Enabling Stable Lithium Metal Anode through Electrochemical Kinetics Manipulation

The surface morphology of Li metal anode significantly dictates the stability and safety of Li metal batteries. The key parameters for morphological control and causes for dendritic growth of Li anode are still not clear. Although the plating kinetics is generally believed to be associated with Li g...

Full description

Saved in:
Bibliographic Details
Published in:Advanced functional materials Vol. 29; no. 46
Main Authors: Han, Yehu, Jie, Yulin, Huang, Fanyang, Chen, Yawei, Lei, Zhanwu, Zhang, Genqiang, Ren, Xiaodi, Qin, Lianjie, Cao, Ruiguo, Jiao, Shuhong
Format: Journal Article
Language:English
Published: Hoboken Wiley Subscription Services, Inc 01.11.2019
Subjects:
ISSN:1616-301X, 1616-3028
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The surface morphology of Li metal anode significantly dictates the stability and safety of Li metal batteries. The key parameters for morphological control and causes for dendritic growth of Li anode are still not clear. Although the plating kinetics is generally believed to be associated with Li growth habits, the detailed models are still not well defined. In this work, the temperature effect on the stability and efficiency of Li anode is systematically investigated in a variety of electrolyte composition for Li metal batteries. A dendrite‐free growth mechanism is observed, and a high Coulombic efficiency up to ≈99.4% in Li||Cu cells is achieved by tuning the deposition behaviors at elevated temperatures. The results provide insights into the Li dendrite growth mechanism and general principle for developing stable Li anode. The temperature effect on lithium metal anodes is demonstrated in a variety of aprotic electrolytes. High Coulombic efficiency and dendrite‐free growth modes can be achieved in an ether‐based electrolyte at elevated temperature. The electrochemical kinetics of lithium plating/stripping processes are significantly improved at high temperature.
AbstractList The surface morphology of Li metal anode significantly dictates the stability and safety of Li metal batteries. The key parameters for morphological control and causes for dendritic growth of Li anode are still not clear. Although the plating kinetics is generally believed to be associated with Li growth habits, the detailed models are still not well defined. In this work, the temperature effect on the stability and efficiency of Li anode is systematically investigated in a variety of electrolyte composition for Li metal batteries. A dendrite‐free growth mechanism is observed, and a high Coulombic efficiency up to ≈99.4% in Li||Cu cells is achieved by tuning the deposition behaviors at elevated temperatures. The results provide insights into the Li dendrite growth mechanism and general principle for developing stable Li anode. The temperature effect on lithium metal anodes is demonstrated in a variety of aprotic electrolytes. High Coulombic efficiency and dendrite‐free growth modes can be achieved in an ether‐based electrolyte at elevated temperature. The electrochemical kinetics of lithium plating/stripping processes are significantly improved at high temperature.
The surface morphology of Li metal anode significantly dictates the stability and safety of Li metal batteries. The key parameters for morphological control and causes for dendritic growth of Li anode are still not clear. Although the plating kinetics is generally believed to be associated with Li growth habits, the detailed models are still not well defined. In this work, the temperature effect on the stability and efficiency of Li anode is systematically investigated in a variety of electrolyte composition for Li metal batteries. A dendrite‐free growth mechanism is observed, and a high Coulombic efficiency up to ≈99.4% in Li||Cu cells is achieved by tuning the deposition behaviors at elevated temperatures. The results provide insights into the Li dendrite growth mechanism and general principle for developing stable Li anode.
