Enabling Stable Lithium Metal Anode through Electrochemical Kinetics Manipulation
The surface morphology of Li metal anode significantly dictates the stability and safety of Li metal batteries. The key parameters for morphological control and causes for dendritic growth of Li anode are still not clear. Although the plating kinetics is generally believed to be associated with Li g...
Saved in:
| Published in: | Advanced functional materials Vol. 29; no. 46 |
|---|---|
| Main Authors: | , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Hoboken
Wiley Subscription Services, Inc
01.11.2019
|
| Subjects: | |
| ISSN: | 1616-301X, 1616-3028 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The surface morphology of Li metal anode significantly dictates the stability and safety of Li metal batteries. The key parameters for morphological control and causes for dendritic growth of Li anode are still not clear. Although the plating kinetics is generally believed to be associated with Li growth habits, the detailed models are still not well defined. In this work, the temperature effect on the stability and efficiency of Li anode is systematically investigated in a variety of electrolyte composition for Li metal batteries. A dendrite‐free growth mechanism is observed, and a high Coulombic efficiency up to ≈99.4% in Li||Cu cells is achieved by tuning the deposition behaviors at elevated temperatures. The results provide insights into the Li dendrite growth mechanism and general principle for developing stable Li anode.
The temperature effect on lithium metal anodes is demonstrated in a variety of aprotic electrolytes. High Coulombic efficiency and dendrite‐free growth modes can be achieved in an ether‐based electrolyte at elevated temperature. The electrochemical kinetics of lithium plating/stripping processes are significantly improved at high temperature. |
|---|---|
| AbstractList | The surface morphology of Li metal anode significantly dictates the stability and safety of Li metal batteries. The key parameters for morphological control and causes for dendritic growth of Li anode are still not clear. Although the plating kinetics is generally believed to be associated with Li growth habits, the detailed models are still not well defined. In this work, the temperature effect on the stability and efficiency of Li anode is systematically investigated in a variety of electrolyte composition for Li metal batteries. A dendrite‐free growth mechanism is observed, and a high Coulombic efficiency up to ≈99.4% in Li||Cu cells is achieved by tuning the deposition behaviors at elevated temperatures. The results provide insights into the Li dendrite growth mechanism and general principle for developing stable Li anode.
The temperature effect on lithium metal anodes is demonstrated in a variety of aprotic electrolytes. High Coulombic efficiency and dendrite‐free growth modes can be achieved in an ether‐based electrolyte at elevated temperature. The electrochemical kinetics of lithium plating/stripping processes are significantly improved at high temperature. The surface morphology of Li metal anode significantly dictates the stability and safety of Li metal batteries. The key parameters for morphological control and causes for dendritic growth of Li anode are still not clear. Although the plating kinetics is generally believed to be associated with Li growth habits, the