Estimating model‐error covariances in nonlinear state‐space models using Kalman smoothing and the expectation–maximization algorithm

Specification and tuning of errors from dynamical models are important issues in data assimilation. In this work, we propose an iterative expectation–maximization (EM) algorithm to estimate the model‐error covariances using classical extended and ensemble versions of the Kalman smoother. We show tha...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Quarterly journal of the Royal Meteorological Society Ročník 143; číslo 705; s. 1877 - 1885
Hlavní autori: Dreano, D., Tandeo, P., Pulido, M., Ait‐El‐Fquih, B., Chonavel, T., Hoteit, I.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Chichester, UK John Wiley & Sons, Ltd 01.04.2017
Wiley Subscription Services, Inc
Wiley
Predmet:
ISSN:0035-9009, 1477-870X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Specification and tuning of errors from dynamical models are important issues in data assimilation. In this work, we propose an iterative expectation–maximization (EM) algorithm to estimate the model‐error covariances using classical extended and ensemble versions of the Kalman smoother. We show that, for additive model errors, the estimate of the error covariance converges. We also investigate other forms of model error, such as parametric or multiplicative errors. We show that additive Gaussian model error is able to compensate for non‐additive sources of error in the algorithms we propose. We also demonstrate the limitations of the extended version of the algorithm and recommend the use of the more robust and flexible ensemble version. This article is a proof of concept of the methodology with the Lorenz‐63 attractor. We developed an open‐source Python library to enable future users to apply the algorithm to their own nonlinear dynamical models. We propose an iterative expectation–maximization algorithm to estimate the model‐error covariances using classical extended and ensemble versions of the Kalman smoother. We show convergence of the algorithm on the Lorenz‐63 model, including for non‐Gaussian model errors. We have developed an open‐source Python library to enable future users to apply the algorithm to their own nonlinear dynamical models.
AbstractList Specification and tuning of errors from dynamical models are important issues in data assimilation. In this work, we propose an iterative expectation–maximization (EM) algorithm to estimate the model‐error covariances using classical extended and ensemble versions of the Kalman smoother. We show that, for additive model errors, the estimate of the error covariance converges. We also investigate other forms of model error, such as parametric or multiplicative errors. We show that additive Gaussian model error is able to compensate for non‐additive sources of error in the algorithms we propose. We also demonstrate the limitations of the extended version of the algorithm and recommend the use of the more robust and flexible ensemble version. This article is a proof of concept of the methodology with the Lorenz‐63 attractor. We developed an open‐source Python library to enable future users to apply the algorithm to their own nonlinear dynamical models.
Specification and tuning of errors from dynamical models are important issues in data assimilation. In this work, we propose an iterative expectation–maximization (EM) algorithm to estimate the model‐error covariances using classical extended and ensemble versions of the Kalman smoother. We show that, for additive model errors, the estimate of the error covariance converges. We also investigate other forms of model error, such as parametric or multiplicative errors. We show that additive Gaussian model error is able to compensate for non‐additive sources of error in the algorithms we propose. We also demonstrate the limitations of the extended version of the algorithm and recommend the use of the more robust and flexible ensemble version. This article is a proof of concept of the methodology with the Lorenz‐63 attractor. We developed an open‐source Python library to enable future users to apply the algorithm to their own nonlinear dynamical models. We propose an iterative expectation–maximization algorithm to estimate the model‐error covariances using classical extended and ensemble versions of the Kalman smoother. We show convergence of the algorithm on the Lorenz‐63 model, including for non‐Gaussian model errors. We have developed an open‐source Python library to enable future users to apply the algorithm to their own nonlinear dynamical models.
Author Chonavel, T.
Hoteit, I.
Ait‐El‐Fquih, B.
Dreano, D.
Tandeo, P.
Pulido, M.