Author Han, Yehu
Chen, Yawei
Zhang, Genqiang
Cao, Ruiguo
Jie, Yulin
Qin, Lianjie
Lei, Zhanwu
Jiao, Shuhong
Huang, Fanyang
Ren, Xiaodi
Author_xml – sequence: 1
  givenname: Yehu
  surname: Han
  fullname: Han, Yehu
  organization: Yantai University
– sequence: 2
  givenname: Yulin
  surname: Jie
  fullname: Jie, Yulin
  organization: University of Science and Technology of China
– sequence: 3
  givenname: Fanyang
  surname: Huang
  fullname: Huang, Fanyang
  organization: University of Science and Technology of China
– sequence: 4
  givenname: Yawei
  surname: Chen
  fullname: Chen, Yawei
  organization: University of Science and Technology of China
– sequence: 5
  givenname: Zhanwu
  surname: Lei
  fullname: Lei, Zhanwu
  organization: University of Science and Technology of China
– sequence: 6
  givenname: Genqiang
  surname: Zhang
  fullname: Zhang, Genqiang
  organization: University of Science and Technology of China
– sequence: 7
  givenname: Xiaodi
  surname: Ren
  fullname: Ren, Xiaodi
  organization: University of Science and Technology of China
– sequence: 8
  givenname: Lianjie
  surname: Qin
  fullname: Qin, Lianjie
  organization: Yantai University
– sequence: 9
  givenname: Ruiguo
  surname: Cao
  fullname: Cao, Ruiguo
  organization: University of Science and Technology of China
– sequence: 10
  givenname: Shuhong
  orcidid: 0000-0003-0860-4151
  surname: Jiao
  fullname: Jiao, Shuhong
  email: jiaosh@ustc.edu.cn
  organization: University of Science and Technology of China
BookMark eNqFkFFLwzAUhYNMcJu--lzwuTNJs6Z5HHNTcUNEBd9CmiZrRpvMNEX27-2sTBDEp3vgnu_ewxmBgXVWAXCJ4ARBiK9FoesJhohBkmJ2AoYoRWmcQJwNjhq9nYFR02whRJQmZAieFlbklbGb6Dl0QkUrE0rT1tFaBVFFM-sKFYXSu3ZTRotKyeCdLFVtZLd9MFYFI5toLazZtZUIxtlzcKpF1aiL7zkGr8vFy_wuXj3e3s9nq1gSjFnMppJJkWUaFThDSlINJSEZw1NCmYI0LXKpizTPM5FnOJ8WWCe5kFQiTKkWKhmDq_7uzrv3VjWBb13rbfeS4wQlhDGUpp2L9C7pXdN4pbk04Stn8MJUHEF-KI8fyuPH8jps8gvbeVMLv_8bYD3wYSq1_8fNZzfL9Q_7CeY3hW4
CitedBy_id crossref_primary_10_1038_s41467_023_38387_8
crossref_primary_10_1002_ange_202207927
crossref_primary_10_1142_S1793604723400118
crossref_primary_10_1002_adfm_202107136
crossref_primary_10_1016_j_est_2024_111664
crossref_primary_10_1016_j_mser_2025_100955
crossref_primary_10_1016_j_nanoen_2024_110031
crossref_primary_10_1016_j_trechm_2020_10_008
crossref_primary_10_1002_adfm_201909887
crossref_primary_10_1016_j_jpowsour_2023_233884
crossref_primary_10_1002_aenm_202300798
crossref_primary_10_1002_ange_202101976
crossref_primary_10_1002_aenm_202101518
crossref_primary_10_1002_aenm_202301742
crossref_primary_10_1002_adma_202302872
crossref_primary_10_1016_j_mtener_2020_100538
crossref_primary_10_1002_anie_202316904
crossref_primary_10_1007_s41918_022_00158_2
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123450
crossref_primary_10_1021_jacs_4c18374
crossref_primary_10_1002_aenm_202303726
crossref_primary_10_1007_s11581_019_03388_5
crossref_primary_10_1002_anie_202310761
crossref_primary_10_1002_adfm_202304386
crossref_primary_10_1002_sstr_202200400
crossref_primary_10_3390_ma16124359
crossref_primary_10_1002_adfm_202514172
crossref_primary_10_1002_anie_202002711
crossref_primary_10_1016_j_jechem_2020_11_034
crossref_primary_10_1016_j_cej_2021_132026
crossref_primary_10_1002_adma_202002193
crossref_primary_10_1039_D2NH00354F
crossref_primary_10_1002_aenm_202302565
crossref_primary_10_1007_s12274_022_5334_y
crossref_primary_10_1002_ange_202310761
crossref_primary_10_1016_j_electacta_2023_142493
crossref_primary_10_1016_j_ceramint_2021_03_072
crossref_primary_10_1002_adma_202004128