detailed models are still not well defined. In this work, the temperature effect on the stability and efficiency of Li anode is systematically investigated in a variety of electrolyte composition for Li metal batteries. A dendrite‐free growth mechanism is observed, and a high Coulombic efficiency up to ≈99.4% in Li||Cu cells is achieved by tuning the deposition behaviors at elevated temperatures. The results provide insights into the Li dendrite growth mechanism and general principle for developing stable Li anode. |
| Author | Han, Yehu Chen, Yawei Zhang, Genqiang Cao, Ruiguo Jie, Yulin Qin, Lianjie Lei, Zhanwu Jiao, Shuhong Huang, Fanyang Ren, Xiaodi |
| Author_xml | – sequence: 1 givenname: Yehu surname: Han fullname: Han, Yehu organization: Yantai University – sequence: 2 givenname: Yulin surname: Jie fullname: Jie, Yulin organization: University of Science and Technology of China – sequence: 3 givenname: Fanyang surname: Huang fullname: Huang, Fanyang organization: University of Science and Technology of China – sequence: 4 givenname: Yawei surname: Chen fullname: Chen, Yawei organization: University of Science and Technology of China – sequence: 5 givenname: Zhanwu surname: Lei fullname: Lei, Zhanwu organization: University of Science and Technology of China – sequence: 6 givenname: Genqiang surname: Zhang fullname: Zhang, Genqiang organization: University of Science and Technology of China – sequence: 7 givenname: Xiaodi surname: Ren fullname: Ren, Xiaodi organization: University of Science and Technology of China – sequence: 8 givenname: Lianjie surname: Qin fullname: Qin, Lianjie organization: Yantai University – sequence: 9 givenname: Ruiguo surname: Cao fullname: Cao, Ruiguo organization: University of Science and Technology of China – sequence: 10 givenname: Shuhong orcidid: 0000-0003-0860-4151 surname: Jiao fullname: Jiao, Shuhong email: jiaosh@ustc.edu.cn organization: University of Science and Technology of China |
| BookMark | eNqFkFFLwzAUhYNMcJu--lzwuTNJs6Z5HHNTcUNEBd9CmiZrRpvMNEX27-2sTBDEp3vgnu_ewxmBgXVWAXCJ4ARBiK9FoesJhohBkmJ2AoYoRWmcQJwNjhq9nYFR02whRJQmZAieFlbklbGb6Dl0QkUrE0rT1tFaBVFFM-sKFYXSu3ZTRotKyeCdLFVtZLd9MFYFI5toLazZtZUIxtlzcKpF1aiL7zkGr8vFy_wuXj3e3s9nq1gSjFnMppJJkWUaFThDSlINJSEZw1NCmYI0LXKpizTPM5FnOJ8WWCe5kFQiTKkWKhmDq_7uzrv3VjWBb13rbfeS4wQlhDGUpp2L9C7pXdN4pbk04Stn8MJUHEF-KI8fyuPH8jps8gvbeVMLv_8bYD3wYSq1_8fNZzfL9Q_7CeY3hW4 |
| CitedBy_id | crossref_primary_10_1038_s41467_023_38387_8 crossref_primary_10_1002_ange_202207927 crossref_primary_10_1142_S1793604723400118 crossref_primary_10_1002_adfm_202107136 crossref_primary_10_1016_j_est_2024_111664 crossref_primary_10_1016_j_mser_2025_100955 crossref_primary_10_1016_j_nanoen_2024_110031 crossref_primary_10_1016_j_trechm_2020_10_008 crossref_primary_10_1002_adfm_201909887 crossref_primary_10_1016_j_jpowsour_2023_233884 crossref_primary_10_1002_aenm_202300798 crossref_primary_10_1002_ange_202101976 crossref_primary_10_1002_aenm_202101518 crossref_primary_10_1002_aenm_202301742 crossref_primary_10_1002_adma_202302872 crossref_primary_10_1016_j_mtener_2020_100538 crossref_primary_10_1002_anie_202316904 crossref_primary_10_1007_s41918_022_00158_2 crossref_primary_10_1016_j_ijheatmasstransfer_2022_123450 crossref_primary_10_1021_jacs_4c18374 crossref_primary_10_1002_aenm_202303726 crossref_primary_10_1007_s11581_019_03388_5 crossref_primary_10_1002_anie_202310761 crossref_primary_10_1002_adfm_202304386 crossref_primary_10_1002_sstr_202200400 crossref_primary_10_3390_ma16124359 crossref_primary_10_1002_adfm_202514172 crossref_primary_10_1002_anie_202002711 crossref_primary_10_1016_j_jechem_2020_11_034 crossref_primary_10_1016_j_cej_2021_132026 crossref_primary_10_1002_adma_202002193 crossref_primary_10_1039_D2NH00354F crossref_primary_10_1002_aenm_202302565 crossref_primary_10_1007_s12274_022_5334_y crossref_primary_10_1002_ange_202310761 crossref_primary_10_1016_j_electacta_2023_142493 crossref_primary_10_1016_j_ceramint_2021_03_072 crossref_primary_10_1002_adma_202004128 crossref_primary_10_1002_adfm_202213648 crossref_primary_10_1002_ange_202316904 crossref_primary_10_1039_D3RA07938D crossref_primary_10_1002_aenm_202102233 crossref_primary_10_1002_adfm_202106740 crossref_primary_10_1002_advs_202101051 crossref_primary_10_1002_adma_202209511 crossref_primary_10_1002_advs_202201147 crossref_primary_10_1039_D3EE04556K crossref_primary_10_1002_ange_202002711 crossref_primary_10_1016_j_enchem_2023_100102 crossref_primary_10_1002_adfm_202111133 crossref_primary_10_1016_j_jechem_2021_03_023 crossref_primary_10_1016_j_cej_2021_133189 crossref_primary_10_1002_adfm_202006457 crossref_primary_10_1002_aenm_202002390 crossref_primary_10_1002_smll_202306829 crossref_primary_10_1007_s12274_024_6853_5 crossref_primary_10_1002_adfm_202104930 crossref_primary_10_1002_adfm_202102158 crossref_primary_10_1002_anie_202207927 crossref_primary_10_1021_acsaem_5c01867 crossref_primary_10_3390_batteries7040067 crossref_primary_10_1016_j_jallcom_2022_166776 crossref_primary_10_1002_smll_202302690 crossref_primary_10_1016_j_jechem_2022_07_008 crossref_primary_10_1016_j_jechem_2022_03_039 crossref_primary_10_1002_aenm_202200398 crossref_primary_10_1002_EXP_20230114 crossref_primary_10_1016_j_apenergy_2025_125720 crossref_primary_10_3390_batteries8110246 crossref_primary_10_1016_j_esci_2025_100433 crossref_primary_10_1002_anie_202101976 crossref_primary_10_1016_j_jpowsour_2021_230005 crossref_primary_10_1016_j_scib_2024_03_048 crossref_primary_10_1002_batt_202000016 |
| Cites_doi | 10.1038/s41557-018-0166-9 10.1021/acsenergylett.9b00433 10.1073/pnas.1708224114 10.1149/1.1454138 10.1016/j.jpowsour.2014.03.029 10.1016/j.ensm.2018.03.001 10.1038/nnano.2017.16 10.1021/acs.chemrev.7b00115 10.1149/1.1837563 10.1021/jp068691u 10.1021/acsenergylett.8b02003 10.1016/S0167-2738(02)00080-2 10.1021/acs.nanolett.6b04755 10.1016/j.elecom.2014.11.002 10.1038/s41586-018-0397-3 10.1002/celc.201801652 10.1007/s10008-017-3610-7 10.1103/PhysRevA.42.7355 10.1021/acs.nanolett.5b02432 10.1021/ja203983r 10.1038/s41467-019-09924-1 10.1149/2.028309jes 10.1134/S1023193508060049 10.1038/s41560-017-0047-2 10.1002/anie.201702099 10.1002/adma.201700007 10.1039/C4CP05786D 10.1038/ncomms7362 10.1016/j.nanoen.2017.08.056 10.1063/1.332209 10.1016/j.ensm.2017.12.002 10.1126/science.aap8787 10.1016/j.electacta.2012.12.131 10.1149/1.3148721 10.1002/batt.201800024 10.1016/j.electacta.2014.05.120 10.1073/pnas.1615733114 10.1039/C3EE42351D 10.1002/crat.2170250814 10.1039/C3EE40795K |
| ContentType | Journal Article |
| Copyright | 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
| Copyright_xml | – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
| DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
| DOI | 10.1002/adfm.201904629 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
| DatabaseTitleList | CrossRef Materials Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1616-3028 |
| EndPage | n/a |
| ExternalDocumentID | 10_1002_adfm_201904629 ADFM201904629 |
| Genre | article |
| GrantInformation_xml | – fundername: National Key Research and Development Program of China funderid: 2017YFA0206703; 2017YFA0402802 – fundername: National Natural Science Foundation of China funderid: 21776265 |
| GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AAMMB AANHP AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 O8X 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
| ID | FETCH-LOGICAL-c4229-95c9ca88f1d281ec7f0c448925479e076dbcfd6bb8ab82b5d2f3bac7c1277fae3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 92 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000485548600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1616-301X |
| IngestDate | Sun Nov 30 04:29:03 EST 2025 Sat Nov 29 07:21:10 EST 2025 Tue Nov 18 21:16:38 EST 2025 Wed Jan 22 16:40:26 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 46 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4229-95c9ca88f1d281ec7f0c448925479e076dbcfd6bb8ab82b5d2f3bac7c1277fae3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-0860-4151 |
| PQID | 2313499166 |
| PQPubID | 2045204 |
| PageCount | 7 |
| ParticipantIDs | proquest_journals_2313499166 crossref_citationtrail_10_1002_adfm_201904629 crossref_primary_10_1002_adfm_201904629 wiley_primary_10_1002_adfm_201904629_ADFM201904629 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-11-01 |
| PublicationDateYYYYMMDD | 2019-11-01 |
| PublicationDate_xml | – month: 11 year: 2019 text: 2019-11-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Hoboken |
| PublicationPlace_xml | – name: Hoboken |
| PublicationTitle | Advanced functional materials |
| PublicationYear | 2019 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2018; 560 1990; 42 2018; 3 2015; 17 2019; 4 2015; 6 2019; 6 2018; 359 2013 2014 2014 2015; 160 261 136 50 1997 2013 2019 2015; 144 100 10 15 2009 2007; 156 111 1990 2008; 25 44 2002 2019; 148 11 2017; 21 2018 2017 2017 2017 2017; 14 41 114 17 56 1983; 54 2011 2014; 133 7 2014 2017 2017 2017 2018 2018; 7 12 29 117 12 1 2002 2017 2019; 149 114 4 e_1_2_7_1_6 e_1_2_7_4_3 e_1_2_7_6_1 e_1_2_7_1_5 e_1_2_7_4_2 e_1_2_7_5_1 e_1_2_7_1_4 e_1_2_7_3_2 e_1_2_7_4_1 e_1_2_7_1_3 e_1_2_7_3_1 e_1_2_7_9_2 e_1_2_7_6_4 e_1_2_7_9_1 e_1_2_7_4_5 e_1_2_7_6_3 e_1_2_7_8_1 e_1_2_7_4_4 e_1_2_7_6_2 e_1_2_7_7_1 e_1_2_7_18_2 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_16_2 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_1_2 e_1_2_7_2_1 e_1_2_7_12_4 e_1_2_7_15_1 e_1_2_7_1_1 e_1_2_7_12_3 e_1_2_7_13_2 e_1_2_7_14_1 e_1_2_7_12_2 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_9_3 |
| References_xml | – volume: 3 start-page: 16 year: 2018 publication-title: Nat. Energy – volume: 42 start-page: 7355 year: 1990 publication-title: Phys. Rev. A – volume: 21 start-page: 1939 year: 2017 publication-title: J. Solid State Electrochem. – volume: 133 7 start-page: 416 year: 2011 2014 publication-title: J. Am. Chem. Soc. Energy Environ. Sci. – volume: 54 start-page: 1346 year: 1983 publication-title: J. Appl. Phys. – volume: 149 114 4 start-page: A385 57 156 year: 2002 2017 2019 publication-title: J. Electrochem. Soc. Proc. Natl. Acad. Sci. USA ACS Energy Lett. – volume: 148 11 start-page: 405 64 year: 2002 2019 publication-title: Solid State Ionics Nat. Chem. – volume: 144 100 10 15 start-page: L90 333 2067 6149 year: 1997 2013 2019 2015 publication-title: J. Electrochem. Soc. Electrochim. Acta Nat. Commun. Nano Lett. – volume: 7 12 29 117 12 1 start-page: 513 194 161 41 year: 2014 2017 2017 2017 2018 2018 publication-title: Energy Environ. Sci. Nat. Nanotechnol. Adv. Mater. Chem. Rev. Energy Storage Mater. Batteries Supercaps – volume: 359 start-page: 1513 year: 2018 publication-title: Science – volume: 156 111 start-page: A694 7411 year: 2009 2007 publication-title: J. Electrochem. Soc. J. Phys. Chem. C – volume: 17 start-page: 8000 year: 2015 publication-title: Phys. Chem. Chem. Phys. – volume: 560 start-page: 345 year: 2018 publication-title: Nature – volume: 25 44 start-page: 927 652 year: 1990 2008 publication-title: Cryst. Res. Technol. Russ. J. Electrochem. – volume: 14 41 114 17 56 start-page: 199 552 1132 7764 year: 2018 2017 2017 2017 2017 publication-title: Energy Storage Mater. Nano Energy Proc. Natl. Acad. Sci. USA Nano Lett. Angew. Chem., Int. Ed. – volume: 160 261 136 50 start-page: D337 112 529 11 year: 2013 2014 2014 2015 publication-title: J. Electrochem. Soc. J. Power Sources Electrochim. Acta Electrochem. Commun. – volume: 4 start-page: 1012 year: 2019 publication-title: ACS Energy Lett. – volume: 6 start-page: 6362 year: 2015 publication-title: Nat. Commun. – volume: 6 start-page: 1324 year: 2019 publication-title: ChemElectroChem – ident: e_1_2_7_3_2 doi: 10.1038/s41557-018-0166-9 – ident: e_1_2_7_11_1 doi: 10.1021/acsenergylett.9b00433 – ident: e_1_2_7_4_3 doi: 10.1073/pnas.1708224114 – ident: e_1_2_7_9_1 doi: 10.1149/1.1454138 – ident: e_1_2_7_6_2 doi: 10.1016/j.jpowsour.2014.03.029 – ident: e_1_2_7_4_1 doi: 10.1016/j.ensm.2018.03.001 – ident: e_1_2_7_1_2 doi: 10.1038/nnano.2017.16 – ident: e_1_2_7_1_4 doi: 10.1021/acs.chemrev.7b00115 – ident: e_1_2_7_12_1 doi: 10.1149/1.1837563 – ident: e_1_2_7_13_2 doi: 10.1021/jp068691u – ident: e_1_2_7_9_3 doi: 10.1021/acsenergylett.8b02003 – ident: e_1_2_7_3_1 doi: 10.1016/S0167-2738(02)00080-2 – ident: e_1_2_7_4_4 doi: 10.1021/acs.nanolett.6b04755 – ident: e_1_2_7_6_4 doi: 10.1016/j.elecom.2014.11.002 – ident: e_1_2_7_14_1 doi: 10.1038/s41586-018-0397-3 – ident: e_1_2_7_7_1 doi: 10.1002/celc.201801652 – ident: e_1_2_7_15_1 doi: 10.1007/s10008-017-3610-7 – ident: e_1_2_7_5_1 doi: 10.1103/PhysRevA.42.7355 – ident: e_1_2_7_12_4 doi: 10.1021/acs.nanolett.5b02432 – ident: e_1_2_7_16_1 doi: 10.1021/ja203983r – ident: e_1_2_7_12_3 doi: 10.1038/s41467-019-09924-1 – ident: e_1_2_7_6_1 doi: 10.1149/2.028309jes – ident: e_1_2_7_18_2 doi: 10.1134/S1023193508060049 – ident: e_1_2_7_2_1 doi: 10.1038/s41560-017-0047-2 – ident: e_1_2_7_4_5 doi: 10.1002/anie.201702099 – ident: e_1_2_7_1_3 doi: 10.1002/adma.201700007 – ident: e_1_2_7_10_1 doi: 10.1039/C4CP05786D – ident: e_1_2_7_17_1 doi: 10.1038/ncomms7362 – ident: e_1_2_7_4_2 doi: 10.1016/j.nanoen.2017.08.056 – ident: e_1_2_7_19_1 doi: 10.1063/1.332209 – ident: e_1_2_7_1_5 doi: 10.1016/j.ensm.2017.12.002 – ident: e_1_2_7_8_1 doi: 10.1126/science.aap8787 – ident: e_1_2_7_12_2 doi: 10.1016/j.electacta.2012.12.131 – ident: e_1_2_7_13_1 doi: 10.1149/1.3148721 – ident: e_1_2_7_1_6 doi: 10.1002/batt.201800024 – ident: e_1_2_7_6_3 doi: 10.1016/j.electacta.2014.05.120 – ident: e_1_2_7_9_2 doi: 10.1073/pnas.1615733114 – ident: e_1_2_7_16_2 doi: 10.1039/C3EE42351D – ident: e_1_2_7_18_1 doi: 10.1002/crat.2170250814 – ident: e_1_2_7_1_1 doi: 10.1039/C3EE40795K |
| SSID | ssj0017734 |
| Score | 2.5801766 |
| Snippet | The surface morphology of Li metal anode significantly dictates the stability and safety of Li metal batteries. The key parameters for morphological control... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Anode effect Coulombic efficiency Dendritic structure Electrolytic cells High temperature Kinetics Lithium lithium anode lithium dendrite lithium metal battery Materials science Morphology temperature effect Temperature effects |
| Title | Enabling Stable Lithium Metal Anode through Electrochemical Kinetics Manipulation |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201904629 https://www.proquest.com/docview/2313499166 |
| Volume | 29 |
| WOSCitedRecordID | wos000485548600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1616-3028 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017734 issn: 1616-301X databaseCode: DRFUL dateStart: 20010101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFH_o5kEPfovTKTkInsra9CPpcbgVwW2oONitJGmCg9nJ1vn3m_Rr20EEvaWQPEryXt8vTd7vB3AXKFu7iaIauSXM8oTNLCYSbDHKpR86kjFu52ITZDSik0n4vFHFX_BD1D_cTGTk32sT4IwvO2vSUJYoU0muE5oX4HAXmlg7r9-AZu81Gg_qkwRCipPlwDF3vJxJRdxo4862he3EtEabm5g1TzrR0f9f9xgOS8CJuoWHnMCOTE_hYIOG8Axe-qaASjeRhp58JtFgmr1PVx9oKDMzNJ0nEpWCPqhf6OaIkmgAPWk7huoZDVk6rcTAzmEc9d8eHq1SasESHsahFfoiFIxS5SSYOlIQZQu9cQv19pGE0iZBwoVKAs4p4xRzP8HK5UwQ4WBCFJPuBTTSeSovAREakIBhl3mO8DTa4MzhHndtgSlXRJIWWNU8x6LkITdyGLO4YFDGsZmquJ6qFtzX_T8LBo4fe7arZYvLSFzGGr-6ngHBQQtwvkC_WIm7vWhYP139ZdA17Jt2UbLYhka2WMkb2BNf2XS5uC099BvYH-eU |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS8MwED90E9QHv8Xp1DwIPpW1adekj8NtTPaBygZ7K0ma4GB2snX-_Sbrx7YHEcS3piRHudz1fvm43wE8-MrWZqKoRm4RszxhM4uJCFuMclkPHMkYt1fFJshgQMfj4CW7TWhyYVJ-iGLDzXjG6n9tHNxsSNfWrKEsUiaVXEc0z8fBLpQ9bUvayMvNt_aoVxwlEJIeLfuOueTljHPmRhvXtiVsR6Y13NwErauo0z7-h-89gaMMcqJGaiOnsCPjMzjcICI8h9eWSaHSj0iDTz6VqDdJ3ifLD9SXiRkazyKJspI-qJVWzhEZ1QDqajmG7Bn1WTzJy4FdwKjdGj51rKzYgiU8jAMrqItAMEqVE2HqSEGULfTSLdALSBJIm_gRFyryOaeMU8zrEVYuZ4IIBxOimHQvoRTPYnkFiFCf-Ay7zHOEp_EGZw73uGsLTLkiklTAyhUdioyJ3BTEmIYphzIOjarCQlUVeCz6f6YcHD_2rObzFma-uAg1gnU9A4P9CuDVDP0iJWw02_2idf2XQfew3xn2e2HvedC9gQPzPk1grEIpmS_lLeyJr2SymN9l5voNwtXrhA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bS8MwFD7oJqIP3sV5zYPgU7FNuyZ9HG5F2QUVB3sruWJhdmMXf7_J2nXuQQTxrS3JoZyc03xpcr4P4DbUrgkTTQ1yk8wJhMscJiR2GOWqHnmKMe4uxCZIr0cHg-i5OE1oa2Fyfojyh5vNjMX32ia4Gkt9v2INZVLbUnIzowUhjjahGlglmQpUm69xv1NuJRCSby2Hnj3k5Q2WzI0uvl-3sD4zreDmd9C6mHXi_X943wPYKyAnauQxcggbKjuC3W9EhMfw0rIlVOYSGfDJhwp10tl7Ov9AXTWzXbORVKiQ9EGtXDlHFFQDqG3sWLJn1GVZupQDO4F-3Hp7eHQKsQVHBBhHTlQXkWCUak9i6ilBtCvM0i0yC0gSKZeEkgstQ84p4xTzusTa50wQ4WFCNFP-KVSyUabOABEakpBhnwWeCAze4MzjAfddgSnXRJEaOEtHJ6JgIreCGMMk51DGiXVVUrqqBndl-3HOwfFjy8vluCVFLk4Tg2D9wMLgsAZ4MUK_WEkazbhb3p3_pdMNbD8346Tz1GtfwI59nNcvXkJlNpmrK9gSn7N0OrkuovULaxbq_w |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enabling+Stable+Lithium+Metal+Anode+through+Electrochemical+Kinetics+Manipulation&rft.jtitle=Advanced+functional+materials&rft.au=Han%2C+Yehu&rft.au=Jie%2C+Yulin&rft.au=Huang%2C+Fanyang&rft.au=Chen%2C+Yawei&rft.date=2019-11-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=29&rft.issue=46&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.201904629&rft.externalDBID=10.1002%252Fadfm.201904629&rft.externalDocID=ADFM201904629 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |