOOA
evMOGA
DHW
HVAC
Comparison
Experimentation
GA
MOEA
NoPsolution
BOP
spMODE-II
e
MOPSO
IGDn
LCC
PSO
PEC
FIT
GDn
Algorithms
PR_GA
nZEB
Multi-objective optimization
MODA
NSGA
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c422t-1cc0e2b9f6e1c0c5f4b0f3c7c028c39f517a535bea9b447e19d1d4ef1cf8b6fc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0378778816301724
PQID 1790959945
PQPubID 23462
PageCount 15
ParticipantIDs proquest_miscellaneous_1816050129
proquest_miscellaneous_1790959945
crossref_primary_10_1016_j_enbuild_2016_03_035
crossref_citationtrail_10_1016_j_enbuild_2016_03_035
elsevier_sciencedirect_doi_10_1016_j_enbuild_2016_03_035
PublicationCentury 2000
PublicationDate 2016-06-01
2016-06-00
20160601
PublicationDateYYYYMMDD 2016-06-01
PublicationDate_xml – month: 06
  year: 2016
  text: 2016-06-01
  day: 01
PublicationDecade 2010
PublicationTitle Energy and buildings
PublicationYear 2016
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Bichiou, Krarti (bib0070) 2011; 43
BPIE (bib0215) 2013
Wetter, Wright (bib0035) 2004; 39
Van Veldhuizen, Lamont (bib0220) 1998
Evins (bib0240) 2010
Kalamees, Jylhä, Tietäväinen, Jokisalo, Ilomets, Hyvönen, Saku (bib0160) 2012; 47
Chen, Montgomery, Bolufé-Röhler (bib0125) 2015; 42
Hamdy, Hasan, Siren (bib0015) 2011; 43
Pernodet, Lahmidi, Michel (bib0040) 2009
M. Wetter, GenOpt, Generic optimization program—User Manual, Version 3.0.0. Technical report LBNL-5419, Lawrence Berkeley National Laboratory, 2009.
Hamdy, Palonen, Hasan (bib0255) 2012
Deb (bib0135) 2004
(accessed 01.08.15).
Palonen, Hasan, Siren (bib0110) 2009
Ilyani Akmar, Kramer, Rabczuk (bib0285) 2015; 8
Lee, Chen, Kao (bib0060) 2011; 43
H. Energia, Helsingin Energia, 2015. [Online]. Available: https://www.helen.fi/kotitalouksille/. (accessed 01.08.15).
Engelbrecht (bib0265) 2005
Wetter, Wright (bib0045) 2003
Brownlee, Wright, Mourshed (bib0090) 2011
Julstrom (bib0235) 1994
Hamdy, Palonen, Hasan (bib0010) 2012
C.C. Coello, S.M. Lechuga, MOPSO: A Proposal for Multiple Objective Particle Swarm Optimization, in Congress on Evolutionary Computation (CEC'2002), Honolulu, Hawaii, U.S.A., 2002.
Evins (bib0120) 2013; 22
Reyes-Sierra, Coello (bib0270) 2006; 2
M. Hamdy, Combining Simulation and Optimisation for Dimensioning Optimal Building Envelopes and HVAC Systems, Aalto University publication series—Doctoral Dissertation177/2012, 2012.
Eartheasy, LED Light Bulbs: Comparison Charts, 2015. [Online]. Available
I. Staffell, R. Green, The cost of domestic fuel cell micro-CHP systems Discussion paper, 2012. [Online].
Storn, Price (bib0290) 1997; 11
Nassif, Kajl, Sabourin (bib0080) 2004
Wright, Brownlee, Mourshed, Wang (bib0250) 2014; 7
Deb, Pratap, Agarwal, Meyarivan (bib0225) 2002; 6
[28] M.K. Heris, Multi-Objective Particle Swarm Optimization—Version 1.0 (Adapted from: C.A.C. Coello, G.T. Pulido, M.S. Lechuga, Handling multiple objectives with particle swarm optimization, IEEE Transactions on Evolutionary Computation 8 (3) (2004) 256–279), February 2011. [Online]. Available
Buffer Tanks, Hot Water Buffer Tanks, 2015.
(accessed 2.8.15).
Kayo, Ooka (bib0245) 2010; 42
Homewyse, Cost of Mineral Wool Insulation, 2015. [Online]. Available
(accessed 02.08.15).
Jokisalo, Kurnitski, Korpi, Kalamees, Vinha (bib0300) 2009; 44
Charron, Athienitis (bib0105) 2006
Hamdy, Hasan, Sirén (bib0100) 2010; 5
Hopfe (bib0085) 2009
Hamdy, Hasan, Sirén (bib0095) 2009
Eberhart, Kennedy (bib0260) 1995
Wolpert, Macready (bib0075) 1997; 1
Hamdy, Sirén (bib0170) 2015
Tuhus-Dubrow, Krarti (bib0065) 2010; 45
Wang, Zmeureanu, Rivard (bib0020) 2005; 40
F. Xue, A. Sanderson, R.J. Graves, Pareto-based multi-objective differential evolution, in Proceedings of the 2003Congress on Evolutionary Computation (CEC’2003), Canberra, Australia, 2003.
Nguyen, Reiter, Rigo (bib0005) 2014; 113
Reynoso-Meza (bib0150) 2014
Triami Media BV, Worldwide Inflation Data, 2015. [Online]. Available
Martínez-Iranzo, Herrero, Sanchis, Blasco, García-Nieto (bib0145) 2009; 22
Hamdy, Hasan, Sirén (bib0030) 2011
Laumanns, Thiele, Deb, Zitzler (bib0280) 2002; 10
Mauro, Hamdy, Vanoli, Bianco, Hensen (bib0130) 2015; 107
M.A. Villalobos-Arias, G.T. Pulido, C.A.C. Coello, A proposal to use stripes to maintain diversity in a multi-objective particle swarm optimizer, In Swarm Intelligence Symposium—SIS 2005, Proceedings 2005 IEEE, Pasadena, CA, 2005.
Kampf, Wetter, Robinson (bib0055) 2010; 3
D3 (bib0165) 2012
Lapillonne, Pollier, Samci (bib0180) 2013
S. Mirjalili, Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems, Neural Computing and Applications (Article in press), 2015.
Hamdy, Hasan, Sirén (bib0200) 2013; 56
Magnier, Haghighat (bib0025) 2010; 45
Laumanns (10.1016/j.enbuild.2016.03.035_bib0280) 2002; 10
10.1016/j.enbuild.2016.03.035_bib0175
D3 (10.1016/j.enbuild.2016.03.035_bib0165) 2012
10.1016/j.enbuild.2016.03.035_bib0210
10.1016/j.enbuild.2016.03.035_bib0050
Martínez-Iranzo (10.1016/j.enbuild.2016.03.035_bib0145) 2009; 22
10.1016/j.enbuild.2016.03.035_bib0295
Evins (10.1016/j.enbuild.2016.03.035_bib0240) 2010
Jokisalo (10.1016/j.enbuild.2016.03.035_bib0300) 2009; 44
Wetter (10.1016/j.enbuild.2016.03.035_bib0035) 2004; 39
Van Veldhuizen (10.1016/j.enbuild.2016.03.035_bib0220) 1998
Hopfe (10.1016/j.enbuild.2016.03.035_bib0085) 2009
Brownlee (10.1016/j.enbuild.2016.03.035_bib0090) 2011
Nguyen (10.1016/j.enbuild.2016.03.035_bib0005) 2014; 113
Nassif (10.1016/j.enbuild.2016.03.035_bib0080) 2004
Evins (10.1016/j.enbuild.2016.03.035_bib0120) 2013; 22
10.1016/j.enbuild.2016.03.035_bib0185
10.1016/j.enbuild.2016.03.035_bib0140
Reynoso-Meza (10.1016/j.enbuild.2016.03.035_bib0150) 2014
Wang (10.1016/j.enbuild.2016.03.035_bib0020) 2005; 40
10.1016/j.enbuild.2016.03.035_bib0190
Julstrom (10.1016/j.enbuild.2016.03.035_bib0235) 1994
Mauro (10.1016/j.enbuild.2016.03.035_bib0130) 2015; 107
Ilyani Akmar (10.1016/j.enbuild.2016.03.035_bib0285) 2015; 8
10.1016/j.enbuild.2016.03.035_bib0275
10.1016/j.enbuild.2016.03.035_bib0230
10.1016/j.enbuild.2016.03.035_bib0155
Hamdy (10.1016/j.enbuild.2016.03.035_bib0170) 2015
10.1016/j.enbuild.2016.03.035_bib0195
Hamdy (10.1016/j.enbuild.2016.03.035_bib0255) 2012
Kalamees (10.1016/j.enbuild.2016.03.035_bib0160) 2012; 47
10.1016/j.enbuild.2016.03.035_bib0115
Lapillonne (10.1016/j.enbuild.2016.03.035_bib0180) 2013
Reyes-Sierra (10.1016/j.enbuild.2016.03.035_bib0270) 2006; 2
Charron (10.1016/j.enbuild.2016.03.035_bib0105) 2006
Pernodet (10.1016/j.enbuild.2016.03.035_bib0040) 2009
Hamdy (10.1016/j.enbuild.2016.03.035_bib0095) 2009
Tuhus-Dubrow (10.1016/j.enbuild.2016.03.035_bib0065) 2010; 45
Kayo (10.1016/j.enbuild.2016.03.035_bib0245) 2010; 42
Wright (10.1016/j.enbuild.2016.03.035_bib0250) 2014; 7
Deb (10.1016/j.enbuild.2016.03.035_bib0225) 2002; 6
Palonen (10.1016/j.enbuild.2016.03.035_bib0110) 2009
Eberhart (10.1016/j.enbuild.2016.03.035_bib0260) 1995
Storn (10.1016/j.enbuild.2016.03.035_bib0290) 1997; 11
Chen (10.1016/j.enbuild.2016.03.035_bib0125) 2015; 42
Hamdy (10.1016/j.enbuild.2016.03.035_bib0015) 2011; 43
Magnier (10.1016/j.enbuild.2016.03.035_bib0025) 2010; 45
10.1016/j.enbuild.2016.03.035_bib0205
BPIE (10.1016/j.enbuild.2016.03.035_bib0215) 2013
Hamdy (10.1016/j.enbuild.2016.03.035_bib0030) 2011
Deb (10.1016/j.enbuild.2016.03.035_bib0135) 2004
Kampf (10.1016/j.enbuild.2016.03.035_bib0055) 2010; 3
Hamdy (10.1016/j.enbuild.2016.03.035_bib0100) 2010; 5
Wetter (10.1016/j.enbuild.2016.03.035_bib0045) 2003
Engelbrecht (10.1016/j.enbuild.2016.03.035_bib0265) 2005
Hamdy (10.1016/j.enbuild.2016.03.035_bib0010) 2012
Wolpert (10.1016/j.enbuild.2016.03.035_bib0075) 1997; 1
Hamdy (10.1016/j.enbuild.2016.03.035_bib0200) 2013; 56
Bichiou (10.1016/j.enbuild.2016.03.035_bib0070) 2011; 43
Lee (10.1016/j.enbuild.2016.03.035_bib0060) 2011; 43
References_xml – volume: 5
  start-page: 120
  year: 2010
  end-page: 124
  ident: bib0100
  article-title: Optimum design of a house and its HVAC systems using simulation-based optimization
  publication-title: Int. J. Low-Carbon Technol.
– volume: 43
  start-page: 2055
  year: 2011
  end-page: 2067
  ident: bib0015
  article-title: Impact of adaptive thermal comfort criteria on building energy use and cooling equipment size using a multi-objective optimization scheme
  publication-title: Energy Build.
– year: 2011
  ident: bib0090
  article-title: A multi-objective window optimisation Problem
  publication-title: Proceedings of the 13th Annual Conference Companion on Genetic and Evolutionary Computation
– reference: Eartheasy, LED Light Bulbs: Comparison Charts, 2015. [Online]. Available:
– reference: M. Wetter, GenOpt, Generic optimization program—User Manual, Version 3.0.0. Technical report LBNL-5419, Lawrence Berkeley National Laboratory, 2009.
– reference: (accessed 2.8.15).
– reference: Buffer Tanks, Hot Water Buffer Tanks, 2015.
– volume: 107
  start-page: 456
  year: 2015
  end-page: 478
  ident: bib0130
  article-title: A new methodology for investigating the cost-optimality of energy retrofitting a building category
  publication-title: Energy Build.
– year: 2012
  ident: bib0165
  article-title: D3 Finland Code of Building Regulation Energy Management in Buildings, Regulations and Guidelines
– volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  ident: bib0225
  article-title: A fast and elitist multiobjective genetic algorithm: nSGA-II
  publication-title: IEEE Trans. Evol. Comput.
– volume: 39
  start-page: 989
  year: 2004
  end-page: 999
  ident: bib0035
  article-title: A comparison of deterministic and probabilistic optimization algorithms for nonsmooth simulation-based optimization
  publication-title: Build. Environ.
– year: 2013
  ident: bib0180
  article-title: Energy Efficiency Trends for Households in the EU
– volume: 1
  start-page: 67
  year: 1997
  end-page: 82
  ident: bib0075
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Trans. Evol. Comput.
– year: 2005
  ident: bib0265
  article-title: Fundamentals of Computational Swarm Intelligence
– reference: (accessed 01.08.15).
– volume: 44
  start-page: 377
  year: 2009
  end-page: 387
  ident: bib0300
  article-title: Building leakage, infiltration, and energy performance analyses for Finnish detached houses
  publication-title: Build. Environ.
– volume: 40
  start-page: 1512
  year: 2005
  end-page: 1525
  ident: bib0020
  article-title: Applying multi-objective genetic algorithms in green building design optimization
  publication-title: Build. Environ.
– reference: [28] M.K. Heris, Multi-Objective Particle Swarm Optimization—Version 1.0 (Adapted from: C.A.C. Coello, G.T. Pulido, M.S. Lechuga, Handling multiple objectives with particle swarm optimization, IEEE Transactions on Evolutionary Computation 8 (3) (2004) 256–279), February 2011. [Online]. Available:
– year: 2009
  ident: bib0110
  article-title: A Genetic algorithm for optimization of building envelope and HVAC system parameters
  publication-title: Proceedings of the Eleventh International IBPSA Conference
– reference: H. Energia, Helsingin Energia, 2015. [Online]. Available: https://www.helen.fi/kotitalouksille/. (accessed 01.08.15).
– year: 1994
  ident: bib0235
  article-title: Seeding the population: improved performance in a genetic algorithm for the rectilinear Steiner Problem
  publication-title: Proceedings of the 1994 ACM Symposium on Applied Computing
– volume: 43
  start-page: 3373
  year: 2011
  end-page: 3382
  ident: bib0070
  article-title: Optimization of envelope and HVAC systems selection for residential buildings
  publication-title: Energy Build.
– volume: 7
  start-page: 33
  year: 2014
  end-page: 51
  ident: bib0250
  article-title: Multi-objective optimization of cellular fenestration by an evolutionary algorithm
  publication-title: J. Build. Perform. Simul.
– volume: 43
  start-page: 599
  year: 2011
  end-page: 604
  ident: bib0060
  article-title: Optimal chiller loading by differential evolution algorithm for reducing energy consumption
  publication-title: Energy Build.
– volume: 8
  start-page: 185
  year: 2015
  end-page: 201
  ident: bib0285
  article-title: Multi-Objective evolutionary optimization of sandwich structures: an evaluation by elitist non-dominated sorting evolution strategy
  publication-title: Am. J. Eng. Appl. Sci.
– reference: (accessed 02.08.15).
– year: 2010
  ident: bib0240
  article-title: Configuration of a genetic algorithm for multi-objective optimisation of solar gain to buildings
  publication-title: Proceedings of the Genetic and Evolutionary Computation Conference 2010
– year: 2012
  ident: bib0010
  article-title: Implementation of pareto-archive NSGA-II algorithms to a nearly-zero-energy building optimisation Problem
  publication-title: Proceedings of the 2012 Building Simulation and Optimization Conference
– volume: 11
  start-page: 341
  year: 1997
  end-page: 359
  ident: bib0290
  article-title: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces
  publication-title: J. Global Optim.
– volume: 3
  start-page: 103
  year: 2010
  end-page: 120
  ident: bib0055
  article-title: A comparison of global optimisation algorithms with standard benchmark functions and real-world applications using EnergyPlus
  publication-title: J. Build. Perform. Simul.
– volume: 2
  start-page: 287
  year: 2006
  end-page: 308
  ident: bib0270
  article-title: Multi-objective particle swarm optimizers: a survey of the state-of-the-art
  publication-title: Int. J. Comput. Intell. Res.
– volume: 45
  start-page: 739
  year: 2010
  end-page: 746
  ident: bib0025
  article-title: Multiobjective optimization of building design using TRNSYS simulations, genetic algorithm, and artificial neural network
  publication-title: Build. Environ.
– reference: I. Staffell, R. Green, The cost of domestic fuel cell micro-CHP systems Discussion paper, 2012. [Online].
– year: 1995
  ident: bib0260
  article-title: A new optimizer using particle swarm theory
  publication-title: Proceedings of the Sixth International Symposium on Micro Machine and Human Science
– year: 2009
  ident: bib0095
  article-title: Combination of optimization algorithms for a multi-objective building design Problem
  publication-title: Proceedings of the 11th International Building Performance Simulation Association Conference
– volume: 113
  start-page: 1043
  year: 2014
  end-page: 1058
  ident: bib0005
  article-title: A review on simulation-based optimization methods applied to building performance analysis
  publication-title: Appl. Energ.
– reference: S. Mirjalili, Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems, Neural Computing and Applications (Article in press), 2015.
– volume: 56
  start-page: 189
  year: 2013
  end-page: 203
  ident: bib0200
  article-title: A multi-stage optimization method for cost-optimal nearly-zero-energy building solutions in line with the EPBD-Recast 2010
  publication-title: Energy Build.
– year: 2009
  ident: bib0085
  article-title: Uncertainty and Sensitivity Analysis in Building Performance Simulation for Decision Support and Design Optimization, (PhD Diss.)
– year: 2012
  ident: bib0255
  article-title: Implementation of pareto-archive NSGA-II algorithms to a nearly-zero-energy building optimisation Problem
  publication-title: Proceedings of the Building Simulation and Optimization Conference
– year: 2011
  ident: bib0030
  article-title: Trade-off relation between energy consumption and comfort level according to the finnish-2008 adaptive thermal comfort criteria
  publication-title: Proceedings of the 12th International Conference on Air Distribution in Rooms
– year: 2003
  ident: bib0045
  article-title: Comparison of a generalized pattern search and a genetic algorithm optimization method
  publication-title: Proceedings of the 8th IBPSA Conference
– reference: Homewyse, Cost of Mineral Wool Insulation, 2015. [Online]. Available:
– reference: M.A. Villalobos-Arias, G.T. Pulido, C.A.C. Coello, A proposal to use stripes to maintain diversity in a multi-objective particle swarm optimizer, In Swarm Intelligence Symposium—SIS 2005, Proceedings 2005 IEEE, Pasadena, CA, 2005.
– year: 1998
  ident: bib0220
  article-title: Multiobjective evolutionary algorithm research: a history and analysis. technical report TR-98-03, Wright-Patterson AFB, Ohio: department of electrical and Computer engineering, graduate school of engineering
  publication-title: Air Force Inst. Technol.
– volume: 45
  start-page: 1574
  year: 2010
  end-page: 1581
  ident: bib0065
  article-title: Genetic-algorithm based approach to optimize building envelope design for residential buildings
  publication-title: Build. Environ.
– reference: F. Xue, A. Sanderson, R.J. Graves, Pareto-based multi-objective differential evolution, in Proceedings of the 2003Congress on Evolutionary Computation (CEC’2003), Canberra, Australia, 2003.
– volume: 22
  start-page: 455
  year: 2009
  end-page: 465
  ident: bib0145
  article-title: Applied Pareto multi-objective optimization by stochastic solvers
  publication-title: Eng. Appl. Artif. Intell.
– volume: 10
  start-page: 263
  year: 2002
  end-page: 282
  ident: bib0280
  article-title: Combining convergence and diversity in evolutionary multiobjective optimization
  publication-title: Evol. Comput.
– year: 2004
  ident: bib0080
  article-title: Evolutionary algorithms for multi-objective optimization in HVAC system control strategy
  publication-title: Processing NAFIPS'04 IEEE Annual Meeting of the Fuzzy Information
– volume: 42
  start-page: 985
  year: 2010
  end-page: 991
  ident: bib0245
  article-title: Building energy system optimizations with utilization of waste heat from cogenerations by means of genetic algorithm
  publication-title: Energy Build.
– reference: Triami Media BV, Worldwide Inflation Data, 2015. [Online]. Available:
– year: 2013
  ident: bib0215
  article-title: Implementing the cost-optimal methodology in EU countries
  publication-title: Lessons Learned from Three Case Studies
– reference: M. Hamdy, Combining Simulation and Optimisation for Dimensioning Optimal Building Envelopes and HVAC Systems, Aalto University publication series—Doctoral Dissertation177/2012, 2012.
– year: 2004
  ident: bib0135
  article-title: Multi-objective Optimization Using Evolutionary Algorithms
– volume: 22
  start-page: 230
  year: 2013
  end-page: 245
  ident: bib0120
  article-title: A review of computational optimisation methods applied to sustainable building design
  publication-title: Renew. Sustain. Energy Rev.
– year: 2014
  ident: bib0150
  article-title: Controller Tuning by Means of Evolutionary Multi-objective Optimization: a Holistic Multiobjective Optimization Design Procedure (PhD. Thesis)
– year: 2006
  ident: bib0105
  article-title: The use of genetic algorithms for a net-zero energy solar home design optimisation tool
  publication-title: Proceedings of PLEA 2006 (Conference on Passive and Low Energy Architecture)
– volume: 47
  start-page: 53
  year: 2012
  end-page: 60
  ident: bib0160
  article-title: Development of weighting factors for climate variables for selecting the energy reference year according to the EN ISO 15927-4 standard
  publication-title: Energy Build.
– year: 2015
  ident: bib0170
  article-title: A multi-aid optimization scheme for large-scale investigation of cost-optimality and energy performance of buildings
  publication-title: J. Build. Perform. Simulation
– year: 2009
  ident: bib0040
  article-title: Use of genetic algorithms for multicriteria optimization of building refurbishment
  publication-title: In Proceedings of the 11th International IBPSA Conference
– volume: 42
  start-page: 514
  year: 2015
  end-page: 526
  ident: bib0125
  article-title: Measuring the curse of dimensionality and its effects on particle swarm optimization and differential evolution
  publication-title: Appl. Intell.
– reference: C.C. Coello, S.M. Lechuga, MOPSO: A Proposal for Multiple Objective Particle Swarm Optimization, in Congress on Evolutionary Computation (CEC'2002), Honolulu, Hawaii, U.S.A., 2002.
– ident: 10.1016/j.enbuild.2016.03.035_bib0195
– year: 2006
  ident: 10.1016/j.enbuild.2016.03.035_bib0105
  article-title: The use of genetic algorithms for a net-zero energy solar home design optimisation tool
– volume: 22
  start-page: 230
  year: 2013
  ident: 10.1016/j.enbuild.2016.03.035_bib0120
  article-title: A review of computational optimisation methods applied to sustainable building design
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2013.02.004
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  ident: 10.1016/j.enbuild.2016.03.035_bib0225
  article-title: A fast and elitist multiobjective genetic algorithm: nSGA-II
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.996017
– year: 2012
  ident: 10.1016/j.enbuild.2016.03.035_bib0255
  article-title: Implementation of pareto-archive NSGA-II algorithms to a nearly-zero-energy building optimisation Problem
– volume: 39
  start-page: 989
  year: 2004
  ident: 10.1016/j.enbuild.2016.03.035_bib0035
  article-title: A comparison of deterministic and probabilistic optimization algorithms for nonsmooth simulation-based optimization
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2004.01.022
– year: 2009
  ident: 10.1016/j.enbuild.2016.03.035_bib0095
  article-title: Combination of optimization algorithms for a multi-objective building design Problem
– year: 1994
  ident: 10.1016/j.enbuild.2016.03.035_bib0235
  article-title: Seeding the population: improved performance in a genetic algorithm for the rectilinear Steiner Problem
– ident: 10.1016/j.enbuild.2016.03.035_bib0050
  doi: 10.2172/962948
– year: 2013
  ident: 10.1016/j.enbuild.2016.03.035_bib0180
– year: 2012
  ident: 10.1016/j.enbuild.2016.03.035_bib0010
  article-title: Implementation of pareto-archive NSGA-II algorithms to a nearly-zero-energy building optimisation Problem
– ident: 10.1016/j.enbuild.2016.03.035_bib0185
– year: 2004
  ident: 10.1016/j.enbuild.2016.03.035_bib0135
– ident: 10.1016/j.enbuild.2016.03.035_bib0210
– year: 2010
  ident: 10.1016/j.enbuild.2016.03.035_bib0240
  article-title: Configuration of a genetic algorithm for multi-objective optimisation of solar gain to buildings
– ident: 10.1016/j.enbuild.2016.03.035_bib0275
– ident: 10.1016/j.enbuild.2016.03.035_bib0205
– ident: 10.1016/j.enbuild.2016.03.035_bib0175
– volume: 10
  start-page: 263
  issue: 3
  year: 2002
  ident: 10.1016/j.enbuild.2016.03.035_bib0280
  article-title: Combining convergence and diversity in evolutionary multiobjective optimization
  publication-title: Evol. Comput.
  doi: 10.1162/106365602760234108
– volume: 43
  start-page: 3373
  issue: 12
  year: 2011
  ident: 10.1016/j.enbuild.2016.03.035_bib0070
  article-title: Optimization of envelope and HVAC systems selection for residential buildings
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2011.08.031
– year: 2009
  ident: 10.1016/j.enbuild.2016.03.035_bib0110
  article-title: A Genetic algorithm for optimization of building envelope and HVAC system parameters
– volume: 47
  start-page: 53
  year: 2012
  ident: 10.1016/j.enbuild.2016.03.035_bib0160
  article-title: Development of weighting factors for climate variables for selecting the energy reference year according to the EN ISO 15927-4 standard
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2011.11.031
– volume: 42
  start-page: 514
  issue: 3
  year: 2015
  ident: 10.1016/j.enbuild.2016.03.035_bib0125
  article-title: Measuring the curse of dimensionality and its effects on particle swarm optimization and differential evolution
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-014-0613-2
– volume: 56
  start-page: 189
  issue: 1
  year: 2013
  ident: 10.1016/j.enbuild.2016.03.035_bib0200
  article-title: A multi-stage optimization method for cost-optimal nearly-zero-energy building solutions in line with the EPBD-Recast 2010
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2012.08.023
– year: 2013
  ident: 10.1016/j.enbuild.2016.03.035_bib0215
  article-title: Implementing the cost-optimal methodology in EU countries
– volume: 43
  start-page: 2055
  year: 2011
  ident: 10.1016/j.enbuild.2016.03.035_bib0015
  article-title: Impact of adaptive thermal comfort criteria on building energy use and cooling equipment size using a multi-objective optimization scheme
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2011.04.006
– ident: 10.1016/j.enbuild.2016.03.035_bib0295
– volume: 3
  start-page: 103
  year: 2010
  ident: 10.1016/j.enbuild.2016.03.035_bib0055
  article-title: A comparison of global optimisation algorithms with standard benchmark functions and real-world applications using EnergyPlus
  publication-title: J. Build. Perform. Simul.
  doi: 10.1080/19401490903494597
– volume: 43
  start-page: 599
  issue: 2
  year: 2011
  ident: 10.1016/j.enbuild.2016.03.035_bib0060
  article-title: Optimal chiller loading by differential evolution algorithm for reducing energy consumption
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2010.10.028
– volume: 8
  start-page: 185
  issue: 1
  year: 2015
  ident: 10.1016/j.enbuild.2016.03.035_bib0285
  article-title: Multi-Objective evolutionary optimization of sandwich structures: an evaluation by elitist non-dominated sorting evolution strategy
  publication-title: Am. J. Eng. Appl. Sci.
  doi: 10.3844/ajeassp.2015.185.201
– year: 2004
  ident: 10.1016/j.enbuild.2016.03.035_bib0080
  article-title: Evolutionary algorithms for multi-objective optimization in HVAC system control strategy
– volume: 11
  start-page: 341
  issue: 4
  year: 1997
  ident: 10.1016/j.enbuild.2016.03.035_bib0290
  article-title: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces
  publication-title: J. Global Optim.
  doi: 10.1023/A:1008202821328
– year: 2015
  ident: 10.1016/j.enbuild.2016.03.035_bib0170
  article-title: A multi-aid optimization scheme for large-scale investigation of cost-optimality and energy performance of buildings
  publication-title: J. Build. Perform. Simulation
– year: 2014
  ident: 10.1016/j.enbuild.2016.03.035_bib0150
– ident: 10.1016/j.enbuild.2016.03.035_bib0155
  doi: 10.1007/s00521-015-1920-1
– volume: 113
  start-page: 1043
  year: 2014
  ident: 10.1016/j.enbuild.2016.03.035_bib0005
  article-title: A review on simulation-based optimization methods applied to building performance analysis
  publication-title: Appl. Energ.
  doi: 10.1016/j.apenergy.2013.08.061
– year: 1995
  ident: 10.1016/j.enbuild.2016.03.035_bib0260
  article-title: A new optimizer using particle swarm theory
– year: 1998
  ident: 10.1016/j.enbuild.2016.03.035_bib0220
  article-title: Multiobjective evolutionary algorithm research: a history and analysis. technical report TR-98-03, Wright-Patterson AFB, Ohio: department of electrical and Computer engineering, graduate school of engineering
  publication-title: Air Force Inst. Technol.
– volume: 2
  start-page: 287
  issue: 3
  year: 2006
  ident: 10.1016/j.enbuild.2016.03.035_bib0270
  article-title: Multi-objective particle swarm optimizers: a survey of the state-of-the-art
  publication-title: Int. J. Comput. Intell. Res.
– volume: 7
  start-page: 33
  issue: 1
  year: 2014
  ident: 10.1016/j.enbuild.2016.03.035_bib0250
  article-title: Multi-objective optimization of cellular fenestration by an evolutionary algorithm
  publication-title: J. Build. Perform. Simul.
  doi: 10.1080/19401493.2012.762808
– volume: 45
  start-page: 1574
  year: 2010
  ident: 10.1016/j.enbuild.2016.03.035_bib0065
  article-title: Genetic-algorithm based approach to optimize building envelope design for residential buildings
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2010.01.005
– volume: 45
  start-page: 739
  issue: 3
  year: 2010
  ident: 10.1016/j.enbuild.2016.03.035_bib0025
  article-title: Multiobjective optimization of building design using TRNSYS simulations, genetic algorithm, and artificial neural network
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2009.08.016
– ident: 10.1016/j.enbuild.2016.03.035_bib0230
– year: 2005
  ident: 10.1016/j.enbuild.2016.03.035_bib0265
– year: 2009
  ident: 10.1016/j.enbuild.2016.03.035_bib0085
– volume: 42
  start-page: 985
  issue: 7
  year: 2010
  ident: 10.1016/j.enbuild.2016.03.035_bib0245
  article-title: Building energy system optimizations with utilization of waste heat from cogenerations by means of genetic algorithm
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2010.01.010
– ident: 10.1016/j.enbuild.2016.03.035_bib0115
– ident: 10.1016/j.enbuild.2016.03.035_bib0190
– volume: 1
  start-page: 67
  issue: 1
  year: 1997
  ident: 10.1016/j.enbuild.2016.03.035_bib0075
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.585893
– ident: 10.1016/j.enbuild.2016.03.035_bib0140
  doi: 10.1109/TEVC.2004.826067
– volume: 40
  start-page: 1512
  issue: 11
  year: 2005
  ident: 10.1016/j.enbuild.2016.03.035_bib0020
  article-title: Applying multi-objective genetic algorithms in green building design optimization
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2004.11.017
– year: 2009
  ident: 10.1016/j.enbuild.2016.03.035_bib0040
  article-title: Use of genetic algorithms for multicriteria optimization of building refurbishment
– volume: 5
  start-page: 120
  issue: 3
  year: 2010
  ident: 10.1016/j.enbuild.2016.03.035_bib0100
  article-title: Optimum design of a house and its HVAC systems using simulation-based optimization
  publication-title: Int. J. Low-Carbon Technol.
  doi: 10.1093/ijlct/ctq010
– volume: 22
  start-page: 455
  issue: 3
  year: 2009
  ident: 10.1016/j.enbuild.2016.03.035_bib0145
  article-title: Applied Pareto multi-objective optimization by stochastic solvers
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2008.10.018
– volume: 44
  start-page: 377
  issue: 2
  year: 2009
  ident: 10.1016/j.enbuild.2016.03.035_bib0300
  article-title: Building leakage, infiltration, and energy performance analyses for Finnish detached houses
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2008.03.014
– year: 2003
  ident: 10.1016/j.enbuild.2016.03.035_bib0045
  article-title: Comparison of a generalized pattern search and a genetic algorithm optimization method
– year: 2012
  ident: 10.1016/j.enbuild.2016.03.035_bib0165
– year: 2011
  ident: 10.1016/j.enbuild.2016.03.035_bib0090
  article-title: A multi-objective window optimisation Problem
– year: 2011
  ident: 10.1016/j.enbuild.2016.03.035_bib0030
  article-title: Trade-off relation between energy consumption and comfort level according to the finnish-2008 adaptive thermal comfort criteria
– volume: 107
  start-page: 456
  year: 2015
  ident: 10.1016/j.enbuild.2016.03.035_bib0130
  article-title: A new methodology for investigating the cost-optimality of energy retrofitting a building category
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2015.08.044
SSID ssj0006571
Score 2.6137695
Snippet •Integrated building design is inherently a multi-objective optimization problem.•Recently, many multi-objective optimization algorithms have been...
Integrated building design is inherently a multi-objective optimization problem where two or more conflicting objectives must be minimized and/or maximized...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 57
SubjectTerms Algorithms
Building simulation
Comparison
Design of buildings
Evolutionary algorithms
Experimentation
Genetic algorithms
Mathematical models
Multi-objective optimization
Odonata
Optimization
Running
Sorting
Title A performance comparison of multi-objective optimization algorithms for solving nearly-zero-energy-building design problems
URI https://dx.doi.org/10.1016/j.enbuild.2016.03.035
https://www.proquest.com/docview/1790959945
https://www.proquest.com/docview/1816050129
Volume 121
WOSCitedRecordID wos000376697400006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0378-7788
  databaseCode: AIEXJ
  dateStart: 19950301
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0006571
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZKxwM8TFzFGCAjIV4ij9xcJ48V6jRQKTxkqG9W4tjrqjYpvUwbiP_Ocewk3YBtPCBVURXZbdrz5fj45HzfQeiNlHD7acnZOEwzEmYsJSlEIYRSmWpxksCvWGlfh2w0isbj-Eun87PmwpzNWFFE5-fx4r-aGs6BsTV19h_M3XwonID3YHQ4gtnheCvD97UUcUMGENt9Bk35ICmzqXFzTgkOY26ZmE46OymXp-uJkWhw4CqrZEMhtQYy-S6XJZEVU5Bktpe2k1f1H47tSrO6lOY3pEKdl6-Hr1p3N88vqqj1UzlJ55ZfpVPSJ5uLOtVdTEiyabF7JHUW3Fb2FnWO3eYrwOxNXVXN04J9K2OmmV_jgw1N2npRI1lt12PToeU3T2-SDtMDrRABP0IX6fUquVqjfnJZWXv0mR8eD4c8GYyTt4tvRDcd0w_nbQeWO2jHZzSOumin_2Ew_tgs5T1a7dibS24pYO_--M1_C26uLPNV7JI8QLt204H7BiwPUUcWj9D9LSnKx-hHH2_BBrewwaXCV2CDt2GDW9hgmI4tbPA1sMEGNriGzRN0fDhI3h8R25iDiND318QTwpV-Fque9IQrqAozVwWCCQhWRRAr6rGUBjSTaZyFIZNenHt5KJUnVKTJZcFT1C3KQj5DmDIFQXjM3DwKQgHRs1LMy0SkZJTlQRruobD-R7mwqvW6ecqM1-WJU24NwbUhuBvAi-6hg2bawsi23DQhqs3FbexpYkoOgLtp6uvavBx8s37glhay3Ky4Vr-LKXjC68ZEXs-lOh38_BZj9tG99p56gbrr5Ua-RHfF2fp0tXxl4fsL25jGzw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+performance+comparison+of+multi-objective+optimization+algorithms+for+solving+nearly-zero-energy-building+design+problems&rft.jtitle=Energy+and+buildings&rft.au=Hamdya%2C+Mohamed&rft.au=Nguyend%2C+Anh-Tuan&rft.au=Hensena%2C+Jan+LM&rft.date=2016-06-01&rft.issn=0378-7788&rft.volume=121&rft.spage=57&rft.epage=71&rft_id=info:doi/10.1016%2Fj.enbuild.2016.03.035&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7788&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7788&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7788&client=summon