Author_xml – sequence: 1
  givenname: D.
  surname: Dreano
  fullname: Dreano, D.
  organization: CEMSE Division, King Abdullah University of Science and Technology (KAUST)
– sequence: 2
  givenname: P.
  surname: Tandeo
  fullname: Tandeo, P.
  organization: Lab‐STICC—Pôle CID, Telecom Bretagne
– sequence: 3
  givenname: M.
  surname: Pulido
  fullname: Pulido, M.
  organization: Universidad Nacional del Nordeste
– sequence: 4
  givenname: B.
  surname: Ait‐El‐Fquih
  fullname: Ait‐El‐Fquih, B.
  organization: CEMSE Division, King Abdullah University of Science and Technology (KAUST)
– sequence: 5
  givenname: T.
  surname: Chonavel
  fullname: Chonavel, T.
  organization: Lab‐STICC—Pôle CID, Telecom Bretagne
– sequence: 6
  givenname: I.
  orcidid: 0000-0002-3751-4393
  surname: Hoteit
  fullname: Hoteit, I.
  email: ibrahim.hoteit@kaust.edu.sa
  organization: CEMSE Division, King Abdullah University of Science and Technology (KAUST)
BackLink https://hal.science/hal-01574682$$DView record in HAL
BookMark eNp1kU9LHDEUwEOx4GrFrxDooRQZm2Qmk5mjyKptF4qg4C28zSRulplkN8n67-TZU6Hf0E_SGUc8SHsK7_F7v7w_O2jLeacR2qfkkBLCvq2Xhzkpqg9oQgshskqQqy00ISTnWU1IvY12YlwSQrhgYoKepjHZDpJ117jzjW6fH3_rEHzAyt9AsOCUjtg63P_SWqch4Jgg6R6LK1B6LIp4EwfDT2g7cDh23qfFkADX4LTQWN-ttOrrrHfPj386uLOdfXgJMbTXPti06D6hjwbaqPde3110eTK9OD7LZr9Ovx8fzTJVMFZlKjdciYaYGsq8Lpqc5zXTjWAlGKM4oXPRz1abcs5NVTExN4YqpYWquajKhua76OvoXUArV6GfPtxLD1aeHc3kkCOUi6Ks2M3Afh7ZVfDrjY5JLv0muL49SQcfy3lZ9NSXkVLBxxi0edNSIoejyPVSDkfpyewdqey4lhTAtv_gD0b-1rb6_n9aef7jhf4LiYijmg
CitedBy_id crossref_primary_10_2118_193838_PA
crossref_primary_10_1002_qj_3386
crossref_primary_10_1109_TNSRE_2021_3113888
crossref_primary_10_3390_robotics12010011
crossref_primary_10_1002_qj_3542
crossref_primary_10_1016_j_csda_2020_107062
crossref_primary_10_1007_s11430_022_1180_8
crossref_primary_10_5194_npg_30_129_2023
crossref_primary_10_1177_1550147719862217
crossref_primary_10_1016_j_ejrh_2025_102441
crossref_primary_10_1002_qj_3716
crossref_primary_10_1175_MWR_D_16_0427_1
crossref_primary_10_1016_j_jhydrol_2019_02_056
crossref_primary_10_1155_2021_9002643
crossref_primary_10_1016_j_watres_2025_123673
crossref_primary_10_1002_qj_3931
crossref_primary_10_1063_5_0212592
crossref_primary_10_1109_JAS_2023_123537
crossref_primary_10_1109_JBHI_2018_2857924
crossref_primary_10_1007_s00521_021_06739_4
crossref_primary_10_3390_batteries8090104
crossref_primary_10_1002_qj_3438
crossref_primary_10_1016_j_geoen_2024_212640
crossref_primary_10_1002_wcc_535
crossref_primary_10_1016_j_ymssp_2025_112480
crossref_primary_10_1002_qj_4484
crossref_primary_10_1007_s11004_021_09951_z
crossref_primary_10_1016_j_apacoust_2018_12_010
crossref_primary_10_1109_ACCESS_2020_3038684
crossref_primary_10_1016_j_rse_2021_112802
crossref_primary_10_1007_s10236_017_1050_7
crossref_primary_10_3390_electronics9060940
crossref_primary_10_3390_agronomy14091920
crossref_primary_10_1007_s00477_019_01743_6
crossref_primary_10_1029_2020JC016580
crossref_primary_10_1088_1361_6420_acff14
crossref_primary_10_5194_npg_26_143_2019
crossref_primary_10_1016_j_artmed_2019_101764
crossref_primary_10_1049_iet_cta_2018_5605
crossref_primary_10_3389_fams_2022_1021551
crossref_primary_10_1002_qj_4979
crossref_primary_10_3390_a16120533
Cites_doi 10.1175/1520-0493(1992)120<1735:EMECFA>2.0.CO;2
10.2118/117274-PA
10.1175/1520-0493(2000)128<0416:AAEKF>2.0.CO;2
10.1002/qj.2357
10.1111/j.2517-6161.1977.tb01600.x
10.1175/MWR-D-14-00088.1
10.1175/MWR-D-10-05025.1
10.1175/2008MWR2737.1
10.1007/978-3-642-03711-5
10.1007/978-3-540-74703-1_1
10.2514/3.3166
10.1111/j.1467-9892.1982.tb00349.x
10.1016/j.jprocont.2010.06.008
10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
10.1002/qj.654
10.1002/qj.2728
10.1175/JAS3408.1
10.1002/qj.2134
10.1080/09548980701625173
10.1002/qj.2803
10.1175/1520-0493(1995)123<1128:OLEOEC>2.0.CO;2
10.3402/tellusa.v65i0.20331
10.1175/1520-0493(1998)126<1719:ASITEK>2.0.CO;2
10.1016/S0924-7963(02)00129-X
ContentType Journal Article
Copyright 2017 Royal Meteorological Society
licence_http://creativecommons.org/publicdomain/zero
Copyright_xml – notice: 2017 Royal Meteorological Society
– notice: licence_http://creativecommons.org/publicdomain/zero
DBID AAYXX
CITATION
7TG
7TN
F1W
H96
KL.
L.G
1XC
VOOES
DOI 10.1002/qj.3048
DatabaseName CrossRef
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ASFA: Aquatic Sciences and Fisheries Abstracts
DatabaseTitleList CrossRef


Aquatic Science & Fisheries Abstracts (ASFA) Professional
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Statistics
EISSN 1477-870X
EndPage 1885
ExternalDocumentID oai:HAL:hal-01574682v1
10_1002_qj_3048
QJ3048
Genre article
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABJNI
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFWVQ
AGHNM
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GODZA
H.T
H.X
HBH
HF~
HGLYW
HVGLF
HZ~
H~9
IX1
J0M
JPC
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M62
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
NNB
O66
O9-
OHT
OK1
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
UB1
VOH
W8V
W99
WBKPD
WIB
WIH
WIK
WJL
WOHZO
WQJ
WUPDE
WXSBR
WYISQ
XG1
XOL
XV2
ZY4
ZZTAW
~02
~IA
~WT
AAMMB
AAYXX
ABUFD
AEFGJ
AEYWJ
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
O8X
7TG
7TN
F1W
H96
KL.
L.G
1XC
VOOES
ID FETCH-LOGICAL-c4228-c3f5c7d0f9a6394d35392ed726affc501b70579f6b5f8827bff1cce7c95786d13
IEDL.DBID DRFUL
ISICitedReferencesCount 49
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000403437900012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0035-9009
IngestDate Sat Nov 15 06:27:38 EST 2025
Sun Jul 13 03:37:25 EDT 2025
Tue Nov 18 21:58:52 EST 2025
Sat Nov 29 01:49:56 EST 2025
Wed Apr 02 05:42:39 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 705
Language English
License licence_http://creativecommons.org/publicdomain/zero/: http://creativecommons.org/publicdomain/zero
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4228-c3f5c7d0f9a6394d35392ed726affc501b70579f6b5f8827bff1cce7c95786d13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3751-4393
0000-0003-3406-0426
0000-0003-1647-8239
OpenAccessLink https://hal.science/hal-01574682
PQID 1957823564
PQPubID 1016432
PageCount 9
ParticipantIDs hal_primary_oai_HAL_hal_01574682v1
proquest_journals_1957823564
crossref_primary_10_1002_qj_3048
crossref_citationtrail_10_1002_qj_3048
wiley_primary_10_1002_qj_3048_QJ3048
PublicationCentury 2000
PublicationDate April 2017 Part B
PublicationDateYYYYMMDD 2017-04-01
PublicationDate_xml – month: 04
  year: 2017
  text: April 2017 Part B
PublicationDecade 2010
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: Reading
PublicationTitle Quarterly journal of the Royal Meteorological Society
PublicationYear 2017
Publisher John Wiley & Sons, Ltd
Wiley Subscription Services, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Ltd
– name: Wiley Subscription Services, Inc
– name: Wiley
References 2012; 140
2007; 18
2015; 141
2002; 36
1963; 20
2012
2013; 65
1992; 120
2010
2015; 143
2009
2005; 62
2008; 53
2016; 142
1979
2009; 137
1965; 3
2009; 14
2010; 20
1977; 39
2000; 128
2010; 136
1982; 3
1998; 126
2014; 140
2007; 2
1995; 123
2013
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_9_1
e_1_2_7_7_1
Chui CK (e_1_2_7_8_1) 2009
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_13_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_28_1
e_1_2_7_29_1
Hairer E (e_1_2_7_14_1) 2009
Smith A (e_1_2_7_27_1) 2013
Anderson BDO (e_1_2_7_4_1) 1979
Hoteit I (e_1_2_7_16_1) 2007; 2
Ait‐El‐Fquih B (e_1_2_7_3_1) 2008; 53
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
Luo X (e_1_2_7_22_1) 2012
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_21_1
e_1_2_7_20_1
Dempster AP (e_1_2_7_12_1) 1977; 39
References_xml – volume: 39
  start-page: 1
  year: 1977
  end-page: 38
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: J. R. Stat. Soc. Ser. B. Methodol.
– year: 2009
– volume: 53
  start-page: 2437
  year: 2008
  end-page: 2442
  article-title: On Bayesian fixed‐interval smoothing algorithms
  publication-title: IEEE Trans. Autom. Control Inst. Electr. Electron. Eng.
– volume: 136
  start-page: 1316
  year: 2010
  end-page: 1343
  article-title: Maximum likelihood estimation of error covariances in ensemble‐based filters and its application to a coupled atmosphere–ocean model
  publication-title: Q. J. R. Meteorol. Soc.
– volume: 3
  start-page: 1445
  year: 1965
  end-page: 1450
  article-title: Maximum likelihood estimates of linear dynamic systems
  publication-title: AIAA J.
– volume: 140
  start-page: 683
  year: 2012
  end-page: 695
  article-title: Smoothing problems in a Bayesian framework and their linear Gaussian solutions
  publication-title: Mon. Weather Rev.
– volume: 62
  start-page: 1391
  year: 2005
  end-page: 1409
  article-title: Multiplicative noise and non‐Gaussianity: A paradigm for atmospheric regimes?
  publication-title: J. Atmos. Sci.
– volume: 142
  start-page: 1259
  year: 2016
  end-page: 1264
  article-title: On the ensemble Rauch–Tung–Striebel smoother and its equivalence to the ensemble Kalman smoother
  publication-title: Q. J. R. Meteorol. Soc.
– volume: 142
  start-page: 2055
  year: 2016
  end-page: 2080
  article-title: Bayesian estimation of the observation‐error covariance matrix in ensemble‐based filters
  publication-title: Q. J. R. Meteorol. Soc.
– volume: 137
  start-page: 2126
  year: 2009
  end-page: 2143
  article-title: Model error representation in an operational ensemble Kalman filter
  publication-title: Mon. Weather Rev.
– volume: 20
  start-page: 130
  year: 1963
  end-page: 141
  article-title: Deterministic non‐periodic flow
  publication-title: J. Atmos. Sci.
– volume: 123
  start-page: 1128
  year: 1995
  end-page: 1145
  article-title: Online estimation of error covariance parameters for atmospheric data assimilation
  publication-title: Mon. Weather Rev.
– volume: 126
  start-page: 1719
  year: 1998
  end-page: 1724
  article-title: Analysis scheme in the ensemble Kalman filter
  publication-title: Mon. Weather Rev.
– year: 1979
– volume: 128
  start-page: 416
  year: 2000
  end-page: 433
  article-title: An adaptive ensemble Kalman filter
  publication-title: Mon. Weather Rev.
– volume: 140
  start-page: 295
  year: 2014
  end-page: 315
  article-title: Iterative algorithm for maximum‐likelihood estimation of the observation‐error covariance matrix for ensemble‐based filters
  publication-title: Q. J. R. Meteorol. Soc.
– volume: 120
  start-page: 1735
  year: 1992
  end-page: 1746
  article-title: Estimating model‐error covariances for application to atmospheric data assimilation
  publication-title: Mon. Weather Rev.
– volume: 36
  start-page: 101
  year: 2002
  end-page: 127
  article-title: A simplified reduced order Kalman filtering and application to altimetric data assimilation in tropical pacific
  publication-title: J. Mar. Syst.
– volume: 20
  start-page: 934
  year: 2010
  end-page: 943
  article-title: A comparison of simultaneous state and parameter estimation schemes for a continuous fermentor reactor
  publication-title: J. Process Control
– year: 2012
– volume: 143
  start-page: 2918
  year: 2015
  end-page: 2936
  article-title: Mitigating observation perturbation sampling errors in the stochastic ENKF
  publication-title: Mon. Weather Rev.
– volume: 65
  start-page: 20331
  year: 2013
  article-title: Adaptive ensemble Kalman filtering of non‐linear systems
  publication-title: Tellus Ser. A–Dyn. Meteorol. Oceanogr.
– volume: 2
  start-page: 67
  year: 2007
  end-page: 78
  article-title: Using low‐rank ensemble Kalman filters for data assimilation with high‐dimensional imperfect models
  publication-title: J.Numer. Anal. Ind. Appl. Math.
– volume: 18
  start-page: 375
  year: 2007
  end-page: 407
  article-title: Common‐input models for multiple neural spike‐train data
  publication-title: Network‐Comput. Neural Syst.
– volume: 141
  start-page: 383
  year: 2015
  end-page: 395
  article-title: Offline parameter estimation using EnKF and maximum likelihood error covariance estimates: Application to a subgrid‐scale orography parametrization
  publication-title: Q. J. R. Meteorol. Soc.
– start-page: 3
  year: 2010
  end-page: 12
– volume: 3
  start-page: 253
  year: 1982
  end-page: 264
  article-title: An approach to time series smoothing and forecasting using the EM algorithm
  publication-title: J. Time Ser. Anal.
– volume: 14
  start-page: 393
  year: 2009
  end-page: 412
  article-title: The ensemble kalman filter in reservoir engineering–a review
  publication-title: SPE J.
– year: 2013
– ident: e_1_2_7_10_1
  doi: 10.1175/1520-0493(1992)120<1735:EMECFA>2.0.CO;2
– ident: e_1_2_7_2_1
  doi: 10.2118/117274-PA
– ident: e_1_2_7_23_1
  doi: 10.1175/1520-0493(2000)128<0416:AAEKF>2.0.CO;2
– ident: e_1_2_7_29_1
  doi: 10.1002/qj.2357
– volume: 39
  start-page: 1
  year: 1977
  ident: e_1_2_7_12_1
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: J. R. Stat. Soc. Ser. B. Methodol.
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– ident: e_1_2_7_17_1
  doi: 10.1175/MWR-D-14-00088.1
– ident: e_1_2_7_9_1
  doi: 10.1175/MWR-D-10-05025.1
– ident: e_1_2_7_18_1
  doi: 10.1175/2008MWR2737.1
– volume-title: Solving Ordinary Differential Equations I. Non‐stiff Problems
  year: 2009
  ident: e_1_2_7_14_1
– ident: e_1_2_7_13_1
  doi: 10.1007/978-3-642-03711-5
– ident: e_1_2_7_20_1
  doi: 10.1007/978-3-540-74703-1_1
– ident: e_1_2_7_25_1
  doi: 10.2514/3.3166
– ident: e_1_2_7_26_1
  doi: 10.1111/j.1467-9892.1982.tb00349.x
– volume: 2
  start-page: 67
  year: 2007
  ident: e_1_2_7_16_1
  article-title: Using low‐rank ensemble Kalman filters for data assimilation with high‐dimensional imperfect models
  publication-title: J.Numer. Anal. Ind. Appl. Math.
– ident: e_1_2_7_7_1
  doi: 10.1016/j.jprocont.2010.06.008
– ident: e_1_2_7_21_1
  doi: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
– ident: e_1_2_7_32_1
  doi: 10.1002/qj.654
– ident: e_1_2_7_24_1
  doi: 10.1002/qj.2728
– ident: e_1_2_7_28_1
  doi: 10.1175/JAS3408.1
– volume-title: Nonlinear Estimation and Applications to Industrial Systems Control
  year: 2012
  ident: e_1_2_7_22_1
– ident: e_1_2_7_30_1
  doi: 10.1002/qj.2134
– volume: 53
  start-page: 2437
  year: 2008
  ident: e_1_2_7_3_1
  article-title: On Bayesian fixed‐interval smoothing algorithms
  publication-title: IEEE Trans. Autom. Control Inst. Electr. Electron. Eng.
– ident: e_1_2_7_19_1
  doi: 10.1080/09548980701625173
– volume-title: Sequential Monte Carlo Methods in Practice
  year: 2013
  ident: e_1_2_7_27_1
– ident: e_1_2_7_31_1
  doi: 10.1002/qj.2803
– ident: e_1_2_7_11_1
  doi: 10.1175/1520-0493(1995)123<1128:OLEOEC>2.0.CO;2
– ident: e_1_2_7_5_1
  doi: 10.3402/tellusa.v65i0.20331
– volume-title: Kalman Filtering, with Real‐Time Applications
  year: 2009
  ident: e_1_2_7_8_1
– ident: e_1_2_7_6_1
  doi: 10.1175/1520-0493(1998)126<1719:ASITEK>2.0.CO;2
– ident: e_1_2_7_15_1
  doi: 10.1016/S0924-7963(02)00129-X
– volume-title: Optimal Filtering
  year: 1979
  ident: e_1_2_7_4_1
SSID ssj0005727
Score 2.4676788
Snippet Specification and tuning of errors from dynamical models are important issues in data assimilation. In this work, we propose an iterative...
SourceID hal
proquest
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1877
SubjectTerms Additives
Algorithms
Applications
Data assimilation
Data collection
Earth Sciences
Engineering Sciences
EnKF
EnKS
Errors
expectation–maximization
extended Kalman filter
Mathematical models
Meteorology
model error
Sciences of the Universe
Signal and Image processing
state‐space models
Statistics
Title Estimating model‐error covariances in nonlinear state‐space models using Kalman smoothing and the expectation–maximization algorithm
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fqj.3048
https://www.proquest.com/docview/1957823564
https://hal.science/hal-01574682
Volume 143
WOSCitedRecordID wos000403437900012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1477-870X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005727
  issn: 0035-9009
  databaseCode: DRFUL
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1Lb9QwEIBHdMuBC2_EloIsVPUWuknWdnysSlcVlAoQlXqLHMfeptokbbKsOPbcUyX-YX8JM066XYSQkDhFcWxlFI_tz848ALa0yHBZsiKIrMYNik7CQEmngyyOtBU8RsQd-2QT8ugoOTlRn1dSfXXxIZYHbjQy_HxNA1xn7c5d0NCLs3e4FU_WYD1CrR0PYP3918nx4Z19h-zztcY8UEgSnccsNd7pm_62FK2dkiHkCmWusqpfbCaP_kPMx_CwJ0y226nEE7hnq6cw_IRwXDf-DJ1ts71ZgaTq757B1T4OcwLXasp8Ypyby2vbNHXDTL3ArTTpRcuKilWdPLph3g0Jq-F0ZGzXqGVkQj9lH_Ws1BVryxp1gAp0lTOkTEa5BEz34__m8mepfxRl7wPK9GxaN8X8tHwOx5P9b3sHQZ-iITAUOywwseNG5iOnNKLOOI858pbNZSS0c4aPwkySt6sTGXfI8jJzLjTGSqNwphB5GL-AAQpvXwJTdqRszLVNUH1GKs-4zC3ik9BhohAihrB921up6eOXUxqNWdpFXo7Si7OUPvUQ2LLieRey488qb7G7l08pxPbB7mFKZYhHciySaBEOYfNWG9J-YLdpSIJHMRcoz5bv97-9I_3ygS4b_1btFTyICBi8TdAmDObNd_sa7pvFvGibN71u_wIDOQJ8
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3Nb9MwFMAt1iHBZXyLjgEWmnYLa5I6jo_TWFVYVwHapN0sx7G7TE3CklJx3JkTEv_h_hLec7xuCCEhcYri2MpT_Gz_7LwPQrZVksGyZJIgMgo2KCoNA8GtCrI4UiZhMSDu0CWb4NNpenoqPnqrSvSF6eJDrA7ccGS4-RoHOB5I795EDb04fwt78XSNrA9BiViPrL_7PDqZ3Bh4cJ-wNWaBAJToXGax8a5v-ttatHaGlpC3MPM2rLrVZvTgf-R8SDY8Y9K9TikekTumekz6R4DHdeNO0ekO3Z8XwKru7gn5fgADHdG1mlGXGufq8odpmrqhul7CZho1o6VFRatOINVQ54gE1WBC0qZr1FI0op_RQzUvVUXbsgYtwAJV5RQ4k2I2Ad39-r-6_Fmqb0XpvUCpms_qpliclU_JyejgeH8c-CQNgcboYYGOLdM8H1ihAHaGecyAuEzOo0RZq9kgzDj6u9okYxZonmfWhlobrgXMFUkexs9ID4Q3zwkVZiBMzJRJQYEGIs8Yzw0AVKLCVABG9MnOdXdJ7SOYYyKNuexiL0fy4lzip-4Tuqr4pQva8WeVN9Dfq6cYZHu8N5FYBoDEh0kaLcM-2bpWB-mHditDFDyKWQLybLuO_9s75KcPeNn8t2qvyb3x8dFETt5PD1-Q-xHig7MQ2iK9RfPVvCR39XJRtM0rr-i_AGRTBmw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZoixAX3hULBSxU9Ra6edhOjlXbVaHLqiAq9WY5jr1NtUnaZFlx7JkTEv-wv4QZx90WISQkTlGcsTLKzNjfOPMgZFPxHLYlw4PIKHBQVBoGmbAqyONIGc5igLiJazYhJpP05CQ78lGVmAvT14dYHrihZbj1Gg3cnBd2-6Zq6MXZO_DF0xWylrCMg1Gu7X0eHY9vAjyEb9gasyADKNGnzOLkbT_1t71o5RQjIW_BzNtg1e02o4f_w-cj8sBjTLrTK8VjcsfUT8jgI8DjpnWn6HSL7s5KwKru7in5vg-GjtC1nlLXGufq8odp26alulmAM42a0dGypnXPkGqpS0QCMliQtOkndRSD6Kf0UM0qVdOuakALcEDVBQWcSbGbgO5__V9d_qzUt7LyWaBUzaZNW85Pq2fkeLT_Zfcg8E0aAo3VwwIdW6ZFMbSZArCTFDEDxGUKEXFlrWbDMBeY72p5ziygeZFbG2pthM5greBFGK-TVWDePCc0M8PMxEyZFBRomBU5E4UBAMVVmIKAkwHZuhaX1L6COTbSmMm-9nIkL84kfuoBoUvC875ox58kb0Hey6dYZPtgZyxxDACSSHgaLcIB2bhWB-lNu5MhMh7FjAM_m07wf3uH_PQBLy_-jewNuXe0N5Lj95PDl-R-hOjBBQhtkNV5-9W8Inf1Yl527Wuv578A6NoF5w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimating+model+error+covariances+in+nonlinear+state-space+models+using+Kalman+smoothing+and+the+expectation-maximisation+algorithm&rft.jtitle=Quarterly+journal+of+the+Royal+Meteorological+Society&rft.au=Dreano%2C+Denis&rft.au=Tandeo%2C+Pierre&rft.au=Pulido%2C+Manuel&rft.au=Ait-El-Fquih%2C+Boujemaa&rft.date=2017-04-01&rft.pub=Wiley&rft.issn=0035-9009&rft.eissn=1477-870X&rft.volume=143&rft.issue=705&rft.spage=1877&rft.epage=1885&rft_id=info:doi/10.1002%2Fqj.3048&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-01574682v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0035-9009&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0035-9009&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0035-9009&client=summon