crossref_primary_10_1002_adfm_202213648
crossref_primary_10_1002_ange_202316904
crossref_primary_10_1039_D3RA07938D
crossref_primary_10_1002_aenm_202102233
crossref_primary_10_1002_adfm_202106740
crossref_primary_10_1002_advs_202101051
crossref_primary_10_1002_adma_202209511
crossref_primary_10_1002_advs_202201147
crossref_primary_10_1039_D3EE04556K
crossref_primary_10_1002_ange_202002711
crossref_primary_10_1016_j_enchem_2023_100102
crossref_primary_10_1002_adfm_202111133
crossref_primary_10_1016_j_jechem_2021_03_023
crossref_primary_10_1016_j_cej_2021_133189
crossref_primary_10_1002_adfm_202006457
crossref_primary_10_1002_aenm_202002390
crossref_primary_10_1002_smll_202306829
crossref_primary_10_1007_s12274_024_6853_5
crossref_primary_10_1002_adfm_202104930
crossref_primary_10_1002_adfm_202102158
crossref_primary_10_1002_anie_202207927
crossref_primary_10_1021_acsaem_5c01867
crossref_primary_10_3390_batteries7040067
crossref_primary_10_1016_j_jallcom_2022_166776
crossref_primary_10_1002_smll_202302690
crossref_primary_10_1016_j_jechem_2022_07_008
crossref_primary_10_1016_j_jechem_2022_03_039
crossref_primary_10_1002_aenm_202200398
crossref_primary_10_1002_EXP_20230114
crossref_primary_10_1016_j_apenergy_2025_125720
crossref_primary_10_3390_batteries8110246
crossref_primary_10_1016_j_esci_2025_100433
crossref_primary_10_1002_anie_202101976
crossref_primary_10_1016_j_jpowsour_2021_230005
crossref_primary_10_1016_j_scib_2024_03_048
crossref_primary_10_1002_batt_202000016
Cites_doi 10.1038/s41557-018-0166-9
10.1021/acsenergylett.9b00433
10.1073/pnas.1708224114
10.1149/1.1454138
10.1016/j.jpowsour.2014.03.029
10.1016/j.ensm.2018.03.001
10.1038/nnano.2017.16
10.1021/acs.chemrev.7b00115
10.1149/1.1837563
10.1021/jp068691u
10.1021/acsenergylett.8b02003
10.1016/S0167-2738(02)00080-2
10.1021/acs.nanolett.6b04755
10.1016/j.elecom.2014.11.002
10.1038/s41586-018-0397-3
10.1002/celc.201801652
10.1007/s10008-017-3610-7
10.1103/PhysRevA.42.7355
10.1021/acs.nanolett.5b02432
10.1021/ja203983r
10.1038/s41467-019-09924-1
10.1149/2.028309jes
10.1134/S1023193508060049
10.1038/s41560-017-0047-2
10.1002/anie.201702099
10.1002/adma.201700007
10.1039/C4CP05786D
10.1038/ncomms7362
10.1016/j.nanoen.2017.08.056
10.1063/1.332209
10.1016/j.ensm.2017.12.002
10.1126/science.aap8787
10.1016/j.electacta.2012.12.131
10.1149/1.3148721
10.1002/batt.201800024
10.1016/j.electacta.2014.05.120
10.1073/pnas.1615733114
10.1039/C3EE42351D
10.1002/crat.2170250814
10.1039/C3EE40795K
ContentType Journal Article
Copyright 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.201904629
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
CrossRef
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_201904629
ADFM201904629
Genre article
GrantInformation_xml – fundername: National Key Research and Development Program of China
  funderid: 2017YFA0206703; 2017YFA0402802
– fundername: National Natural Science Foundation of China
  funderid: 21776265
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AAMMB
AANHP
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
O8X
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c4229-95c9ca88f1d281ec7f0c448925479e076dbcfd6bb8ab82b5d2f3bac7c1277fae3
IEDL.DBID DRFUL
ISICitedReferencesCount 92
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000485548600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1616-301X
IngestDate Sun Nov 30 04:29:03 EST 2025
Sat Nov 29 07:21:10 EST 2025
Tue Nov 18 21:16:38 EST 2025
Wed Jan 22 16:40:26 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 46
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4229-95c9ca88f1d281ec7f0c448925479e076dbcfd6bb8ab82b5d2f3bac7c1277fae3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0860-4151
PQID 2313499166
PQPubID 2045204
PageCount 7
ParticipantIDs proquest_journals_2313499166
crossref_citationtrail_10_1002_adfm_201904629
crossref_primary_10_1002_adfm_201904629
wiley_primary_10_1002_adfm_201904629_ADFM201904629
PublicationCentury 2000
PublicationDate 2019-11-01
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-11-01
  day: 01
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2018; 560
1990; 42
2018; 3
2015; 17
2019; 4
2015; 6
2019; 6
2018; 359
2013 2014 2014 2015; 160 261 136 50
1997 2013 2019 2015; 144 100 10 15
2009 2007; 156 111
1990 2008; 25 44
2002 2019; 148 11
2017; 21
2018 2017 2017 2017 2017; 14 41 114 17 56
1983; 54
2011 2014; 133 7
2014 2017 2017 2017 2018 2018; 7 12 29 117 12 1
2002 2017 2019; 149 114 4
e_1_2_7_1_6
e_1_2_7_4_3
e_1_2_7_6_1
e_1_2_7_1_5
e_1_2_7_4_2
e_1_2_7_5_1
e_1_2_7_1_4
e_1_2_7_3_2
e_1_2_7_4_1
e_1_2_7_1_3
e_1_2_7_3_1
e_1_2_7_9_2
e_1_2_7_6_4
e_1_2_7_9_1
e_1_2_7_4_5
e_1_2_7_6_3
e_1_2_7_8_1
e_1_2_7_4_4
e_1_2_7_6_2
e_1_2_7_7_1
e_1_2_7_18_2
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_16_2
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_1_2
e_1_2_7_2_1
e_1_2_7_12_4
e_1_2_7_15_1
e_1_2_7_1_1
e_1_2_7_12_3
e_1_2_7_13_2
e_1_2_7_14_1
e_1_2_7_12_2
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_9_3
References_xml – volume: 3
  start-page: 16
  year: 2018
  publication-title: Nat. Energy
– volume: 42
  start-page: 7355
  year: 1990
  publication-title: Phys. Rev. A
– volume: 21
  start-page: 1939
  year: 2017
  publication-title: J. Solid State Electrochem.
– volume: 133 7
  start-page: 416
  year: 2011 2014
  publication-title: J. Am. Chem. Soc. Energy Environ. Sci.
– volume: 54
  start-page: 1346
  year: 1983
  publication-title: J. Appl. Phys.
– volume: 149 114 4
  start-page: A385 57 156
  year: 2002 2017 2019
  publication-title: J. Electrochem. Soc. Proc. Natl. Acad. Sci. USA ACS Energy Lett.
– volume: 148 11
  start-page: 405 64
  year: 2002 2019
  publication-title: Solid State Ionics Nat. Chem.
– volume: 144 100 10 15
  start-page: L90 333 2067 6149
  year: 1997 2013 2019 2015
  publication-title: J. Electrochem. Soc. Electrochim. Acta Nat. Commun. Nano Lett.
– volume: 7 12 29 117 12 1
  start-page: 513 194 161 41
  year: 2014 2017 2017 2017 2018 2018
  publication-title: Energy Environ. Sci. Nat. Nanotechnol. Adv. Mater. Chem. Rev. Energy Storage Mater. Batteries Supercaps
– volume: 359
  start-page: 1513
  year: 2018
  publication-title: Science
– volume: 156 111
  start-page: A694 7411
  year: 2009 2007
  publication-title: J. Electrochem. Soc. J. Phys. Chem. C
– volume: 17
  start-page: 8000
  year: 2015
  publication-title: Phys. Chem. Chem. Phys.
– volume: 560
  start-page: 345
  year: 2018
  publication-title: Nature
– volume: 25 44
  start-page: 927 652
  year: 1990 2008
  publication-title: Cryst. Res. Technol. Russ. J. Electrochem.
– volume: 14 41 114 17 56
  start-page: 199 552 1132 7764
  year: 2018 2017 2017 2017 2017
  publication-title: Energy Storage Mater. Nano Energy Proc. Natl. Acad. Sci. USA Nano Lett. Angew. Chem., Int. Ed.
– volume: 160 261 136 50
  start-page: D337 112 529 11
  year: 2013 2014 2014 2015
  publication-title: J. Electrochem. Soc. J. Power Sources Electrochim. Acta Electrochem. Commun.
– volume: 4
  start-page: 1012
  year: 2019
  publication-title: ACS Energy Lett.
– volume: 6
  start-page: 6362
  year: 2015
  publication-title: Nat. Commun.
– volume: 6
  start-page: 1324
  year: 2019
  publication-title: ChemElectroChem
– ident: e_1_2_7_3_2
  doi: 10.1038/s41557-018-0166-9
– ident: e_1_2_7_11_1
  doi: 10.1021/acsenergylett.9b00433
– ident: e_1_2_7_4_3
  doi: 10.1073/pnas.1708224114
– ident: e_1_2_7_9_1
  doi: 10.1149/1.1454138
– ident: e_1_2_7_6_2
  doi: 10.1016/j.jpowsour.2014.03.029
– ident: e_1_2_7_4_1
  doi: 10.1016/j.ensm.2018.03.001
– ident: e_1_2_7_1_2
  doi: 10.1038/nnano.2017.16
– ident: e_1_2_7_1_4
  doi: 10.1021/acs.chemrev.7b00115
– ident: e_1_2_7_12_1
  doi: 10.1149/1.1837563
– ident: e_1_2_7_13_2
  doi: 10.1021/jp068691u
– ident: e_1_2_7_9_3
  doi: 10.1021/acsenergylett.8b02003
– ident: e_1_2_7_3_1
  doi: 10.1016/S0167-2738(02)00080-2
– ident: e_1_2_7_4_4
  doi: 10.1021/acs.nanolett.6b04755
– ident: e_1_2_7_6_4
  doi: 10.1016/j.elecom.2014.11.002
– ident: e_1_2_7_14_1
  doi: 10.1038/s41586-018-0397-3
– ident: e_1_2_7_7_1
  doi: 10.1002/celc.201801652
– ident: e_1_2_7_15_1
  doi: 10.1007/s10008-017-3610-7
– ident: e_1_2_7_5_1
  doi: 10.1103/PhysRevA.42.7355
– ident: e_1_2_7_12_4
  doi: 10.1021/acs.nanolett.5b02432
– ident: e_1_2_7_16_1
  doi: 10.1021/ja203983r
– ident: e_1_2_7_12_3
  doi: 10.1038/s41467-019-09924-1
– ident: e_1_2_7_6_1
  doi: 10.1149/2.028309jes
– ident: e_1_2_7_18_2
  doi: 10.1134/S1023193508060049
– ident: e_1_2_7_2_1
  doi: 10.1038/s41560-017-0047-2
– ident: e_1_2_7_4_5
  doi: 10.1002/anie.201702099
– ident: e_1_2_7_1_3
  doi: 10.1002/adma.201700007
– ident: e_1_2_7_10_1
  doi: 10.1039/C4CP05786D
– ident: e_1_2_7_17_1
  doi: 10.1038/ncomms7362
– ident: e_1_2_7_4_2
  doi: 10.1016/j.nanoen.2017.08.056
– ident: e_1_2_7_19_1
  doi: 10.1063/1.332209
– ident: e_1_2_7_1_5
  doi: 10.1016/j.ensm.2017.12.002
– ident: e_1_2_7_8_1
  doi: 10.1126/science.aap8787
– ident: e_1_2_7_12_2
  doi: 10.1016/j.electacta.2012.12.131
– ident: e_1_2_7_13_1
  doi: 10.1149/1.3148721
– ident: e_1_2_7_1_6
  doi: 10.1002/batt.201800024
– ident: e_1_2_7_6_3
  doi: 10.1016/j.electacta.2014.05.120
– ident: e_1_2_7_9_2
  doi: 10.1073/pnas.1615733114
– ident: e_1_2_7_16_2
  doi: 10.1039/C3EE42351D
– ident: e_1_2_7_18_1
  doi: 10.1002/crat.2170250814
– ident: e_1_2_7_1_1
  doi: 10.1039/C3EE40795K
SSID ssj0017734
Score 2.5801766
Snippet The surface morphology of Li metal anode significantly dictates the stability and safety of Li metal batteries. The key parameters for morphological control...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Anode effect
Coulombic efficiency
Dendritic structure
Electrolytic cells
High temperature
Kinetics
Lithium
lithium anode
lithium dendrite
lithium metal battery
Materials science
Morphology
temperature effect
Temperature effects
Title Enabling Stable Lithium Metal Anode through Electrochemical Kinetics Manipulation
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201904629
https://www.proquest.com/docview/2313499166
Volume 29
WOSCitedRecordID wos000485548600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1616-3028
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017734
  issn: 1616-301X
  databaseCode: DRFUL
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFH_o5kEPfovTKTkInsra9CPpcbgVwW2oONitJGmCg9nJ1vn3m_Rr20EEvaWQPEryXt8vTd7vB3AXKFu7iaIauSXM8oTNLCYSbDHKpR86kjFu52ITZDSik0n4vFHFX_BD1D_cTGTk32sT4IwvO2vSUJYoU0muE5oX4HAXmlg7r9-AZu81Gg_qkwRCipPlwDF3vJxJRdxo4862he3EtEabm5g1TzrR0f9f9xgOS8CJuoWHnMCOTE_hYIOG8Axe-qaASjeRhp58JtFgmr1PVx9oKDMzNJ0nEpWCPqhf6OaIkmgAPWk7huoZDVk6rcTAzmEc9d8eHq1SasESHsahFfoiFIxS5SSYOlIQZQu9cQv19pGE0iZBwoVKAs4p4xRzP8HK5UwQ4WBCFJPuBTTSeSovAREakIBhl3mO8DTa4MzhHndtgSlXRJIWWNU8x6LkITdyGLO4YFDGsZmquJ6qFtzX_T8LBo4fe7arZYvLSFzGGr-6ngHBQQtwvkC_WIm7vWhYP139ZdA17Jt2UbLYhka2WMkb2BNf2XS5uC099BvYH-eU
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS8MwED90E9QHv8Xp1DwIPpW1adekj8NtTPaBygZ7K0ma4GB2snX-_Sbrx7YHEcS3piRHudz1fvm43wE8-MrWZqKoRm4RszxhM4uJCFuMclkPHMkYt1fFJshgQMfj4CW7TWhyYVJ-iGLDzXjG6n9tHNxsSNfWrKEsUiaVXEc0z8fBLpQ9bUvayMvNt_aoVxwlEJIeLfuOueTljHPmRhvXtiVsR6Y13NwErauo0z7-h-89gaMMcqJGaiOnsCPjMzjcICI8h9eWSaHSj0iDTz6VqDdJ3ifLD9SXiRkazyKJspI-qJVWzhEZ1QDqajmG7Bn1WTzJy4FdwKjdGj51rKzYgiU8jAMrqItAMEqVE2HqSEGULfTSLdALSBJIm_gRFyryOaeMU8zrEVYuZ4IIBxOimHQvoRTPYnkFiFCf-Ay7zHOEp_EGZw73uGsLTLkiklTAyhUdioyJ3BTEmIYphzIOjarCQlUVeCz6f6YcHD_2rObzFma-uAg1gnU9A4P9CuDVDP0iJWw02_2idf2XQfew3xn2e2HvedC9gQPzPk1grEIpmS_lLeyJr2SymN9l5voNwtXrhA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bS8MwFD7oJqIP3sV5zYPgU7FNuyZ9HG5F2QUVB3sruWJhdmMXf7_J2nXuQQTxrS3JoZyc03xpcr4P4DbUrgkTTQ1yk8wJhMscJiR2GOWqHnmKMe4uxCZIr0cHg-i5OE1oa2Fyfojyh5vNjMX32ia4Gkt9v2INZVLbUnIzowUhjjahGlglmQpUm69xv1NuJRCSby2Hnj3k5Q2WzI0uvl-3sD4zreDmd9C6mHXi_X943wPYKyAnauQxcggbKjuC3W9EhMfw0rIlVOYSGfDJhwp10tl7Ov9AXTWzXbORVKiQ9EGtXDlHFFQDqG3sWLJn1GVZupQDO4F-3Hp7eHQKsQVHBBhHTlQXkWCUak9i6ilBtCvM0i0yC0gSKZeEkgstQ84p4xTzusTa50wQ4WFCNFP-KVSyUabOABEakpBhnwWeCAze4MzjAfddgSnXRJEaOEtHJ6JgIreCGMMk51DGiXVVUrqqBndl-3HOwfFjy8vluCVFLk4Tg2D9wMLgsAZ4MUK_WEkazbhb3p3_pdMNbD8346Tz1GtfwI59nNcvXkJlNpmrK9gSn7N0OrkuovULaxbq_w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enabling+Stable+Lithium+Metal+Anode+through+Electrochemical+Kinetics+Manipulation&rft.jtitle=Advanced+functional+materials&rft.au=Han%2C+Yehu&rft.au=Jie%2C+Yulin&rft.au=Huang%2C+Fanyang&rft.au=Chen%2C+Yawei&rft.date=2019-11-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=29&rft.issue=46&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.201904629&rft.externalDBID=10.1002%252Fadfm.201904629&rft.externalDocID=ADFM201904629
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon